Fractional reaction-diffusion problems

par Miguel Angel Yangari Sosa

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Patricio A. Felmer et de Jean-Michel Roquejoffre.

Soutenue en 2014

à Toulouse 3 .


  • Résumé

    Cette thèse porte sur deux problèmes différents : dans le premier, nous étudions le comportement en temps long des solutions des équations de réaction diffusion 1d-fractionnaire de type Fisher-KPP lorsque la condition initiale est asymptotiquement de type front et décroît à l'infini plus lentement que, où et est l'indice du laplacien fractionnaire (Chapitre 2). Dans le second problème, nous étudions la propagation asymptotique en temps des solutions de systèmes coopératifs de réaction-diffusion (Chapitre 3). Dans le premier problème, nous démontrons que les ensembles de niveau des solutions se déplacent exponentiellement vite en temps quand t tend vers l'infini. De plus, une estimation quantitative du mouvement de ces ensembles est obtenue en fonction de la décroissance à l'infini de la condition initiale. Dans le second problème, nous montrons que la vitesse de propagation est exponentielle en temps et nous trouvons un exposant précis qui dépend du plus petit ordre des laplaciens fractionnaires considérés et de la non-linéarité. Nous notons aussi que cet indice ne dépend pas de la direction spatiale de propagation.

  • Titre traduit

    Problèmes de réaction-diffusion fractionnaires


  • Résumé

    This thesis deals with two different problems: in the first one, we study the large-time behavior of solutions of one-dimensional fractional Fisher-KPP reaction diffusion equations, when the initial condition is asymptotically front-like and it decays at infinity more slowly than a power , where and is the order of the fractional Laplacian (Chapter 2); in the second problem, we study the time asymptotic propagation of solutions to the fractional reaction diffusion cooperative systems (Chapter 3). For the first problem, we prove that the level sets of the solutions move exponentially fast as time goes to infinity. Moreover, a quantitative estimate of motion of the level sets is obtained in terms of the decay of the initial condition. In the second problem, we prove that the propagation speed is exponential in time, and we find a precise exponent depending on the smallest index of the fractional laplacians and of the nonlinearity, also we note that it does not depend on the space direction.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (90 p.)
  • Annexes : Bibliogr. p. 87-90

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2014 TOU3 0012
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.