Property-enriched fragment descriptors for adaptive QSAR

par Fiorella Ruggiu

Thèse de doctorat en Chimie informatique et théorique

Sous la direction de Alexandre Varnek et de Dragos Horvath.

Soutenue le 22-09-2014

à Strasbourg , dans le cadre de École doctorale Sciences chimiques (Strasbourg) , en partenariat avec Chimie de la matière complexe (Strasbourg) (laboratoire) .

Le président du jury était Olivier Taboureau.

Le jury était composé de Peter Ertl, Esther Kellenberger.

Les rapporteurs étaient Olivier Taboureau, João Aires de Sousa.

  • Titre traduit

    Descripteurs fragmentaux enrichis par propriété pour QSAR adaptatif


  • Résumé

    Les descripteurs ISIDA enrichis par propriété ont été introduit pour encoder les structures moléculaires en chémoinformatique en tant que nombre d’occurrence de sous-graphes moléculaires spécifiques dont les sommets représentant les atomes sont colorés par des propriétés locales tel que les pharmacophores dépendant du pH, les identifiants de champs de force, les charges partielles, les incréments LogP ou les propriétés extraites d’un modèle QSAR. Ces descripteurs, par leurs large choix d’option, permettent à l’utilisateur de les adapter au problème à modéliser. Ils ont été utilisés avec succès dans une étude de criblage virtuel sur des inhibiteurs de protéases et plusieurs modèles QSAR sur le coefficient de partage octanol-eau, l’index d’hydrophobicité chromatographique, l’inhibition du canal hERG, la constante de dissociation acide, la force des accepteurs de liaison hydrogène et l’affinité de liaison des GPCR.


  • Résumé

    ISIDA property-enriched fragment descriptors were introduced as a general framework to numerically encode molecular structures in chemoinformatics, as counts of specific subgraphs in which atom vertices are coloured with respect to a local property - notably pH-dependent pharmacophore, force field, partial charges, logP increments and QSAR model extracted properties. The descriptors leave the user a vast choice in terms of the level of resolution at which chemical information is extracted into the descriptors to adapt them to the problem. They were successfully tested in neighbourhood behaviour and QSAR modelling challenges, with very promising results. They showed excellent results in similarity-based virtual screening for analogue protease inhibitors, and generated highly predictive octanol-water partition coefficient, chromatographic hydrophobicity index, hERG channel inhibition, acidic dissociation constant, hydrogen-bond acceptor strength and GPCR binding affinity models.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque électronique 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.