Intersections maximales de quadriques réelles

par Arnaud Tomasini

Thèse de doctorat en Mathématiques

Sous la direction de Viatcheslav Kharlamov.

Le président du jury était Ilia Itenberg.

Le jury était composé de Gianluca Pacienza.

Les rapporteurs étaient Sergey Finashin, Frédéric Mangolte.


  • Résumé

    La géométrie algébrique réelle est dans sa définition la plus simple, l'étude des ensembles de solutions d'un système d'équations polynomiales à coefficients réelles. Dans cette vaste thématique, on se concentre sur les intersections de quadriques où déjà le cas de trois quadriques reste largement ouvert. Notre sujet peut être résumé comme l'étude topologique des variétés algébriques réelles et l'interaction entre leur topologie d'une part et leur déformations et dégénérations d'autre part, un problème issu du 16ième problème de Hilbert et enrichi par des développements récents. Au cours de cette thèse, nous allons nous focaliser sur les intersections maximales de quadriques réelles et en particulier démonter l'existence de telles intersections en utilisant des développements issus des recherches effectuées depuis la fin des années 80. Dans le cas d'intersections de trois quadriques, nous allons mettre en évidence le lien très étroits entre ces intersections d'une part et les courbes planes d'autre part, et démontrer que l'étude des M-courbes (une des problématiques du 16ième problème de Hilbert) peut se faire à travers l'étude des intersections maximales. Nous utiliserons ensuite les résultats sur les courbes planes nodales afin de déterminer dans certains cas les classes de déformations d'intersections de trois quadriques réelles.

  • Titre traduit

    Maximal intersections of real quadrics


  • Résumé

    Real algebraic geometry is in its simplest definition, the study of sets of solutions of a system of polynomial equations with real coefficients. In this theme, we focus on the intersections of quadrics where already the case of three quadrics remains wide open. Our subject can be summarized as the topological study of real algebraic varieties and interaction between their topology on the one hand and their deformations and degenerations on the other hand, a problem coming from the 16th Hilbert problem and enriched by recent developments. In this thesis, we will focus on maximum intersections of real quadrics and particularly prove the existence of such intersections using research developments made since the late 80. In the case of intersections of three quadrics, we will point the very close link between the intersections on the one hand and on the other plane curves, and show that the study of M-curves (one of the problems of the 16th Hilbert problem) may be done through the study of maximum intersections. Next, we will use the study on nodal plane curves to determine in some cases deformation classes of intersections of three real quadrics.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque électronique 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.