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Abstract

Access to the 3D images at a reasonable frame rate is widespread now,
thanks to the recent advances in low cost depth sensors as well as the
e�cient methods to compute 3D from 2D images. As a consequence, it
is highly demanding to enhance the capability of existing computer vi-
sion applications by incorporating 3D information. Indeed, it has been
demonstrated in numerous researches that the accuracy of di�erent tasks
increases by including 3D information as an additional feature. However,
for the task of indoor scene analysis and segmentation, it remains sev-
eral important issues, such as: (a) how the 3D information itself can be
exploited? and (b) what is the best way to fuse color and 3D in an unsu-
pervised manner? In this thesis, we address these issues and propose novel
unsupervised methods for 3D image clustering and joint color and depth
image segmentation. To this aim, we consider image normals as the promi-
nent feature from 3D image and cluster them with methods based on �nite
statistical mixture models. We consider Bregman Soft Clustering method
to ensure computationally e�cient clustering. Moreover, we exploit sev-
eral probability distributions from directional statistics, such as the von
Mises-Fisher distribution and the Watson distribution. By combining
these, we propose novel Model Based Clustering methods. We empiri-
cally validate these methods using synthetic data and then demonstrate
their application for 3D/depth image analysis. Afterward, we extend these
methods to segment synchronized 3D and color image, also called RGB-D
image. To this aim, �rst we propose a statistical image generation model
for RGB-D image. Then, we propose novel RGB-D segmentation method
using a joint color-spatial-axial clustering and a statistical planar region
merging method. Results show that, the proposed method is comparable
with the state of the art methods and requires less computation time.
Moreover, it opens interesting perspectives to fuse color and geometry in
an unsupervised manner. We believe that the methods proposed in this
thesis are equally applicable and extendable for clustering di�erent types
of data, such as speech, gene expressions, etc. Moreover, they can be used
for complex tasks, such as joint image-speech data analysis.



Abstract

L'accès aux séquences d'images 3D s'est aujourd'hui démocratisé, grâce
aux récentes avancées dans le développement des capteurs de profondeur
ainsi que des méthodes permettant de manipuler des informations 3D à
partir d'images 2D. De ce fait, il y a une attente importante de la part de
la communauté scienti�que de la vision par ordinateur dans l'intégration
de l'information 3D. En e�et, des travaux de recherche ont montré que
les performances de certaines applications pouvaient être améliorées en
intégrant l'information 3D. Cependant, il reste des problèmes à résoudre
pour l'analyse et la segmentation de scènes intérieures comme (a) com-
ment l'information 3D peut-elle être exploitée au mieux? et (b) quelle est
la meilleure manière de prendre en compte de manière conjointe les infor-
mations couleur et 3D? Nous abordons ces deux questions dans cette thèse
et nous proposons de nouvelles méthodes non supervisées pour la classi-
�cation d'images 3D et la segmentation prenant en compte de manière
conjointe les informations de couleur et de profondeur. A cet e�et, nous
formulons l'hypothèse que les normales aux surfaces dans les images 3D
sont des éléments à prendre en compte pour leur analyse, et leurs dis-
tributions sont modélisable à l'aide de lois de mélange. Nous utilisons
la méthode dite � Bregman Soft Clustering � a�n d'être e�cace d'un
point de vue calculatoire. De plus, nous étudions plusieurs lois de prob-
abilités permettant de modéliser les distributions de directions: la loi de
von Mises-Fisher et la loi de Watson. Les méthodes de classi�cation �
basées modèles � proposées sont ensuite validées en utilisant des données
de synthèse puis nous montrons leur intérêt pour l'analyse des images
3D (ou de profondeur). Une nouvelle méthode de segmentation d'images
couleur et profondeur, appelées aussi images RGB-D, exploitant conjoin-
tement la couleur, la position 3D, et la normale locale est alors développée
par extension des précédentes méthodes et en introduisant une méthode
statistique de fusion de régions � planes � à l'aide d'un graphe. Les ré-
sultats montrent que la méthode proposée donne des résultats au moins
comparables aux méthodes de l'état de l'art tout en demandant moins de
temps de calcul. De plus, elle ouvre des perspectives nouvelles pour la
fusion non supervisée des informations de couleur et de géométrie. Nous
sommes convaincus que les méthodes proposées dans cette thèse pourront
être utilisées pour la classi�cation d'autres types de données comme la
parole, les données d'expression en génétique, etc. Elles devraient aussi
permettre la réalisation de tâches complexes comme l'analyse conjointe de
données contenant des images et de la parole.

Rééesume

Hasnat
Line





Contents

1 Introduction 1

2 Model Based Clustering with Exponential Family of Distributions 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 k-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Finite Mixture Models . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Exponential Family of Distributions (EFD) . . . . . . . . . . . 25

2.3.5 Bregman Divergence (BD) . . . . . . . . . . . . . . . . . . . . 26

2.4 Hierarchy of Mixture Models . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Parsimony based approach . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Plot/Graph based approach . . . . . . . . . . . . . . . . . . . 33

2.5.3 Kullback Leibler Divergence (KLD) based approach . . . . . . 34

2.6 Model based clustering with exponential family mixture model . . . . 36

2.6.1 Bregman Soft Clustering (BSC) . . . . . . . . . . . . . . . . . 37

2.6.2 Model Generation with Hierarchical Clustering . . . . . . . . . 40

2.6.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 42

3 Clustering with Directional Distributions: Application to Depth Im-

age Analysis 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Directional Distributions, Mixture Models and Bregman Divergence . 49

3.2.1 von Mises-Fisher (vMF) Distribution . . . . . . . . . . . . . . 49

3.2.2 Watson Distribution . . . . . . . . . . . . . . . . . . . . . . . 51

i



Contents

3.2.3 Clustering with Mixture of Directional Distributions . . . . . . 51

3.2.3.1 von Mises-Fisher (vMF) Mixture Model . . . . . . . 52

3.2.3.2 Watson Mixture Model . . . . . . . . . . . . . . . . . 52

3.2.4 Bregman Divergence for Directional Distributions . . . . . . . 53

3.2.4.1 Bregman Divergence among vMF Distributions . . . 54

3.2.4.2 Bregman Divergence among Watson Distributions . . 55

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Model Based Clustering . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Depth Image Analysis . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Model Based Clustering with von Mises-Fisher Mixture Model

(MBC-vMFMM) . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1.1 Simulated Data Samples . . . . . . . . . . . . . . . . 60

3.4.1.2 Bregman Soft Clustering for vMFMixture Model (BSC-

vMFMM) . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1.3 Hierarchical Agglomerative Clustering (HAC) for Model

Generation . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1.4 Model Selection . . . . . . . . . . . . . . . . . . . . . 65

3.4.1.5 Depth Image Analysis . . . . . . . . . . . . . . . . . 69

3.4.2 Model Based Clustering with Watson Mixture Model (MBC-

WMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.2.1 Evaluation with Simulated Data Samples . . . . . . . 75

3.4.2.2 Evaluation of Depth Image Analysis . . . . . . . . . 78

3.5 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 82

4 Unsupervised RGB-D image segmentation using joint clustering and

region merging 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Background of RGB-D Segmentation . . . . . . . . . . . . . . . . . . 89

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Image Generation Model . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Segmentation method . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.3 Joint Color-Spatial-Axial (JCSA) clustering . . . . . . . . . . 93

4.3.3.1 Exponential Family of Distributions (EFD) and Breg-

man Divergence . . . . . . . . . . . . . . . . . . . . . 94

4.3.3.2 Multivariate Gaussian Distribution . . . . . . . . . . 94

ii



Contents

4.3.3.3 Multivariate Watson Distribution . . . . . . . . . . . 95

4.3.3.4 Bregman Divergence for the combined model . . . . 95

4.3.3.5 Bregman Soft Clustering for the combined model . . 96

4.3.4 Region Merging . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.4.1 Region Adjacency Graph (RAG) . . . . . . . . . . . 98

4.3.4.2 Merging Strategy . . . . . . . . . . . . . . . . . . . . 99

4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Conclusions 110

5.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 Model Based Clustering with Directional Distributions . . . . 111

5.1.2 Joint Clustering and Region merging for RGB-D segmentation 112

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Extension of Model Based Clustering methods . . . . . . . . . 114

5.2.2 RGB-D segmentation method . . . . . . . . . . . . . . . . . . 115

Bibliography 117

iii



Table des matières

1 Introduction 1

2 Classi�cation basée modèle à l'aide de la famille exponentielle de

distributions 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Etat de l'art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Classi�cation hiérarchique . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Méthode des k-moyennes . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Lois de mélange . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Famille exponentielle de distributions . . . . . . . . . . . . . . 25

2.3.5 Divergence de Bregman . . . . . . . . . . . . . . . . . . . . . 26

2.4 Hiérarchie de lois de mélange . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Sélection de modèle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Approche exploitant la notion de parcimonie . . . . . . . . . . 32

2.5.2 Approche exploitant un tracé ou un graphe . . . . . . . . . . . 33

2.5.3 Approche exploitant la divergence de Kullback-Leibler . . . . 34

2.6 Classi�cation basée modèle à l'aide de lois de mélange de distributions

de type exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Classi�cation �douce� bregmanienne (Bregman Soft Clustering

- BSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.2 Génération de modèle via la classi�cation hiérarchique . . . . 40

2.6.3 Sélection de modèle . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Discussion puis conclusion . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Classi�cation à l'aide des distributions directionnelles: Application

à l'analyse des images de profondeur 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



Table des matières

3.2 Distributions directionnelles, lois de mélange et divergence de Bregman 49

3.2.1 Loi de von Mises-Fisher (vMF) . . . . . . . . . . . . . . . . . 49

3.2.2 Loi de Watson . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3 Classi�cation à l'aide de lois de mélange de distributions direc-

tionnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3.1 Loi de mélange de von Mises-Fisher . . . . . . . . . . 52

3.2.3.2 Loi de mélange de Watson . . . . . . . . . . . . . . . 52

3.2.4 Divergence de Bregman et distributions directionnelles . . . . 53

3.2.4.1 Divergence de Bregman pour les lois de von Mises-Fisher 54

3.2.4.2 Divergence de Bregman pour les lois de Watson . . . 55

3.3 Méthodologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Classi�cation basée modèle (Model Based Clustering - MBC) . 57

3.3.2 Analyse d'images de profondeur . . . . . . . . . . . . . . . . . 59

3.4 Résultats expérimentaux . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 MBC à l'aide des lois de mélange de von Mises-Fisher . . . . . 60

3.4.1.1 Simulation d'échantillons . . . . . . . . . . . . . . . . 60

3.4.1.2 BSC pour les lois de mélange de von Mises-Fisher

(BSC-vMFMM) . . . . . . . . . . . . . . . . . . . . . 61

3.4.1.3 Classi�cation hiérarchique ascendante pour la généra-

tion de modèles . . . . . . . . . . . . . . . . . . . . . 62

3.4.1.4 Sélection de modèle . . . . . . . . . . . . . . . . . . 65

3.4.1.5 Analyse d'images de profondeur . . . . . . . . . . . . 69

3.4.2 MBC à l'aide des lois de mélange de Watson . . . . . . . . . . 74

3.4.2.1 Evaluation avec des données simulées . . . . . . . . . 75

3.4.2.2 Analyse d'images de profondeur . . . . . . . . . . . . 78

3.5 Discussion puis conclusion . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Segmentation non supervisée d'images RGB-D utilisant une classi-

�cation conjointe et la fusion de régions 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 La segmentation d'images RGB-D . . . . . . . . . . . . . . . . . . . . 89

4.3 Méthodologie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Modèle d'images RGB-D . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Méthode de segmentation . . . . . . . . . . . . . . . . . . . . 92

4.3.3 Classi�cation conjointe couleur-spatiale-axiale . . . . . . . . . 93

v



Table des matières

4.3.3.1 Famille des distributions exponentielles et divergence

de Bregman . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.3.2 Loi gaussienne multivariée . . . . . . . . . . . . . . . 94

4.3.3.3 Loi de Watson multivariée . . . . . . . . . . . . . . . 95

4.3.3.4 Divergence de Bregman pour le modèle combiné . . . 95

4.3.3.5 BSC pour le modèle combiné . . . . . . . . . . . . . 96

4.3.4 Fusion de régions . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.4.1 Graphe d'adjacence de régions . . . . . . . . . . . . . 98

4.3.4.2 Strategie de fusion de régions . . . . . . . . . . . . . 99

4.4 Résultats expérimentaux . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Conclusion 110

5.1 Résumé des contributions . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 MBC avec des distributions directionnelles . . . . . . . . . . . 111

5.1.2 Classi�cation conjointe et fusion de régions pour la segmenta-

tion RGB-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Travaux futurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Extension des méthodes MBC . . . . . . . . . . . . . . . . . . 114

5.2.2 RGB-D segmentation method . . . . . . . . . . . . . . . . . . 115

Références bibliographiques 117

vi



List of Figures

2.1 2D data for clustering and its true labels. . . . . . . . . . . . . . . . . 21

2.2 Illustration of Bregman divergence. . . . . . . . . . . . . . . . . . . . 26

2.3 Example of merging clusters with left-sided Bregman centroid. . . . . 30

2.4 Example of a hierarchy of mixture models. . . . . . . . . . . . . . . . 31

2.5 Dendogram for constructing the mixture models. . . . . . . . . . . . . 31

2.6 Illustration of model selection approaches. . . . . . . . . . . . . . . . 33

2.7 Illustrations for setting di�erent weights for ωr. . . . . . . . . . . . . 35

2.8 Illustration of KLD threshold based model selection. . . . . . . . . . . 36

2.9 Block diagram of the proposed clustering method. . . . . . . . . . . . 37

2.10 Examples of clustering data with k-means++ and BSC-MM method. 39

2.11 Illustration of convergence of the BSC-MM algorithm. . . . . . . . . . 39

2.12 Illustration of determining an appropriate weight for τ = ωr. . . . . . 41

3.1 Examples of Depth Image clustering with di�erent features. . . . . . 48

3.2 Illustrations of 3D directional samples from issued from the vMF and

Watson distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Block diagram of the proposed depth image analysis method. . . . . . 60

3.4 Illustrations of simulated data samples drawn from vMFMM. . . . . . 61

3.5 Evaluation of distance type and linkage criteria. . . . . . . . . . . . . 63

3.6 Graphical illustrations for component selection with di�erent criteria. 66

3.7 Evaluation graphs and selected optimal numbers of components. . . . 67

3.8 Depth image analysis with di�erent number of clusters. . . . . . . . . 70

3.9 Illustration of number of clusters selection of a depth image. . . . . . 71

3.10 Details of the evaluation for selecting the number of components. . . 72

3.11 Illustration of clustering depth images by applying MBC-vMFMMwith

τ = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.12 Comparison of depth image clustering generated by di�erent methods. 73

vii



List of Figures

3.13 Comparison of component selection with MBC-vMFMM and Mean-

Shift clustering methods. . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.14 Illustrations for di�erent types of simulated data samples drawn from

WMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.15 Illustration of depth image analysis using MBC-WMM method. . . . 78

3.16 Illustration of selecting of the number of components for a depth image

and for the NYU database. . . . . . . . . . . . . . . . . . . . . . . . . 79

3.17 Depth image analysis with MBC-WMM method. . . . . . . . . . . . . 81

3.18 Histogram of κ values for planar and non-planar surfaces. . . . . . . . 82

4.1 Illustration of the proposed segmentation method. . . . . . . . . . . . 93

4.2 Illustration of the Region Adjacency Graph (RAG). . . . . . . . . . . 98

4.3 Segmentation examples on NYU RGB-D database using di�erent meth-

ods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Histogram of GTRC scores of di�erent methods. . . . . . . . . . . . . 106

4.5 Segmentation examples with lower GTRC scores. . . . . . . . . . . . 107

viii



List of Tables

3.1 Evaluation of the initialization methods for clustering with the BSC-

vMFMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Comparison of clustering accuracy among GMM, SPKM, KMDR, soft-

MoVMF and BSC-vMFMM methods. . . . . . . . . . . . . . . . . . . 62

3.3 Numerical evaluation BD types and linkage criteria. . . . . . . . . . . 63

3.4 Comparison of MBC-MoVMF and MBC-vMFMM. . . . . . . . . . . 64

3.5 Evaluation of MBC based methods for vMFMM. . . . . . . . . . . . . 65

3.6 Analysis of the learned KLD threshold values. . . . . . . . . . . . . . 66

3.7 Accuracy evaluation for determining the optimal number of components. 68

3.8 E�ect of τ for WPLR-τ method. . . . . . . . . . . . . . . . . . . . . . 69

3.9 Comparison of accuracy for clustering simulated axial data. . . . . . . 76

3.10 Methodological comparison of MBC-EMW, MBC-MOW and MBC-

WMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.11 Numerical evaluation of MBC-EMW, MBC-MOW and MBC-WMM

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.12 Evaluation of the rate of correct components selection with WMM. . 78

4.1 Sensitivity of JCSA-RM w.r.t. the parameters {k, κp, thb, thd}. . . . . 103

4.2 Comparison with the state of the art. . . . . . . . . . . . . . . . . . . 104

4.3 Computation time of JCSA-RM w.r.t. di�erent image scales. . . . . . 106

ix



List of Algorithms

1 BSC-MM algorithm for mixture of exponential family of distributions. 40

2 Bregman Soft Clustering algorithm for vMFMM or WMM. . . . . . . 58

3 BSC-COMB algorithm for Joint Color-Spatial-Axial clustering. . . . . 97

4 Region Merging algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 101

x



Abbreviations

AIC Akaike Information Criteria

BD Bregman Divergence

BIC Bayesian Information Criteria

BSC Bregman Soft Clustering

EFD Exponential Family of Distributions

EM Expectation Maximization

GMM Gaussian Mixture Model

HAC Hierarchical Agglomerative Clustering

IC Information Criteria

ICL Integrated Completed Likelihood

JCSA Joint Color-Spatial-Axial

KLD Kullback Leibler Divergence

MBC Model Based Clustering

MLE Maximum Likelihood Estimates

MM Mixture Model

MML Minimum Message Length

mWD multivariate Watson Distribution

NDA Non Dominant Axial

RAG Region Adjacency Graph

RM Region Merging

vMF von Mises-Fisher

vMFMM vMF Mixture Model

WMM Watson Mixture Model

WPLR Weighted Piecewise Linear Regression

xi



List of Symbols

Symbol Description
C(.) Penalization function to compute Information Criterion.
D(.) Divergence function.
F (.) Log normalizing function.
G(.) Legendre dual of the log normalizing function.
I(.) Modi�ed Bessel function.
M(.) Kummer's con�uent hypergeometric function.
P (.) Number of free parameters.
Q(.) Normalization constant of the von Mises-Fisher (or Langevin) distribution.
V (.) Density function of the von Mises-Fisher (or Langevin) distribution.
W (.) Density function of the multivariate Watson distribution.
d(.) Distance function.
f(.) Density function of a distribution belonging to the exponential families.
fg(.) Density function of the multivariate Gaussian distribution.
g(.) Mixture model.
k(.) Carrier measure.
p(.|xi) Posterior probability.
q(.) Kummer-ratio.
t(.) Su�cient statistics.
w(.) Function to compute edge weight.
δ(.) Shortest distance from a data point to the closest center.
Σ Variance-covariance symmetric positive-de�nite matrix.
∇ Gradient operator.
Γ Set of labels corresponding to set of observations.
Θk Set of parameters corresponding to a mixture model with k components.
Ψ Matrix associated with the natural parameter of multivariate Gaussian distri-

bution.
Φ Matrix associated with the expectation parameter of multivariate Gaussian

distribution.
E Set of edges.
M Number of observations in a subset of samples.
N Total number of observations.
P Region merging predicate.
R Set of regions.
V Set of nodes.

xii



List of Algorithms

X Set of observations.
Z Total number of regions or nodes.
d Dimension of an observation.
e An edge among two nodes.
k Number of clusters.
kmax Maximum number of clusters.
ko Optimal number of clusters.
i Index of an observation.
j Index of a cluster or class.
p Posterior probability.
r A region of a segmented image.
v A node in the graph V.
xi Single observation.
ω Weight associated with a line.
τ Weight associated with the right-sided line.
θ Natural parameter.
η Expectation parameter.
γ Label of an observation.
µ Mean of a cluster or probability distribution.
π Mixing proportion or prior class probability.
ψ Vector associated with the natural parameter of multivariate Gaussian distri-

bution.
φ Vector associated with the expectation parameter of multivariate Gaussian

distribution.
λ A multiplier.
ξ Initial centers of kmeans++ algorithm.
ρ Rising factorial.
 Order of Bessel function.
ν Vector associated with the mean direction for Watson distribution.

xiii



Chapter 1

Introduction

The widespread use of consumer color cameras in a variety of applications enlarges

the research areas related to image processing, computer vision and robotics. Over

the years the capability of these cameras improves signi�cantly to provide rich and

quality information, e.g., high resolution color image, high speed image capture, high

accuracy, etc. Undoubtedly, such quality of information boosted the performance of

the applications in the respective areas. However, the use of only color information is

limited up to certain extent because of the several reasons (Dal Mutto et al., 2012b;

Rusu, 2013), to name few:

a. These images are the 2D projection of the real world 3D scene, hence there is

a loss of shape/geometric information due to the missing third dimension or

depth information.

b. These images do not always contain enough information in order to disam-

biguate and interpret all scene objects properly. For example, they tend to fail

in a uniform color region as well as in a heavily textured region.

c. They are often sensitive to the scene properties such as re�ection, illumination

etc. For example, they are unable to handle environments with spatially varying

illumination which causes several e�ects of shadows, such as in indoor or outdoor

scenes.

Researches have shown that, these limitations have numerous e�ects especially

in the context of image understanding and analysis (Dal Mutto et al., 2012b; Rusu,

2013). On the other hand, it is possible to overcome these limitations by incorporating

color information with shape/geometric information which is computed or captured

in the form of depth image or 3D point clouds. This provides us the motivation to

work with 3D images.
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A variety of di�erent techniques (e.g., shape from X, stereo vision, etc.) and

devices (laser scanner, stereo camera, time-of-�ight camera etc.) are available for

the acquisition or computation of the depth/3D information (Lanman and Taubin,

2009; Moons, 2009; Dal Mutto et al., 2012b). Until a few years ago, the research

activities related to depth images manipulation were not as widespread as they were

with color images. An obvious reason for this was the limited a�ordability of the

cameras and availability of the computational resources and techniques for depth

image acquisition and computation (Dal Mutto et al., 2012b). Interestingly, in the

past few years the research activities related to 3D information processing increased

signi�cantly (Henry et al., 2012; Izadi et al., 2011; Han et al., 2013; Khoshelham and

Elberink, 2012), thanks to the Microsoft Kinect sensors (Zhang, 2012) which provide

access to depth image with a camera that costs around 150 USD. A true re�ection of

this scenario can be observed in this thesis as this work begins after the introduction

of the Microsoft Kinect in the consumer market. The main focus of this research work

was to manipulate particularly the depth images from the Kinect camera for the task

of scene understanding and analysis. Our primary interest to depth image solely was

motivated by the fact that the color accuracy of kinect camera is very low, particularly

in regards to the hue and saturation channels observed in the indoor scenes.

Due to the availability of low-cost 3D depth sensors, access to the depth informa-

tion at a reasonable frame rate is widespread now. These information have been em-

ployed to enhance the capability of existing applications in computer vision, graphics

and robotics, see Han et al. (2013) for a detail review. Kinect type low-cost cameras

(Han et al., 2013; Zhang, 2012) allow the direct acquisition of the third dimension

(also called depth) information of the scene points. Then, using the camera calibration

parameters (Herrera et al., 2012; Keane et al., 2011) one can easily reconstruct the

3D position information of the scene being imaged (Khoshelham and Elberink, 2012).

Moreover, Kinect also provides synchronize color information along with depth, which

opens the possibility to jointly exploit the color and depth for image analysis and rel-

evant tasks. We refer the readers to Chapter 3 of the book of Dal Mutto et al. (2012b)

for further technical details related to Kinect camera.

Kinect is a structured light based depth sensing camera (Zhang, 2012; Dal Mutto

et al., 2012b). It projects randomly coded infrared speckle patterns to the scene and

then compute disparity information by decoding the observed patterns through an

infrared camera. It attracts high interest from the research community and indus-

tries. Therefore a number of software programs, to interact with Kinect, have been

developed and are freely available (Keane et al., 2011). Despite numerous bene�ts,
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there are several limitations of the Kinect like cameras such as (Dal Mutto et al.,

2012b; Han et al., 2013) :

a. Depth acquisition is limited within a certain range of distance, preferably less

than 3.5 meters.

b. Measurements depend on the scene illumination and lighting condition which

may interact with the projected patterns.

c. Measurements depend on the re�ectance properties of the scene surfaces that

cause overexposed or low re�ectivity in the infrared image.

d. Measurement directions and occlusions often cause the absence of depth values,

also called missing depth values.

Due to the above limitations, Kinect performs poorly in the outdoor environment.

Moreover, in the outdoor environments the depth acquisition is more complex to real-

ize. Therefore, in this thesis we limit our research only for the indoor environments.

Kinect captures images at a reasonable frame rate, 30 frames/sec. Therefore, it

provides the opportunity to work with motion information. In this thesis, we mainly

focus on the single images from Kinect and plan to extend it for multi-frame analysis

in order to perform several tasks, such as co-segmentation, 3D model reconstruction,

etc.

Over the past decades, the task of image analysis and segmentation has received

signi�cant attention from the community. It is frequently considered as a low level

image/vision task which is employed as a preprocessing step for many advanced ap-

plications. A large number of methods for intensity/color image analysis have been

proposed in the literature, see Chapter 5 of Szeliski (2011) for a detail review. Many

of these methods have been either modi�ed or directly employed to analyze depth

images, see Chapter 6 of Dal Mutto et al. (2012b) for a detail review. Beside these, a

number of recent research activities, e.g., Gupta et al. (2013) and Taylor and Cowley

(2013) provide di�erent methodologies to exploit depth/3D images for indoor scene

understanding and analysis. There are several common properties of these proposed

methods, such as: (a) they incorporate depth as a complementary information with

color image, which is called RGB-D image and (b) most of them are based on learning

a classi�er from available training data with ground truth, i.e., supervised approach

(Gupta et al., 2013; Ren et al., 2012; Silberman et al., 2012; Koppula et al., 2011; Lai

et al., 2011). From our study, we observe that the unsupervised approaches received
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relatively less attention in the context of depth image analysis. Moreover, it is not

completely evident how certain features (e.g. depth, 3D, surface normal) individually

contribute for the objective of scene analysis. To address these issues properly, we

initially focus on developing an unsupervised depth image analysis method using the

primitive depth features. Later, we focus on extending our method towards RGB-D

indoor image analysis.

A common approach to analyze the depth image is to consider it as a grayscale

image (Dal Mutto et al., 2012b) and then apply standard image analysis techniques

(Szeliski, 2011) on it. This approach is relatively simpler compare to color image as

the edges are sharper and the complex texture patterns are absent in the depth maps

(Dal Mutto et al., 2012b). However, such approaches fail to identify long uniform

structures when they spread into a wide range of depth values, such as the walls in a

room. In general these structures are divided into several regions rather than being

identi�ed as a single region. Therefore, it is suggested to use 3D position as the

feature rather than only depth value for each pixel (Dal Mutto et al., 2012b,a; Rusu,

2013). Beside the 3D position, surface normal is considered as an important feature,

which describes the planar property of each pixel of a depth image (Rusu, 2013; Holz

et al., 2012).

The planar surfaces are prominent geometric primitives of the Man-made environ-

ment and are often employed for scene decomposition (Silberman et al., 2012; Ren

et al., 2012; Gupta et al., 2013; Holz et al., 2012) and grouping (Taylor and Cowley,

2013). Detected and segmented planes are able to adequately model the surface of

the main structures in the indoor environment (Holz et al., 2012). These surfaces are

generally located with two di�erent approaches: (a) using model (plane) �tting by

applying the RANSAC algorithm on the 3D point clouds (Rusu, 2013; Taylor and

Cowley, 2013) and (b) by clustering the surface normals using k-means or mean-shift

method (Dal Mutto et al., 2012b; Holz et al., 2012). We observed several common

facts about these approaches such as:

a. These methods do not consider any particular model (e.g. mixture models

with statistical distributions) for generating the depth image, and hence an

interesting parametric model based study for the depth data is missing.

b. They require explicit settings of parametric factors, which is often di�cult for

the non-experts users to analyze scene.

c. They do not explain the pixels which belong to the non-planar surfaces and
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d. They do not provide a clear view of how these methods can be extended for

scene analysis with additional features.

The above facts motivate us to conduct further research on: (a) how to best ex-

ploit the surface normals for analyzing depth images of indoor environment and (b)

how it can be extended for further analysis by incorporating additional features in an

unsupervised manner.

Cluster analysis is often employed for the task of image analysis and segmentation

(Szeliski, 2011). To perform clustering, image pixels are described by di�erent features

such as intensity, color, position, texture, etc. We consider the surface normal as a

feature and apply clustering to analyze the depth images from it. To this aim, we

employ a model based clustering approach (Fraley and Raftery, 2002; Melnykov and

Maitra, 2010). This choice was driven due to the following reasons:

a. It employs a generative model, which assumes that the data are issued from a

mixture of certain statistical distributions (Murphy, 2012). In statistics, such

models are theoretically well-judged and are able to provide greater insight into

the anatomy of the clusters (Banerjee et al., 2005a).

b. These models are well �tted into the unsupervised classi�cation paradigm.

Learning of parameters is automatically done through the mixture model esti-

mation process (Figueiredo and Jain, 2002). The number of clusters can be auto-

matically determined using certain model selection criteria (Alata and Quintard,

2009; Biernacki et al., 2000; Fraley and Raftery, 2002) or using non-parametric

Bayesian approach (Murphy, 2012; Cherian et al., 2011).

c. Obtained clusters are explainable through the parameters of the model. For ex-

ample, using the prior probability, mean and covariance, one can interpret the

clusters provided by a Gaussian Mixture Model (Murphy, 2012). These parame-

ters provide very useful information, e.g., the covariance matrices of multivariate

data have been used as feature descriptors in many areas in computer vision

(Cherian et al., 2011).

d. These models can be easily extended in several ways, such as: (a) forming

a feature vector which concatenates di�erent types of features and (b) with

the naïve Bayes (Murphy, 2012) assumption which assumes that features are

independent of each other.
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Most commonly, the Gaussian distribution is employed for clustering image with

mixture models (Alata and Quintard, 2009; Garcia and Nielsen, 2010; Ma et al., 2007;

Nguyen and Wu, 2013). Although the Gaussian Mixture Model is well adapted with

a variety of computer vision applications (Szeliski, 2011), it can also be argued that it

is not always the best choice (Se�dpour and Bouguila, 2012; Gopal and Yang, 2014).

For example, the Hue (color attribute) values are circular in nature and therefore a

circular probability distribution (e.g., the von Mises distribution (Mardia and Jupp,

2009)) is an appropriate choice for it. Therefore, in practice the best approach is �rst

to understand the true nature of the data and next to select a probability distribution

that best suits it.

Surface normal is a 3D unit vector that provides the direction of each pixel in

the depth image. The sample space for surface normals is the unit-sphere manifolds.

Directional distributions (Mardia and Jupp, 2009) are the standard choice to con-

struct a Mixture Model for such samples (Gopal and Yang, 2014). The fundamental

directional distributions (Mardia and Jupp, 2009) are the von Mises-Fisher, Watson,

Kent, etc. Therefore, in this thesis our primary focus is to propose model based clus-

tering methods with the directional distributions (Mardia and Jupp, 2009) in order to

perform unsupervised clustering of the depth images with surface normals. Our sec-

ondary objective is to extend these methods for clustering heterogeneous (joint color

and depth) data and propose an unsupervised RGB-D scene analysis method.

Expectation Maximization (EM) is the most common method to estimate the

parameters of a mixture model. It consists of an Expectation and a Maximization

steps which are iteratively employed to maximize log likelihood of the data. Banerjee

et al. (2005b) proposed Bregman soft clustering algorithm which simpli�es the com-

putationally expensive M-step. Moreover, it has the following attractive features: (a)

it is equivalent to EM for a mixture of exponential family of distributions (Murphy,

2012); (b) it is applicable to mixed data types and (c) its computational complexity

is linear in the data points. The fundamental directional distributions belong to the

exponential family (Mardia and Jupp, 2009). This motivates us to develop Bregman

soft clustering methods for the directional distributions. Moreover, we set several ob-

jectives at this point: (a) to exploit such method within the model based clustering

framework and (b) to extend such method for joint clustering task.

In this thesis, we propose methods to analyze depth images. To develop these

methods we focus on several issues: (a) theoretically well justi�ed; (b) unsupervised,

i.e., no learning from training data; (c) provide better classi�cation accuracy w.r.t.
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the state of the art; (d) computationally e�cient (e) extendable with additional in-

formation and (f) applicable to a variety of domains other than image processing

and computer vision. First, we empirically validate the proposed methods using a

synthetic data-set which is generated through standard sampling procedures (Dhillon

and Sra, 2003). Then, we apply these methods on real depth images to cluster sur-

face normals. As per the observed results, the proposed methods can be considered

as potential tools for bottom up depth image analysis and segmentation (Szeliski,

2011).

We are aware about the fact that the directional features alone have limited capa-

bility to provide a complete semantic categorization of indoor scenes. For this reason,

we extend our initially proposed methods such that they are able to incorporate ad-

ditional features. To this aim, we consider color, 3D and surface normal as features

and propose a combination of joint clustering and region merging method. We apply

the proposed method to analyze color image synchronized with depth image provided

by Kinect camera, which is also called RGB-D image. We employed standard bench-

marks (Arbelaez et al., 2011; Freixenet et al., 2002) to evaluate the proposed method

w.r.t. the state of the art methods.

Publications

The following research papers are accepted or submitted during this thesis:

J1 Md. Abul Hasnat, Olivier Alata and Alain Trémeau, �Model Based Clustering

with von Mises-Fisher Mixture Model: Application to Depth Image Analysis�,

Revised version submitted to Statistics and Computing (STCO).

C1 Md. Abul Hasnat, Olivier Alata and Alain Trémeau. �Model Based Clustering

for 3D Ddirectional Features: Application to Depth Image Analysis�, Accepted

in the International Conference on Image Processing (ICIP), October 2014.

C2 Md. Abul Hasnat, Olivier Alata and Alain Trémeau. �Unsupervised Clustering

of Depth Images using Watson Mixture Model�, Accepted in the 22nd Interna-

tional Conference on Pattern Recognition (ICPR), August 2014.

C3 Md. Abul Hasnat, Olivier Alata and Alain Trémeau. �RGB-D image segmenta-

tion using joint clustering and region merging�, Accepted in the British Machine

Vision Conference (BMVC), September 2014.
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W1 Md. Abul Hasnat, Olivier Alata and Alain Trémeau, �Hierarchical 3-D von

Mises-Fisher Mixture Model�, In Proc. of the ICML Workshop on Divergences

and Divergence Learning, Atlanta, Georgia, USA, 2013.

Oral presentations without publication

1 A. Hasnat, O. Alata and A. Trémeau, "Model based clustering for directional

features and application to depth image", PEPS WAVE days, the 18th and 19th

of November, 2013, Bordeaux, France.

2 A. Hasnat, O. Alata and A. Trémeau, "Model based clustering using color and

depth information", GDR ISIS day on "joint analysis of RGB-D images", the

6th of february, 2014, Telecom Paris, France.

3 A. Hasnat, O. Alata and A. Trémeau, "Model based clustering using color and

depth information", SIERRA (Signal et Images en RÃ©gion RhÃ´ne-Alpes) day

on "Adaptive methods and models", the 25th of march, 2014, Ecole des Mines

de Saint-Etienne, France.

Contributions

We can summarize our contributions in this thesis as follows:

• A Model based clustering method for the fundamental directional distributions

called the von Mises-Fisher distribution (vMF) and the multivariate Watson

distribution (mWD), published or submitted in the research papers J1, C1,

C2 and W1. The key contributions are: (a) a mathematical formulation to

compute Bregman divergence (Banerjee et al., 2005b) among the vMFs and the

mWDs; (b) an e�cient soft clustering method for the vMF Mixture Models

(Banerjee et al., 2005a) and the mWD Mixture Models (Sra and Karp, 2013);

(c) hierarchical mixture models for the vMF and mWD and (d) an empirical

model selection strategy based on the combination of model selection criteria

(Alata and Quintard, 2009; Biernacki et al., 2000; Figueiredo and Jain, 2002)

and linear regression �t (Baudry et al., 2010; Salvador and Chan, 2004).

• An unsupervised RGB-D image segmentation using joint clustering and region

merging, published in C3. The key contributions are: (a) propose a statistical

RGB-D image generation model that incorporates both color and geometry of a

scene; (b) develop an e�cient soft clustering method by exploiting the Bregman

divergence (Banerjee et al., 2005b) to cluster heterogeneous data w.r.t. the
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image model; (c) propose a statistical region merging method based on planar

geometry, which can be used with other RGB-D segmentation methods and (d)

provide a benchmark on the NYU depth database V2 (Silberman et al., 2012)

using standard evaluation metrics (Arbelaez et al., 2011; Freixenet et al., 2002).

In this thesis, we developed several methods to cluster unit vectors and also to

cluster mixed data types. These methods are device and dataset independent, and

hence can be applicable to the data obtained from di�erent types of depth sensing

devices and relevant datasets. We experiment these methods mainly in the context

of image processing and computer vision. However, we believe that the proposed

methods can be equally useful for a number of di�erent domains, for example to

cluster motion, speech, text, gene expressions, joint speech-image, joint motion-image

data etc.

Organization of this thesis

The outline of this thesis is as follows:

• Chapter 2 presents the background and methodology to perform model based

clustering. Here, �rst we introduce the model based clustering method and

discuss related work. Then, we provide the background of several connected

topics: exponential family of distributions, Bregman divergence, Bregman soft

clustering, hierarchical meta-clustering and several model selection strategies.

Finally, we present a complete model based clustering method, which is devel-

oped during this thesis.

• Chapter 3 presents our proposed (developed during this thesis) model based

clustering methods with directional distributions and provides experimental re-

sults. Here, �rst we provide the background related to the directional distribu-

tions and associated mixture models. Then, we present the methodologies to

compute the Bregman divergence for these distributions and extend it for model

based clustering. Finally, we provide the experimental results, �rst with syn-

thetic data and then with real depth images. We compare the results with the

state of the art directional data clustering methods and the relevant clustering

based image analysis methods.

• Chapter 4 presents an extension of the methods, developed in the previous

Chapters, to perform RGB-D image analysis. In this Chapter, we present a

statistical image generation model that incorporates the color and geometry of
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the scene. Then, we present a joint color-spatial-directional clustering method

followed by a statistical planar region merging method. Finally, we provide the

experimental results and a benchmark of the NYU depth database w.r.t. the

state of the art of unsupervised RGB-D segmentation methods.

• Chapter 5 provides conclusions and possible extensions of the methods to

perform di�erent computer vision tasks.
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Introduction

L'accès aux séquences d'images 3D s'est aujourd'hui démocratisé, grâce aux récentes

avancées dans le développement des capteurs de profondeur ainsi que des méthodes

permettant de manipuler des informations 3D à partir d'images 2D. De ce fait, il y

a une attente importante de la part de la communauté scienti�que de la vision par

ordinateur dans l'intégration de l'information 3D. En e�et, des travaux de recherche

ont montré que les performances de certaines applications pouvaient être améliorées

en intégrant l'information 3D. Cependant, il reste des problèmes à résoudre pour

l'analyse et la segmentation de scènes intérieures comme (a) comment l'information

3D peut-elle être exploitée au mieux? et (b) quelle est la meilleure manière de pren-

dre en compte de manière conjointe les informations couleur et 3D? Dans cette thèse,

nous apportons des éléments de réponses à ces deux questions dans un contexte de

classi�cation non supervisée. Nous avons postulé que les informations principales

à prendre en compte était la couleur, la position dans l'espace 3D et les normales

aux surfaces. Les deux premières informations peuvent être décrites à l'aide de lois

de Gauss multivariées et la troisième à l'aide de distributions directionnelles. Ces

dernières appartiennent aussi à la famille exponentielle de distributions. Ainsi, dans

le deuxième chapitre nous proposons une méthode de type classi�cation basée mod-

èle (Model Based Clustering - MBC) pour la famille exponentielle de distributions

exploitant la divergence de Bregman, la classi�cation ascendante hiérarchique ainsi

qu'une approche parcimonieuse pour la sélection de modèle. Au cours du troisième

chapitre, nous développons la méthode de type MBC pour deux distributions di-

rectionnelles: la loi de von Mises-Fisher et la loi de Watson. La méthode de type

MBC proposée est ensuite modi�ée dans le chapitre quatre pour pouvoir faire de la

segmentation conjointe prenant en compte la couleur, les positions spatiales et les

normales aux surface, en introduisant une méthode de fusion de régions exploitant

un graphe d'adjacence, la couleur et des propriétés géométriques. Au cours des dif-

férents chapitres, nous donnons des résultats expérimentaux obtenus sur des données

simulées et des données réelles et nous les comparons aux méthodes de l'état de l'art.
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Chapter 2

Model Based Clustering with

Exponential Family of Distributions

Résumé: La classi�cation �basée� modèle (Model Based Clustering - MBC) est une

méthode qui permet de regrouper les données en partant de l'hypothèse que leur

distribution est une loi de mélange. Dans ce chapitre, nous proposons une nouvelle

méthode de type MBC pour une loi de mélange contenant des composantes dont les

distributions appartiennent à la famille exponentielle. Les principaux aspects de cette

méthode sont: (a) d'o�rir une solution pertinente pour estimer les paramètres de la

loi de mélange ; (b) de générer une hiérarchie de modèles et (c) de sélectionner le mod-

èle optimal. La méthode d'estimation des paramètres des modèles est développée en

exploitant les propriétés de la divergence de Bregman et la classi�cation ascendante

hiérarchique. La méthode de sélection de modèle est construite à partir d'une ap-

proche parcimonieuse et d'une méthode d'évaluation exploitant un graphe. Pour �nir,

la méthode proposée permet d'obtenir une classi�cation non supervisée des données.

Model Based Clustering (MBC) is a method that clusters data with an assumption

of mixture model structure. In this Chapter, we propose a novel MBC method for a

�nite statistical mixture model based on the exponential family of distributions. The

main focuses of the proposed method are: (a) provide e�cient solution to estimate

the parameters of a mixture model; (b) generate a hierarchy of models and (c) select

the optimal model. To this aim, we develop a Bregman soft clustering method for

a mixture model. Our model estimation strategy exploits Bregman divergence and

hierarchical agglomerative clustering. Whereas, our model selection strategy com-

prises parsimony based approach and an evaluation graph based approach. Overall,

the proposed method performs an unsupervised classi�cation of the data.
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2.1 Introduction

Clustering or cluster analysis can be de�ned as the task to automatically identify the

groups of similar observations from a given set of data points. For example, to perform

image segmentation (Szeliski, 2011), cluster analysis identi�es groups of similar pixels

based on certain features as well as certain measure of distance. However, most

clustering methods have the limitation to pre-specify the number of clusters as an

external input. Model based clustering (Fraley and Raftery, 2002, 2007; Zhong and

Ghosh, 2003; Melnykov and Maitra, 2010) is a well-established method that can be

used to overcome this limitation.

Model based clustering assumes a generative model, i.e. each observation is a

sample from a �nite mixture of probability distributions (Biernacki et al., 2000). In

general, it consists of: (a) de�ning a probabilistic model (ex: mixture model) of the

data; (b) optimizing an objective function, such as maximizing the value of likelihood

function; (c) generating a set of models and (d) �nally, selecting an optimal model

based on a speci�c criterion. As an outcome, it provides a probabilistic clustering,

also called soft clustering of the data. See Fraley and Raftery (2002) for a complete

overview of this clustering method and see Zhong and Ghosh (2003) for di�erent

variations of this method.

The multivariate Gaussian distribution has been mostly employed in the Model

Based Clustering (MBC) framework (Fraley and Raftery, 2002, 2007; Fraley et al.,

2012; Zhong and Ghosh, 2003; Wehrens et al., 2004). This provides a principled

statistical approach to clustering as it assumes that the samples are issued from a

�nite mixture of the Gaussian distributions. The goal in this approach is to estimate

the Gaussian Mixture Model (GMM) parameters as well as to select the GMM with

optimal number of components. Clustering with the GMM requires the correct es-

timation of the covariance structure (Fraley and Raftery, 2007), such as spherical,

diagonal and ellipsoidal. Therefore, a number of GMMs with di�erent choices of

covariance structures as well as with di�erent number of components are �tted for

the data. Afterwards, the best GMM is selected using a model selection criterion.

Although GMM is widely employed for MBC methods, it would be interesting to

develop a generalized MBC framework which includes a number of other probability

distributions.

Model based clustering methods use the Expectation Maximization (EM) method

to estimate a mixture model, i.e. to learn the parameters (Fraley and Raftery, 2007;

Fraley et al., 2012; Melnykov and Maitra, 2010). It consists of an Expectation (E-step)

13
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and a Maximization (M-step) step. The E-step and M-step are iteratively employed

to maximize log likelihood of the data, while considering constraints in the optimiza-

tion goal (Murphy, 2012). The M-step of the EM method is often computationally

expensive. Banerjee et al. (2005b) proposed Bregman Soft Clustering (BSC) algo-

rithm which performs Maximum Likelihood Estimates (MLE) of the mixture model

parameters using the EM method. Compare to the other soft clustering methods,

BSC has the following attractive features:

• It is equivalent to the EM method for the mixture of exponential family of

distributions (Nielsen and Garcia, 2009; Bishop, 2006).

• It simpli�es the computationally expensive M-step.

• It is applicable to mixed data types.

• Its computational complexity is linear in the data points.

Bregman soft clustering is a centroid based parametric clustering method (e.g., k-

means), which arises by special choice of Bregman divergence (Banerjee et al., 2005b).

Bregman divergence generalizes a large number of distortion functions which are com-

monly used in the data clustering problems (Banerjee et al., 2005b; Liu et al., 2012).

Naturally, this allows the computation of relative entropy (KL Divergence) between

statistical distributions. Garcia and Nielsen (2010) exploited this and proposed a

method to construct a hierarchy of mixture models. This hierarchy of models can be

considered as the set of models with di�erent number of components.

Due to the bijection between Bregman divergence and the Exponential Family

of Distributions (EFD), Bregman Soft Clustering (BSC) method can be e�ectively

developed using statistical mixture models with any member of EFD (Nielsen and

Garcia, 2009). However, to develop BSC for any distribution, it is necessary to

obtain the canonical representation of the density function. Nielsen and Garcia (2009)

provided such representation for a number of probability distributions.

The properties of the model based clustering, Bregman soft clustering and Breg-

man divergence provide us the motivation to exploit them in a single method. Par-

ticularly, we want to develop a clustering method which has the following features:

• Applicable to a variety of di�erent types of data.

• Extendable with a number of probability density functions.

• Computationally e�cient clustering.

14
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• E�ciently generate the set of models.

• Automatically select the number of clusters.

Moreover, the proposed method will extend the capability and e�ciency of the model

based clustering framework with numerous bene�ts which are mentioned above.

Number of components selection is one of the most prominent issues in cluster

analysis. An incorrect selection leads to over-�t or under-�t the data (Figueiredo

and Jain, 2002). In general, model based clustering methods employ a parsimony

based approach (Melnykov and Maitra, 2010; McLachlan and Peel, 2004) to select

the best model. A di�erent type of approach performs evaluation on graph/plot

generated from certain model selection criteria (Baudry et al., 2010; Salvador and

Chan, 2004). The idea is to select optimal model by detecting certain change (called

kink/knee/elbow (Murphy, 2012; Salvador and Chan, 2004)) in the plot. In practice,

none of these two approaches uniquely exhibits desired performance for all dataset.

Therefore, we aggregate the best from both approaches in order to determine our

model selection strategy.

In this Chapter, we present a novel clustering method, which follows the principals

of model based framework (Fraley and Raftery, 2002). To this aim, we begin with

the development of Bregman soft clustering for a statistical mixture model based on

the exponential family of distributions. Then, we generate a set of models using hier-

archical agglomerative clustering with the objective to minimize Bregman divergence

among statistical distributions. Finally, we apply a combination of parsimony based

model selection (Melnykov and Maitra, 2010) and evaluation graph based approach

(Baudry et al., 2010; Salvador and Chan, 2004) to select the optimal model.

The outline of the rest of this Chapter is as follows: Section 2.2 discusses related

work. Section 2.3 describes the necessary background of clustering methods. Then,

Section 2.4 presents the method to generate a hierarchy of models and Section 2.5

presents several model selection methods. Next, the complete model based clustering

method is presented in Section 2.6. Finally, Section 2.7 provides discussion and

conclusions.

2.2 Related Work

Model based clustering estimates a model for the data and produces probabilistic

clustering that quanti�es the uncertainty of observations belonging to components of
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the mixture (Fraley and Raftery, 2007). The resulting model can be used for a va-

riety of problems, such as for multivariate analysis, density estimation, discriminant

analysis and automatically select the number of clusters. This clustering technique

has been applied in a number of studies (Fraley and Raftery, 2007) such as multi-

variate image analysis, magnetic resonance imaging, microarray image segmentation,

statistical process control and food authenticity. Several software programs, such as

mclust (Fraley and Raftery, 2002) and HDclassif (Bergé et al., 2012) are available

online to cluster data with this method.

Model based clustering identi�es the best model (number of clusters and structure

of component parameters if necessary) for the data by �tting a set of models with

di�erent parameterizations and/or number of components and then applying a sta-

tistical criterion for model selection (Fraley and Raftery, 2007; Melnykov and Maitra,

2010; Figueiredo and Jain, 2002; Biernacki et al., 2000). Therefore, three prominent

issues arise: (a) What type of model to estimate?; (b) How many models? and (c)

Which criterion to select the best model? Answers of these issues lead to a complete

clustering method.

Type of models (issue (a), �what type?�) is often speci�ed a priori (Zhong and

Ghosh, 2003). Particularly, it is related to the selected probability distribution which

is considered to construct a statistical mixture model. The Gaussian distribution is

mostly employed in model based clustering methods (Fraley and Raftery, 2002; Zhong

and Ghosh, 2003; Fraley and Raftery, 2007; Melnykov and Maitra, 2010; Bergé et al.,

2012) as they represent in practice the most commonly used mixture models (Garcia

and Nielsen, 2010).

Mixture models, also called latent variable models (Murphy, 2012) have been

extensively used in a number of di�erent domains. For example, the Gaussian Mixture

Model (GMM) has been used for di�erent tasks such as segmentation (Garcia and

Nielsen, 2010; Permuter et al., 2006; Nguyen and Wu, 2013; Verbeek et al., 2003),

color space characterization for image analysis (Alata and Quintard, 2009), shape

retrieval (Liu et al., 2012), data compression (Ma et al., 2007), speaker veri�cation

(Reynolds et al., 2000), large margin classi�cation (Sha and Saul, 2006), supervised

classi�cation (Fernando et al., 2012) and cluster analysis (Fonseca and Cardoso, 2007;

Biernacki et al., 2000; Figueiredo and Jain, 2002; Fraley and Raftery, 1998; Baudry

et al., 2010; Vlassis and Likas, 2002), etc. However, it can be argued that GMM

is not always the most appropriate choice (Se�dpour and Bouguila, 2012). Besides

the Gaussian distribution, mixture models based on other probability distributions

also exist and are used in practice. For example, mixture of multivariate Bernoulli
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distributions is used for clustering bit vectors such as digits (Murphy, 2012) and text

classi�cation (Juan and Vidal, 2002), mixture of Student's-t distributions is used for

image segmentation (Nguyen and Wu, 2012; S�kas et al., 2007), mixtures of Beta

distributions is used for clustering DNA methylation data (Houseman et al., 2008),

and so on.

Despite having established methods for mixture models based on di�erent distri-

butions, it is particularly interesting to have a framework that generalizes a group

of distributions. The exponential family of distributions is a broad class consists of

many important probability distributions, such as Gaussian, Bernoulli, Dirichlet, etc.

(Nielsen and Garcia, 2009; Bishop, 2006). Banerjee et al. (2005b) derived bijection

between Bregman divergence and the exponential family and proposed Bregman soft

clustering algorithm. This algorithm provides clustering method that generalizes all

mixture models based on the exponential family of distributions. Nielsen and Garcia

(2009) provided formulations for a number of distributions of the exponential family

and software (jMEF) for estimating models and parameters. In this thesis work, we

follow their methodology and extend it. Therefore, we consider the exponential family

as the model type (issue (a), �what type?�) to be used in our model based clustering

framework.

Number of models to generate (issue (b), �how many?�) focuses on generating

models with di�erent numbers of components within a certain bound (ex: kmin to

kmax). Methods which employed this type of bound are called deterministic method

(Figueiredo and Jain, 2002). A Hierarchical Agglomerative Clustering (HAC) scheme

with an objective function is often employed to generate a set of models in a de-

terministic approach. Fraley and Raftery (2002) used maximization of classi�cation

likelihood as the objective function for HAC. However, for large number of samples

their approach is ine�cient w.r.t. computational time and memory requirements.

Moreover, such objective does not perform well when samples are not well separated

(Melnykov and Maitra, 2010). Baudry et al. (2010) proposed an objective function

based on entropy minimization. In their approach, two components are selected for

merging such that the entropy of the resulting clustering is minimized. Zhong and

Ghosh (2003) and Goldberger and Roweis (2004) employed minimum KL Divergence

as the objective function. Recently, Garcia and Nielsen (2010) proposed a mixture

model simpli�cation method with Bregman divergence, which generates a hierarchy

of mixture models by fusing centroids in natural/exponential parameter space. We

found that, this approach is well suited for us due to the fact that: (a) it can be
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employed to e�ciently generate a set of mixture models and (b) it guarantees the

structural relationship (Zhong and Ghosh, 2003) among the mixture models.

Model selection based on certain criterion (issue (c), �what objective function?�)

is one of the most critical issues for any model based clustering method (Burnham

and Anderson, 2002). In general, such objective function is de�ned based on minimiz-

ing a model selection criterion. Type of approaches that incorporates such objective

function is referred to as parsimony based approach (Melnykov and Maitra, 2010).

See Figueiredo and Jain (2002) for a list of di�erent criteria and their categoriza-

tion. For example, Fraley and Raftery (2002) used the Bayesian Information Criteria

(BIC), Figueiredo and Jain (2002) employed the Minimum Message Length (MML)

and Biernacki et al. (2000) proposed the Integrated Completed Likelihood (ICL).

Alata and Quintard (2009) applied a di�erent formulation called Φβ criterion that

computes model penalization term with di�erent β parameter values (0 < β < 1).

An advantage of this criterion is that, certain values of β allow computing other crite-

ria such as Akaike Information Criterion (AIC) (Burnham and Anderson, 2002) and

Bayesian Information Criterion (BIC). In general, the above mentioned information

criteria should provide the desired model with the true number of mixture compo-

nents. However, these criteria are mostly successful when the data can be modeled

with the assumed mixture model. Unfortunately, in many practical situations the

real data cannot be completely described by the assumed models and hence model

selection with information criteria fails. A number of di�erent solutions are proposed

in literature that we will discuss shortly.

Beside the parsimony based model selection, there exists a di�erent family of

approaches that can be used to analyze plot/curve/evaluation graph (Salvador and

Chan, 2004). In general, Bayesian Information Criterion (BIC) is used to generate

a plot (let us call it BIC plot). The idea of BIC plot analysis is to �nd optimal

number of components by detecting the point in the plot where BIC plot exhibits

an abrupt change. In literature, methods associated to detecting such change in a

point is often referred to as kink/knee/elbow detection process (Murphy, 2012). For

example, Salvador and Chan (2004) proposed the L-method which detects elbow by

�tting two lines. Zhao et al. (2008) proposed the global angle detection on the BIC

plot in order to detect the knee. Other than the BIC plot, Baudry et al. (2010)

employed linear regression �t in a rescaled entropy plot. They demonstrated that

with the GMM their approach performs similar to the ICL (Biernacki et al., 2000)

criteria.
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Apart from the above mentioned methods, there are numerous methods to com-

pute the optimal number of components from a set of candidate clustering models

(Murphy, 2012). However, all of them do not �t within the context of this research.

Among the closely similar approaches, we studied the method called Gap statistics

method proposed by Tibshirani et al. (2001). The idea of such method is to compare

two graphs generated from candidate models. However, the method is ine�cient for

large dataset. In a di�erent context (model simpli�cation), Garcia and Nielsen (2010)

and Garcia et al. (2010) employed the KL Divergence based threshold to determine

the optimal model. Note that, the KL Divergence is also considered as the funda-

mental basis for model selection criteria. See Chapter 2.2 and 7.2 of Burnham and

Anderson (2002) for the derivation of Akaike Information Criterion (AIC) from the

KL information.

The non-parametric Bayesian approach based on Dirichlet Process Mixture Model

(DPMM) is currently one of most active approach to automatically determining the

number of components (Murphy, 2012) in the context of mixture model. Such meth-

ods assume no apriori bound on the number of components and hence allows the

number of clusters to grow with the increased amount of data. We refer readers to

Chapter 25 of Murphy (2012) for the details of this approach. The drawbacks of

this method are that they are non-deterministic and computationally very expensive.

Another approach for automatic component selection is based on sampling with Re-

versible Jump Markov Chain Monte Carlo (RJMCMC) (Kato, 2008). Such sampler is

able to explore the parameter subspaces of di�erent dimensionality and hence can be

used to �nd the most likely number of classes. However, it requires high computation

time due to involving a large amount of sampling. In this thesis, we do not further

explore these methods due to their ine�ciency to cluster large amount of data, e.g.,

≈300k for an image.

Initialization is considered as one of the most prominent issues to be addressed

in the Expectation Maximization based methodology (Martinez et al., 2010). A Va-

riety of di�erent strategies exists for initializing the EM algorithm, see Biernacki

et al. (2003), Figueiredo and Jain (2002) and McLachlan and Peel (2004) for di�er-

ent choices. However, no single method uniformly outperforms the other from all

aspects, such as sensitivity to local minima, Maximum Likelihood function value,

speed of convergence or computation time, stability etc. Therefore, it is necessary to

experimentally evaluate di�erent strategies and select the suitable one depending on

data and probability distribution.
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One of the most common forms of initializing Expectation Maximization (EM)

method is through random initialization (Biernacki et al., 2003; McLachlan and Peel,

2004). The idea of this initialization consists of drawing one or more random po-

sitions, and then computes the mean of these positions. However, it appears from

experiments that random initialization can often lead to a suboptimal solution by

getting trapped into one of the many local maxima of the Maximum Likelihood func-

tion. Experimental evaluation by Biernacki et al. (2003) shows that, algorithms such

as short runs of EM (1emEM or xemEM), classi�cation EM (CEM), stochastic EM

(SEM) outperforms the random initialization. These techniques are less sensitive to

noisy data and often they cause faster convergence of the core EM algorithm.

Another approach of initialization considers starting the �rst Expectation step

with an initial partition (McGraw et al., 2006). This initial partition is obtained

by clustering algorithms such as widely used k-means type algorithm or hierarchical

algorithm. Clustering with model based approach (Fraley and Raftery, 2002) belongs

to such family. However, it has several drawbacks (Melnykov and Maitra, 2010), such

as it works well only for well separated clusters and it has limited applicability to

large datasets. The k-means algorithm is considered as a variant of the Expectation

Maximization (EM) by imposing restrictive assumptions of certain parameters of the

distribution associated with the mixture model. Therefore, speed of convergence for

k-means will be faster than EM. This provides reasonable motivation to choose k-

means (and its variants) as an initialization tool for the EM algorithm. However,

k-means itself needs initialization and common procedure is to choose k data points

at random (Murphy, 2012). Therefore, k-means based EM initialization have the

same drawbacks of random initialization. The k-means++ (Arthur and Vassilvitskii,

2007) algorithm appears as very promising to tackle the problems by choosing the

starting centers with speci�c probabilities, see Section 2.6.1 for details.

2.3 Background

Clustering or cluster analysis can be de�ned as the unsupervised classi�cation of

patterns (observations, data items, or feature vectors) into groups (clusters) (Jain

et al., 1999). It is considered as one of the oldest techniques for exploratory data

analysis and data mining. Figure 2.1 illustrates an example of data for clustering

and its true labels that we will use throughout this Chapter. A number of di�erent

clustering techniques are available in literature (Murphy, 2012; Martinez et al., 2010).

See Jain et al. (1999) for a taxonomy of the common clustering approaches. Among
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Figure 2.1: Example of 2-dimensional data for clustering and its true labels.

them, the partitional and hierarchical clustering methods are most relevant with this

thesis work.

The partitional clustering technique creates groups of the data into disjoint sets.

This grouping can be hard, such as k-means, which assigns each observation into

one of the groups. In contrast, it can be fuzzy or probabilistic, such as fuzzy logic

approaches as Fuzzy C-Means (FCM) (Jain et al., 1999) or Expectation Maximization

(Bishop, 2006) for statistical mixture models. In the fuzzy or probabilistic approaches,

each data point has a certain degree of membership or probability to be a member

of each of the groups or clusters. The hierarchical clustering (Martinez et al., 2010)

creates a nested tree of partitions. Below we discuss the relevant clustering techniques

which are essential part of our proposed clustering method.

Let us consider a set of observations as X = {xi}i=1,...,N , where xi ∈ Rd denotes

a single d dimensional sample and N is the total number of samples. The goal

of clustering is to partition X into k clusters and automatically identify the labels

Γ = {γi}i=1,...,N , where γi ∈ {1, ..., k} denotes the label of sample xi.

2.3.1 Hierarchical Clustering

Hierarchical clustering methods produce clusters of observations which can be con-

sidered as a hierarchy of groups or set of nested partition (Murphy, 2012). There are

two main categories of this type of methods: agglomerative or bottom-up and divi-

sive or top-down. Both categories build a dissimilarity matrix from each pair of the

observations and perform clustering based on it. The agglomerative method proceeds

by merging similar observations or subsets of observations at each step until having

a single set containing all observations. Whereas, the divisive method starts from

the entire set of observations and recursively splits it to subsets until having subsets
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with single observation. We consider only the agglomerative method which follows

two steps as:

• Step 1: Start with N subsets each containing a single observation.

• Step 2: Merge two most similar subsets and continues until there is a single set.

The initial observations and their progressively merged subsets information are stored

into a hierarchical structure called dendogram (Martinez et al., 2010), see Figure 2.5

for an example.

Two most important issues of the hierarchical clustering are the distance among

single observations and the measure of distance between pair of subsets which contains

more than one observation. Computing distance among single observations depends

on the type of data, for example the Euclidean distance is used for continuous data

types belonging to the Euclidean space. The measure of distance between pair of

subsets is called the linkage criteria. Di�erent choices exist as the linkage criteria,

such as: Single, Complete, Average, Ward, Weighted, Median and Centroid. See

Martinez et al. (2010) for details. Among them, the Single, Complete and Average

linkage criteria are most commonly used (Murphy, 2012). The Single linkage is also

called the nearest neighbor clustering, it measures the distance among two closest

members of each group. The Complete linkage is also called the farthest neighbor

clustering, it measures the distance among two most distant pairs. The Average

linkage measures the average distance between all pairs. It should be noted that

there is no recommended distance type and linkage criteria (Martinez et al., 2010).

Therefore, the analyst should �nd the appropriate one to explore the data. The

cophenetic correlation coe�cient (Martinez et al., 2010), which provides a way to

compare a set of nested partitions from hierarchical clustering, can be employed for

the purpose of evaluating di�erent criteria and select the appropriate one.

2.3.2 k-means

k-means is one of the most popular, simple and widely used data clustering techniques.

It is a partitional clustering method that provides hard clustering of the data. The

basic idea of this method is based on the objective to minimize intra-cluster distance

and maximize inter-cluster distance. This idea is formalized by discovering the pa-

rameters Θk = {µj}j=1,...,k ∈ Rd and the labels Γ, such that the following function is

minimized:
N∑
i=1

k∑
j=1

1 [γi = j] ‖xi − µj‖2
2 (2.1)
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Eq. (2.1) is the objective function for the k-means clustering method, where µj is

called the mean or centroid of each cluster j = 1, ..., k, 1 [.] is an indicator function

for the associated condition and ‖.‖2 is the L2 norm or the Euclidean distance. In

order to cluster with the k-means method, the objective in Eq. (2.1) is iteratively

evaluated until certain convergence criteria are satis�ed. Each iteration consists of

assigning the labels γi and updating the parameters µj as follows:

γi = arg min
j=1,...,k

‖xi − µj‖2
2 , i = 1, ..., N (2.2)

µj =

∑N
i=1 1 [γi = j]xi∑N
i=1 1 [γi = j]

(2.3)

The k-means method starts by setting initial values for the parameters, i.e. Θk.

Most commonly, these parameters are set randomly. However, random initialization

often generates a sub-optimal solution as it cannot guarantee to converge into the

global minimum. The convergence criteria applied in this method consists of setting

a maximum number of iterations and a threshold related to the minimum di�erence in

the objective function (Eq. (2.1)) value in two consecutive steps. One of the concerns

about k-means is its spherical assumption about the structure of the clusters (Bishop,

2006). This can be solved with the use of mixture model based method, such as GMM.

2.3.3 Finite Mixture Models

Clustering with �nite mixture models, also called latent variable models (Murphy,

2012; Bishop, 2006), is a partitional approach that provides probabilistic clustering.

Moreover, they provide better interpretability of the clusters structure by modeling

data with the parameters associated with the probability distributions. The most

popular model is the Gaussian Mixture Model (GMM), which models data with the

mean and covariance of the Gaussian distribution for each cluster (Bishop, 2006). A

mixture model of k Gaussian distributions is written as:

g (xi|Θk) =
k∑
j=1

πj,kfg (xi|µj,k,Σj,k) (2.4)

where, Θk = {(π1,k, µ1,k,Σ1,k), ..., (πk,k, µk,k,Σk,k)} is the set of model parameters and

πj,k is the mixing proportion with
∑k

j=1 πj,k = 1. fg (xi|µj,k,Σj,k) is the multivariate

Gaussian distribution for cluster j, which is de�ned as:

fg(xi|µj,Σj) =
1

(2π)d/2 det(Σj)1/2
exp

(
−1

2
(xi − µj)T Σ−1

j (xi − µj)
)

(2.5)
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where, µj ∈ Rd is the mean and Σj is the variance-covariance symmetric positive-

de�nite matrix.

Clustering with a mixture model requires the estimation of the model parameters

Θk as well as the latent variables Γ of the data. Most commonly, this is accomplished

by �nding the Maximum Likelihood Estimation (MLE) using the Expectation Maxi-

mization method, also called EM method. See Chapter 9 of Bishop (2006) for details

of the EM method.

Maximum Likelihood Estimation using the EM method consists of Initialization,

E-step, M-step and log likelihood evaluation. Initialization is applied only once at the

beginning of the method in order to set the initial values for the model parameters

Θk. It can be done in several ways, such as randomly or using k-means algorithm.

After initializing, the log likelihood value of the model parameters is computed as:

log g (X|Θk) =
N∑
i=1

log

{
k∑
j=1

πj,kfg (xi|µj,k,Σj,k)

}
(2.6)

The E step computes the posterior probability, also called responsibility of the current

parameter values as:

pij = p (γi = j|xi) =
πj,kfg (xi|µj,k,Σj,k)∑k
l=1 πl,kfg (xi|µl,k,Σl,k)

(2.7)

The M step (for GMM) performs an update or re-estimation of the current parameter

values as:

πj,k =
1

N

N∑
i=1

pij and µj,k =

∑N
i=1 pijxi∑N
i=1 pij

and Σj,k =

∑N
i=1 pij(xi − µj)(xi − µj)T∑N

i=1 pij
(2.8)

Then, the log likelihood value is computed with Eq. (2.6). The EM method is

an iterative procedure, which employs the E and M steps iteratively until certain

convergence criteria are satis�ed. Such criteria consist of setting a maximum number

of iterations and a threshold related to the minimum di�erence in the likelihood

function (Eq. 2.6) value of two consecutive steps.

The Gaussian distribution is commonly used for �nite mixture model. However,

it is interesting to have a mixture model framework that generalizes a group of dis-

tributions. The exponential family of distributions is a broad class which consists of

many important probability distributions (Murphy, 2012), which can be considered

for a generalized mixture model framework.
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2.3.4 Exponential Family of Distributions (EFD)

A multivariate probability density function f(x|θ) belongs to the exponential family

if it has the following canonical form (Murphy, 2012; Banerjee et al., 2005b):

f (x|θ) = exp (〈t(x), θ)〉 − F (θ) + k(x)) (2.9)

Here,

• t(x) denotes the su�cient statistics1;

• θ denotes the natural parameter1;

• F is the log normalizing function1, which is strictly convex and di�erentiable;

• k(x) is the carrier measure1;

• < ., . > is the inner product.

The expectation of the su�cient statistics t(x) is called the expectation parameter,

η = E[t(x)]. There exists a one-to-one correspondence between expectation (η) and

natural (θ) parameters, which exhibits dual relationships among the parameters and

functions as (Banerjee et al., 2005b):

η = ∇F (θ) and θ = (∇F )−1(η) (2.10)

and

G(η) =
〈
(∇F )−1(η), η

〉
− F

(
(∇F )−1(η)

)
(2.11)

Here, ∇F is the gradient of F . G is the Legendre dual of the log normalizing function

F . See Section 3.2 of Banerjee et al. (2005b) for details.

The exponential family encompasses a wide class of familiar distributions (Nielsen

and Garcia, 2009), which includes Gaussian or normal, Gamma, Beta, Laplacian,

Exponential, Wishart, Rayleigh, Weibull, Dirichlet, Poisson, Bernoulli, Binomial,

Multinomial, etc. We refer reader to Chapter 9 of Murphy (2012) to study the

important properties of exponential families and Nielsen and Garcia (2009) for the

canonical form of a number of probability distributions.

To provide an example, let us consider the Gaussian distribution (Eq. 2.5), which

has the following canonical representation (based on Eq. 2.9) (Garcia and Nielsen,

2010):

1see the de�nitions given later for di�erent probability distributions.
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Figure 2.2: Illustration of Bregman divergence.

• su�cient statistics: t(x) = (x,−xxT );

• carrier measure k(x) = 0;

• natural parameter θ = (ψ,Ψ) =
(
Σ−1µ, 1

2
Σ−1

)
;

• expectation parameter η = (φ,Φ) =
(
µ,−(Σ + µµT )

)
;

• log normalizing function F (θ) = 1
4
tr
(
Ψ−1ψψT

)
− 1

2
log detΨ + d

2
logπ and

• dual log normalizing function G(η) = −1
2
log(1 + φTΦ−1φ) − 1

2
log(det(Φ)) −

d
2
log(2πe).

Banerjee et al. (2005b) developed e�cient clustering method for the mixture of

exponential families. Their method exploits the relationship between exponential

families and Bregman divergence.

2.3.5 Bregman Divergence (BD)

For a strictly convex function F , Bregman divergence, DF (θ1, θ2) can be formally

de�ned as (Banerjee et al., 2005b):

DF (θ1, θ2) = F (θ1)− F (θ2)− 〈θ1 − θ2,∇F (θ2)〉 (2.12)

DF (θ1, θ2) measures the error using the tangent function at θ2 to approximate F .

This can be seen as the distance between the �rst order Taylor approximation to F

at θ2 and the function evaluated at θ1 (Liu et al., 2012). Figure 2.2 illustrates an

example of computing Bregman divergence using Eq. (2.12).

The one-to-one correspondence in Eq. (2.10) provides the dual form of BD (of

Eq. (2.12)) as:

DG (η1, η2) = G(η1)−G(η2)− 〈η1 − η2,∇G(η2)〉 (2.13)
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Due to the bijection2 between BD and the exponential families, Eq. (2.12) and

(2.13) can be used to measure the dissimilarity between distributions of the same

exponential family.

Bregman Divergences (BD) generalize the squared Euclidean distance, Maha-

lanobis distance, Kullback-Leibler divergence, Itakura-Saito divergence etc. See Table

1 of Banerjee et al. (2005b) and Boissonnat et al. (2010) for a list and corresponding F

and DF (., .). Besides, BD has the following interesting properties (Boissonnat et al.,

2010):

• Non-negativity: The strict convexity of F implies that, for any θ1 and θ2,

DF (θ1, θ2) ≥ 0 and DF (θ1, θ2) = 0 if and only if θ1 = θ2.

• Convexity: Function DF (θ1, θ2) is convex in its �rst argument θ1 but not nec-

essarily in the second argument θ2.

• Linearity: BD is a linear operator, i.e., for any two strictly convex functions F1

and F2 and λ ≥ 0:

DF1+λF2(θ1, θ2) = DF1(θ1, θ2) + λ DF2(θ1, θ2)

Now, let us consider an example of computing Bregman divergence among two

multivariate Gaussian distributions. To this aim, we can use Eq. (2.12) or (2.13)

based on the type of parameters derived in Section 2.3.4. However, we can notice

that the multivariate Gaussian distribution consists of mixed type vector/matrix pa-

rameters. For this reason, the inner product < ., . > in Eq. (2.12) or (2.13) is a

composite inner product obtained as a sum of two inner products of vectors and

matrices as (Garcia and Nielsen, 2010):

〈θ1, θ2〉 = 〈Ψ1,Ψ2〉+ 〈ψ1, ψ2〉 (2.14)

where, the inner product of vectors is the dot product 〈ψ1, ψ2〉 = ψT1 ψ2, and the inner

product of two matrices is de�ned as:

〈Ψ1,Ψ2〉 = tr
(
Ψ1 ΨT

2

)
= tr

(
Ψ2 ΨT

1

)
The formulations presented in Sections 2.3.4 and 2.3.5 along with the properties of

Bregman divergence and the exponential families allow us to develop a generalized

clustering method (see Section 2.6 and Figure 2.9) which can be incorporated with

any mixture of exponential family of distributions.
2The bijection is expressed as: f(x|θ) = exp(−DG(t(x), η))JG(x) where JG is a uniquely deter-

mined function. For more details, please see Theorem 3 of Banerjee et al. (2005b).
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2.4 Hierarchy of Mixture Models

We assume a generative model (Murphy, 2012), which consists of a mixture of k

distributions belonging to the exponential families as:

g (xi|Θk) =
k∑
j=1

πj,kf (xi|θj,k) (2.15)

Here Θk = {(π1,k, θ1,k), ..., (πk,k, θk,k)} is the set of component parameters, πj,k is the

mixing proportion and f (xi|θj,k) is the distribution for jth component.

We apply the Hierarchical Agglomerative Clustering (HAC) on the mixture model

parameters Θk to construct a set of models. In general, the HAC permits a variety

of choices based on three principal issues (Martinez et al., 2010):

a. the distance measure between clusters,

b. the criterion to select the clusters to be merged and

c. the representation of the merged cluster.

The �rst issue can be solved by measuring the distance between two exponential

families distributions using the Bregman Divergence (BD) of Eq. (2.12) or (2.13).

Since BD is generally an asymmetric measure (Garcia and Nielsen, 2010), we have

three choices for distance measure:

Left-sided:

dl ((π1, θ1), (π2, θ2)) = π1 π2DF (θ1, θ2)

or

dl ((π1, η1), (π2, η2)) = π1 π2DG (η1, η2)

Right-sided:

dr ((π1, θ1), (π2, θ2)) = π1 π2DF (θ2, θ1)

or

dr ((π1, η1), (π2, η2)) = π1 π2DG (η2, η1)

Symmetric:

ds ((π1, θ1), (π2, θ2)) =
π1 π2 (DF (θ1, θ2) + DF (θ2, θ1))

2

or

ds ((π1, η1), (π2, η2)) =
π1 π2 (DG (η1, η2) + DG (η2, η1))

2
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To deal with the second issue (issue (b)), we choose the �minimum BD� as merging

criterion. The linkage criteria (single, complete, average, etc.) should be selected

empirically.

In our clustering strategy, the set of models is represented by their parameters (also

called cluster centroids). After determining the clusters to be merged, we compute

their representative centroids (issue (c)). Similar to the distances, there are three

types of centroids, called Bregman centroids. See Figure 1 of Garcia and Nielsen

(2010) for an example with clear distinctions among di�erent types of centroid, which

are computed with the uni-variate Gaussian distributions. For a set of parameters

{θ1, ..., θM},M > 1 with associated weights {π1, ..., πM}, di�erent types of Bregman

centroid (with both natural and expectation parameters) can be computed as:

Left-sided centroid:

θL = ∇F−1

(∑M
i=1 πi∇F (θi)∑M

i=1 πi

)
or

ηL =

∑M
i=1 πi ηi∑M
i=1 πi

Right-sided centroid:

θR =

∑M
i=1 πi θi∑M
i=1 πi

or

ηR = ∇F

(∑M
i=1 πi θi∑M
i=1 πi

)

Symmetric centroid:

θS = ∇F−1 (λ∇F (θR) + (1− λ)∇F (θL))

or

ηS = ∇F (θS) and θS = ∇F−1 (λ ηR + (1− λ) ηL)

with λ ∈ [0, 1] (λ is obtained by using a standard bisection search).

Note that, the type of centroid used to merge/fuse clusters parameters, must

correspond to the type of distance. The appropriate type of distance (issue (a)) and

centroid (issue (c)) should be selected empirically. Figure 2.3 illustrates an example

of merging clusters with left-sided Bregman centroid.

Now, let us consider an example of applying the hierarchical mixture models

method with a multivariate Gaussian Mixture Model (GMM). Figure 2.4 illustrates
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Figure 2.3: Example of merging clusters with left-sided Bregman centroid. (a) two
clusters, 1 - blue colored with parameters: π1 = 0.0934, µ1 = [3.7298; 4.1386], Σ1 =
[0.6836 − 0.3418;−0.3418 1.7928] and 2 - red colored with parameters: π2 =
0.0676, µ2 = [4.6003; 3.9701], Σ2 = [1.1124 − 0.8339;−0.8339 0.8858] (b) two
clusters merged into a single cluster with parameters: πm = 0.1610, µm =
[4.0224; 4.3286], Σm = [0.8037 − 0.5661;−0.5661 0.9066], where the sub-script �m�
denotes the merged cluster.

an example of a hierarchy of GMMs for k = 9, ..., 2 number of classes. The GMMs

samples correspond to the data shown in Figure 2.1. Notice that, we compute the

parameters from data, only for the model with kmax = 9 components. Then, we

use these parameters in the proposed HAC method to compute the parameters for

the models with k = 8, ..., 2 components. The hierarchical structure of the merged

information can be represented by a dendogram which is shown in Figure 2.5.

The set of mixture models generated by the hierarchical agglomerative clustering

method can be considered as the candidate models for the model based clustering

method. Next, we apply a model selection method to select the optimal model.

2.5 Model Selection

Let us consider that after applying Hierarchical Agglomerative Clustering (HAC), we

have a set of mixture models which consists of kmax, ..., 1 components. The problem

of �nding an optimal model can be described as the selection of the mixture model

with ko components such that Θko = {(π1,ko , θ1,ko), ..., (πko,ko , θko,ko)}. Next, we will

present di�erent methods for model selection.

30



Chapter 2. Model Based Clustering with Exponential Family of Distributions

Figure 2.4: Example of a hierarchy of mixture models; generated using the data shown
in Figure 2.1. From (a) to (h) the number of components reduces from 9 to 2.
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Dendogram representation

Figure 2.5: Dendogram for constructing the mixture models shown in Figure 2.4.
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2.5.1 Parsimony based approach

In this approach, an objective function is employed, which minimizes certain model

selection criteria (Figueiredo and Jain, 2002) (also called information criteria (IC)).

Many of these criteria involve a negative log likelihood augmented by a penalizing

function in order to take into account the complexity of the model. We consider the

following form to compute the IC value for a model with k components (Alata and

Quintard, 2009):

IC(k) = −2log
(
g(X|Θ̂k)

)
+ C(N)P (k) (2.16)

with

g(X|Θ̂k) =
N∏
i=1

g(xi|Θ̂k) (2.17)

Here, g(X|Θ̂k) denotes the maximum likelihood value of the data samples X. Θ̂k ={
(π̂1,k, θ̂1,k), ...(π̂k,k, θ̂k,k)

}
are the parameters that maximize the likelihood value.

C(N) denotes the penalization of model complexity depending on the number of

observations N and P (k) denotes the number of free parameters. For example, P (k)

for the GMM is:

P (k) = αk − 1 with α =

(
d+

d(d+ 1))

2
+ 1

)
(2.18)

Di�erent information criteria use di�erent values of C(N). Akaike Information Cri-

terion (AIC) uses C(N) = 3. Bayesian Information Criterion (BIC) uses C(N) =

log(N). The Integrated Completed Likelihood (ICL) is computed by adding BIC

with the estimated mean entropy (Biernacki et al., 2000) as:

ICL(k) = −2log
(
g(X|Θ̂k)

)
+ log(N)P (k)− 2

N∑
i=1

log (p(γi|xi)) (2.19)

Here, p(γi|xi) denotes the conditional probability of the classi�ed class label γi ∈
{1, ..., k} for the sample xi.

Beside these, we can also adopt the Φβ criterion (Alata and Quintard, 2009), that

computes C(N) with di�erent β values (0 < β < 1 for having a consistent estimator).

In the general form, C(N) for computing Φβ criterion is:

C(N) = Nβlog(log(N)) (2.20)

The motivation for choosing this criterion is that, di�erent β values allow us to

compute di�erent criteria. For example, several choices of β values in Eq. (2.20) are:

βAIC =
log3− logloglogN

logN
(β for Akaike IC)
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Figure 2.6: Model selection approaches based on the mixture models shown in Figure
2.4. (a) Parsimony based approach based on di�erent model selection criteria and (b)
Plot/Evaluation graph based approach.

βBIC =
loglogN − logloglogN

logN
(β for Bayesian IC)

βmin =
loglogN
logN

(proposed bound for minimum β value)

After computing the value of model selection criteria for di�erent k ∈ {1, ..., kmax}
we use the following objective function to obtain ko (optimal model):

ko = arg min
k

IC(k) or ko = arg min
k

ICL(k) (2.21)

Figure 2.6(a) illustrates graphical examples of model evaluation values obtained by

using di�erent model selection criteria. Here, we use the data shown in Figure 2.1

and we consider the GMMs shown in Figure 2.4. One interesting behavior we observe

from Figure 2.6(a) is that, the evaluation values changes linearly after 3, which is the

correct number of components. The reason for such behavior is that, the likelihood

value decreases slowly after k = 3 w.r.t. the part C(N)P (N) which is a line with

slope C(N)α (see Eq. (2.18)). Such linear changes can be characterized by �tting

lines. A particular family of methods selects models based on this assumption. Next

we discuss these methods.

2.5.2 Plot/Graph based approach

A di�erent strategy selects optimal number of components by analyzing a plot/evaluation

graph (Baudry et al., 2010; Zhao et al., 2008; Salvador and Chan, 2004). This graph

is usually obtained by placing numbers of clusters along the x axis and corresponding

evaluated values (obtained using a model selection criteria) along the y axis. The
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idea is to locate the knee/kink/elbow/transition area in the graph, where the knee

exhibits abrupt change (Murphy, 2012). Then the ko will be the value of the knee.

Figure 2.6(b) illustrates an example of these graphs and the detected knee point.

One common graph based approach is called the L-method (Salvador and Chan,

2004). It detects the knee point by �tting a pair of straight lines over the y axis

values of the graph. The idea is to �t two lines at the left and right side of each point

(within the range 2,...,kmax − 1). Finally, select the point as ko that minimizes the

total weighted root mean squared error (RMSE):

ko = arg min
k

(ωlRMSEk,left + ωr RMSEk,right) (2.22)

ωl =
k − 1

kmax − 1
and ωr =

kmax − k
kmax − 1

Note that, two weights (ωl and ωr) are associated with each line (left and right).

These weights are computed from the ratio of the number of points in a line over

the total number of points. These weights have signi�cant impact on model selection.

Particularly, it is interesting to characterize the linear change shown in the right sided

line, see Figure 2.6(b). This can be done by setting higher weight for ωr compare to

ωl, such that ωl ≤ ωr. Setting such weight means that, in order to respect the linear

change of the right sided line, the evaluation plot based methods will penalize more

on the line �tting error at the right side. Figure 2.7 shows such an example of setting

di�erent weights for ωr while keeping ωl = 1 �xed, where we used the same BIC plot

shown in Figure 2.6(b). In practice, the weight ωr should be set empirically. Let us

call this model selection method the Weighted Piecewise Linear Regression (WPLR)

method for further references. We will use and discuss about WPLR in Section 2.6.3

of this Chapter and also in the following Chapter. Now, we discuss a di�erent model

selection approach based on Kullback Leibler Divergence (Burnham and Anderson,

2002).

2.5.3 Kullback Leibler Divergence (KLD) based approach

Kullback Leibler Divergence (KLD) is one of the fundamental measure (relative en-

tropy) between two statistical distributions (Hershey and Olsen, 2007; Burnham and

Anderson, 2002). It is an oriented distance (asymmetric), which is often used as a

measure of similarity (Hershey and Olsen, 2007). In the KLD based model selection

approach (Garcia and Nielsen, 2010), a model is selected based on a threshold (KLD

value) among Θ̂kmax (mixture model with kmax components) and Θ̂k (mixture model

with k ∈ {kmin, ..., kmax−1} components). No closed-form solution exists to compute
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Figure 2.7: Examples of setting di�erent weights for ωr while keeping ωl = 1. The
selected number.

KLD among mixture models. However, it can be approximated by employing classi-

cal Monte-Carlo sampling among two mixture models in the following form (Hershey

and Olsen, 2007):

DKL

(
Θ̂kmax || Θ̂k

)
=

1

M

M∑
i=1

log

(
g(xi|Θ̂kmax)

g(xi|Θ̂k)

)
(2.23)

Here, M is the number of identically and independently distributed samples obtained

using a sampling procedure for the mixture model with kmax components. Using Eq.

(2.23), the KLD values can be computed for di�erent values of k ∈ {kmin, ..., kmax−1}
and then the desired model ko can be obtained as:

ko = arg min
k

DKL

(
Θ̂kmax || Θ̂k

)
< threshold (2.24)

Note that, the threshold is de�ned externally by the user. This indicates that, to

obtain desired clustering results with this model selection approach, the user should

have su�cient knowledge about the data and experience of correct threshold selection.

Figure 2.8 illustrates an example of employing the KLD based approach for model

selection with a threshold value 2. In this example, we use the data shown in Figure

2.1 and we consider the GMMs shown in Figure 2.4. Garcia and Nielsen (2010)

employed this approach for selecting the optimal mixture model.

Considering all the elements presented in this section and the previous one there-

after we propose a complete clustering method.
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Figure 2.8: Examples of KLD threshold (shown in the blue dotted line) based ap-
proach for model selection.

2.6 Model based clustering with exponential family

mixture model

We consider a deterministic (Figueiredo and Jain, 2002) Model Based Clustering

(MBC) approach where the number of models is bounded within a certain range

kmin, ..., kmax. Let Θk = {(π1,k, θ1,k), ..., (πk,k, θk,k)} denotes the exponential family

mixture model with k components. Therefore, Θkmax denotes the mixture model with

kmax components and Θko denotes the optimal mixture model with ko components.

To cluster a set of observations, we propose a complete data clustering method that

follows a step-by-step procedure as:

• Step 1: Compute Θ̂kmax and perform soft clustering.

• Step 2: Generate a set of models {Θ̂k}k=kmin,...,kmax−1 from Θ̂kmax .

• Step 3: Select the optimal model Θ̂ko from {Θ̂k}k=kmin,...,kmax−1.

Figure 2.9 illustrates the block diagram of the proposed method. It begins with

applying Bregman soft clustering on the data in Step 1 (section 2.6.1). Then, it

applies the Hierarchical Agglomerative Clustering (HAC) in Step 2 (section 2.6.2).

Finally, it employs a model selection method on {Θ̂k}k=kmin,...,kmax−1 in Step 3 (section

2.6.3). Below, we brie�y describe each method individually.
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Figure 2.9: Block diagram of the proposed clustering method.

2.6.1 Bregman Soft Clustering (BSC)

Let us recall the exponential family mixture model introduced in section 2.4 and

de�ne it as Θk = Θkmax (for brevity we write k = kmax). Our goal is to estimate the

model (see Eq. (2.15)) with the objective to maximize the likelihood value such that:

Θ̂k = arg max
Θk

g(X|Θk) (2.25)

Bregman soft clustering exploits Bregman Divergence (BD) in the Expectation

Maximization (EM) framework to compute Maximum Likelihood Estimate (MLE)

of the parameters (Banerjee et al., 2005b). In the Expectation step (E-step), the

posterior probability is computed for j = 1, ..., k as:

pij = p (γi = j|xi) =
πj,k exp (−DG (t(xi), ηj,k))∑k
l=1 πl,k exp (−DG (t(xi), ηl,k))

(2.26)

Here, t(xi) denotes the expectation parameter for data sample xi. ηj,k and ηl,k

denote the expectation parameters for any cluster j and l given that the total number

of components is k. Note that, computing pij using DG(., .) of Eq. (2.13) needs to

compute G(t(xi)). However, such computation causes G(t(xi)) = −1
2
log 0 in the case

of Gaussian distribution. Garcia and Nielsen (2010) provided a solution by factorizing

and simplifying G(t(xi)) in both numerator and denominator. By adopting such

solution, we can write Eq. (2.26) as:

pij =
πj,k exp (G(ηj,k) + 〈t(xi)− ηj,k,∇G(ηj,k)〉)∑k
l=1 πl,k exp (G(ηl,k) + 〈t(xi)− ηl,k,∇G(ηl,k)〉)

(2.27)

The Maximization step (M-step) updates the mixing proportion and expectation

parameter for each class as:

πj,k =
1

N

N∑
i=1

p (γi = j|xi) and ηj,k =

∑N
i=1 p (γi = j|xi)xi∑N
i=1 p (γi = j|xi)

(2.28)
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Initialization is a prominent issue and has signi�cant impact on clustering. We

initialize π and η of the mixture model using k-means++ (Arthur and Vassilvitskii,

2007) clustering. Let δ(xi) de�nes the shortest distance from a data point xi to the

closest center we have already chosen. The k-means++ algorithm consists of the

following steps:

1. Choose an initial center ξ1 uniformly at random from X.

2. Choose the next center ξj, selecting ξj = xi
′ ∈ X with probability δ(xi

′)2∑
xi∈X δ(xi)2

.

3. Repeat Step 2 until we have chosen a total of k centers.

4. Proceed as with the standard k-means algorithm (see Section 2.3.2).

We choose k-means++ because of its: (a) careful seeding strategy; (b) ability to

trade o� among random selection and parameter search space and (c) faster conver-

gence rate. However, one should empirically select the initialization strategy. After

initialization, we iteratively apply the E-step and M-step until convergence.

The above procedures estimate the mixture model Θ̂k and provide soft clustering

of the dataset. Let us call it BSC-MM algorithm (Algorithm 1). However, if a hard3

clustering is desired, then it is easily obtained from BD as:

γ̂i = arg min
j=1,...,k

G(ηj,k) + 〈t(xi)− ηj,k,∇G(ηj,k)〉 (2.29)

Figure 2.10 illustrates an example of initialization with k-means++ (Arthur and Vas-

silvitskii, 2007) and clustering with BSC-MM algorithm. The BSC-MM is employed

to cluster data (shown in Figure 2.1) into 9 classes. We set4 maximum number of

iterations to 20 and threshold `log-likelihood di�erence among successive steps' to

0.01 as the convergence criteria. The convergence status of the proposed algorithm is

illustrated in Figure 2.11. We observe that, the negative log likelihood values reduce

at successive iterations, which con�rms the convergence of the proposed algorithm

(Algorithm 1).

3In hard clustering, each observation is assigned to a unique cluster.
4In practice, these settings depend on the requirements from clustering methods, such as speed

of convergence, computation time, etc. For example, in MATLAB the default values of clustering
with Gaussian mixture model are: maximum iteration = 100, threshold log likelihood di�erence =
1e− 6.
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Figure 2.10: Examples of clustering data (of Figure 2.1) with 9 classes. (a) Initial-
ization with k-means++ and (b) Clustering results from BSC-MM algorithm after
20 iterations. Similar to the k-means clustering, for these 2D data, clusters obtained
from k-means++ have circular shape. In contrary, the clusters obtained with Gaus-
sian mixture model using BSC-MM algorithm have elliptical shape. This indicates
that the Gaussian mixture model is more powerful to model complex structure of
data.

Figure 2.11: Illustration of convergence of the BSC-MM algorithm (Algorithm 1)
observed using the negative log-likelihood values. Maximum number of iterations
was set to 20 and threshold `log-likelihood di�erence among successive steps' was set
to 0.01 as the convergence criteria.
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Algorithm 1: BSC-MM algorithm for mixture of exponential family of distri-
butions.
Input: X =

{
xi | xi ∈ Rd ∧ 1 6 i 6 N

}
and k

Output: A soft clustering of X over a mixture model with k components.
Initialize πj,k and ηj,k for 1 ≤ j ≤ k with k-means++;
while not converged do

{Perform the E-step of EM};
foreach i and j do

Compute pij = p(γi = j|xi) using Eq. (2.27)
end
{Perform the M-step of EM};
for j = 1 to k do

Update πj,k and ηj,k using Eq. (2.28)
end

end

2.6.2 Model Generation with Hierarchical Clustering

The set of models are the core elements of our Model Based Clustering (MBC) ap-

proach, from which we select the optimal model. In a simple approach, one may apply

k-means or EM algorithm to generate the desired set of models with di�erent num-

ber of components. However, such approach has two important limitations (Zhong

and Ghosh, 2003), such as: (a) cannot guarantee structural similarity among di�er-

ent solutions and (b) computation time will increase signi�cantly with the number

of desired clustering solutions. We overcome both of these limitations by e�ciently

employing the Hierarchical Agglomerative Clustering (HAC) to build the set of mix-

ture models {Θk}k=kmin,...,kmax−1 from a principal model Θkmax . Our proposed HAC

method consists of the following three steps:

• Step 1: Construct a distance matrix using appropriate type of Bregman diver-

gence (section 2.4) among pairs of clusters (exponential family distributions).

• Step 2: Group the objects into a binary, hierarchical cluster tree using appro-

priate linkage criteria.

• Step 3: Compute new cluster representatives using appropriate type of Bregman

centroid (section 2.4).

In the above HAC method, one should choose the appropriate distance and cen-

troid type empirically. Figure 2.4 illustrates an example of generating a set of GMMs

from the parameters of a GMM with kmax = 9 components. The GMM with kmax
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Figure 2.12: Illustration of determining an appropriate weight for τ = ωr with step
size 10. The number of components remains same from ωr ≥ 10.

components is estimated using the BSC-MM algorithm (Algorithm 1). To construct

the hierarchy of models, we used left-sided BD, `average-link' criterion and left-sided

centroid.

2.6.3 Model Selection

The �nal task of a Model Based Clustering (MBC) method is to select the best model

from a set of models. We propose a method, that combines both parsimony based

and graph based methods. Our model selection method to obtain ko is as follows:

• Step 1: Draw an evaluation plot using the BIC criterion.

• Step 2: Perform piecewise linear regression �t and calculate RMSEk,left and

RMSEk,right for k = kmax − 1, ...kmin.

• Step 3: Identify ko using Eq. (2.22) with ωr ≥ ωl.

In step 3, we set ωl = 1 and we set ωr empirically, see Figure 2.7. Usually, ωr
can be easily found by obtaining the minimum for the most stable region of values.

See Figure 2.12 for an example. The proposed approach is called weighted piecewise

linear regression �t (WPLR − τ) method, where τ indicates the weight value (with

τ = ωr). Note that, WPLR − τ is nearly equivalent to the L-method (Salvador and

Chan, 2004) when ko = kmax/2 and τ = 1. In the following Chapter, we will further

discuss about the setting of ωr.
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2.7 Discussions and Conclusions

In this Chapter, we have presented a novel model based clustering algorithm based

on the exponential family of distributions which encompasses a wide class of famil-

iar probability distributions. We provided relevant examples and illustrations with

the most familiar multivariate Gaussian distribution. We did not provide the exper-

imental evaluations of any database and applications for any particular tasks in this

Chapter. We will provide these in the following Chapter along with our developed

model based clustering methods for directional distributions and their applications

for depth image analysis.

The proposed model based clustering method employs Bregman soft clustering

algorithm to estimate the initial model from data. Then, it constructs a hierarchy

of mixture models only from the parameters of the initial model by exploiting the

properties of Bregman divergence. Finally, it employs a model selection method to

select the best model. The proposed method has the following properties:

1. Unsupervised: It is unsupervised, i.e., it does not need to learn from training

data. However, similar to any unsupervised method, often it requires setting

few parameters to obtain the desired clustering results.

2. E�cient clustering: It employs Bregman soft clustering (Banerjee et al.,

2005b) algorithm which is an e�cient algorithm with additional bene�ts (see

Section 2.1) compared to the traditional EM based methods. We will demon-

strate this in the next Chapter.

3. Structural similarity of models: The mixture models generated for di�erent

number of components guarantees to be structurally similar (Zhong and Ghosh,

2003) as they are computed from the parameters of the model with kmax com-

ponents. This strategy is known as the mixture models simpli�cation process

(Garcia and Nielsen, 2010).

4. Novel model selection: Besides the widely used parsimony based meth-

ods (Melnykov and Maitra, 2010; Alata and Quintard, 2009; Biernacki et al.,

2000), it employs a novel model selection approach (called WPLR-τ). WPLR-τ

method is a generalized proposal and hence can be incorporated with any other

model based clustering methods.

5. Computationally e�cient: The proposed method applies the EM method

to compute the model parameters from data only once. The rest of the models
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are generated from the parameters of the initial model, which saves a signi�cant

amount of computation time. We will demonstrate this in the next Chapter.

6. Wide adaptability: The method is a generalized proposal and can be adapted

easily to any probability distributions which belong to the exponential families.

The above discussions reveal that, our method can be an interesting tool for

clustering, model simpli�cation, model selection and eventually unsupervised classi-

�cation. Hence, we believe that the proposed method will be an interesting tool for

the machine learning, data mining and pattern recognition community.

Note that, with the Gaussian mixture model, our proposed method has signi�-

cant similarity with the method proposed by Garcia and Nielsen (2010). However,

we propose a novel extension which manipulates it within the model based cluster-

ing framework (Fraley and Raftery, 2007) by incorporating di�erent model selection

criteria. Moreover, we also propose novel extensions of this method for directional

distributions, see next Chapter.
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Chapter 3

Clustering with Directional

Distributions: Application to Depth

Image Analysis

Résumé: Dans ce chapitre, nous utilisons la méthode proposée dans le précédent

chapitre a�n de classi�er des informations directionnelles. De ce fait, nous proposons

une méthode de type MBC exploitant les distributions directionnelles. Elle s'appuie

sur un modèle �génératif�: les données sont supposées être générées par une loi de

mélange de distributions directionnelles. Nous avons travaillé avec deux types de dis-

tributions directionnelles: la loi de von Mises-Fisher (aussi appelée loi de Langevin) et

la distribution de Watson. Tout d'abord, la méthode proposée réalise une classi�ca-

tion �douce� permettant d'estimer les paramètres de la loi de mélange pour un nombre

maximum de composantes donné. Ensuite, une hiérarchie de modèle est générée sans

avoir besoin de réutiliser les données: c'est à partir de cet ensemble de modèle que

le modèle optimal (ou le nombre de composantes optimal) sera obtenu à l'aide d'une

méthode de sélection empirique. Nous validons les méthodes proposées à l'aide de

données simulées. Puis, nous évaluons leurs performances sur des données réelles,

en classi�ant les normales aux surfaces calculées à partir d'images de profondeur.

Les résultats obtenus con�rment le fait que les méthodes proposées sont des outils

potentiels pour analyser les images de profondeur.

In this Chapter, we extend the methods that we proposed in the previous Chapter

in order to cluster directional features. Therefore, we propose a model based clus-

tering approach using the directional distributions. The proposed method is based

on the assumption of a generative model, where the data is generated from a �nite

statistical mixture model. For such models, we particularly consider two fundamental
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directional distributions, called the von Mises-Fisher (also called Langevin) and the

Watson distribution. Initially, the proposed method applies a soft clustering algo-

rithm in order to obtain the parameters of the mixture model for a given maximum

number of components. Then, a hierarchy of mixture models is generated from the

parameters. The hierarchy of models represents the desired set of models from where

the optimal model should be selected. Finally, an empirical model selection method is

applied to select the optimal model, i.e. to select the optimal number of components.

First, we validate the proposed methods by applying it on simulated data. Then,

to evaluate its performance on real data, we applied them to cluster image normals

which are computed from a depth image. As an outcome of the clustering, we ob-

tained a bottom-up segmentation of the depth image. Obtained results con�rmed

our assumption that the proposed method can be a potential tool to analyze depth

images.

3.1 Introduction

Data/features in the form of a unit vector exhibits directional behavior. Normaliza-

tion is often employed as an important pre-processing step in data analysis, which

removes the `magnitude' of data samples and keeps the directional part as the promi-

nent information (Gopal and Yang, 2014). Directional distributions (Mardia and

Jupp, 2009) are the standard choice to model and analyze the directional data. For

example, the statistical mixture models with di�erent directional distributions are

frequently employed in a variety of domains to analyze images (Da Costa et al.,

2012; Grana et al., 2008), speech signals (Vu and Haeb-Umbach, 2010; Souden et al.,

2013), text documents (Banerjee et al., 2005b; Maitra and Ramler, 2010; Gopal and

Yang, 2014), digits (Bijral et al., 2007), gene expressions (Banerjee et al., 2005a;

Sra and Karp, 2013; Maitra and Ramler, 2010), treatment beams (Bangert et al.,

2010), shapes (Prati et al., 2008), motion (Kobayashi and Otsu, 2010), pose (Glover

et al., 2012), protein structures (Razavian et al., 2011), di�usion MRI (Cabeen et al.,

2013; Bhalerao and Westin, 2007), �brous materials (Zhang, 2013), rock mass (Peel

et al., 2001), etc. Several software or packages, such as Mocapy++ (Paluszewski

and Hamelryck, 2010) and skmeans (Buchta et al., 2012) are already freely available

for these purposes. The wide applicability of directional distributions receives atten-

tions from di�erent communities, which reveals the necessity of developing e�cient

solutions. We focus on proposing solutions for unsupervised classi�cation with such

distributions.
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The sample spaces for the directional distributions are the circle (S1), the sphere

(S2) and the hypersphere (Sd−1, d > 3). Most prominent distributions in directional

statistics are the von Mises-Fisher, Watson, Kent, Bingham etc. (Mardia and Jupp,

2009). These distributions model data concentrated around the mean-direction. For

example, the von Mises-Fisher and Watson distributions have minimal set of param-

eters which are the mean and concentration. These distributions are rotationally

symmetric around the mean direction. The Kent and Bingham consist of more pa-

rameters to model data. An important property of these distributions is that, they

belong to the exponential family of distributions (Mardia and Jupp, 2009). This

property allows these distributions to be exploited within the model based clustering

(Fraley and Raftery, 2007) framework (discussed in Chapter 2) and hence to develop

e�cient clustering solutions. In this Chapter, we focus on developing such solutions

with the von Mises-Fisher and Watson distributions.

Directional distributions are associated with complicated normalizing constants.

For this reason, analytical solution to obtain maximum likelihood estimate (MLE) of

the parameters even for a single distribution is di�cult (Sra, 2012). Specially, estima-

tion of the concentration parameters is often non-trivial since they involve functional

inversion of the ratios of special functions such as Bessel function, Kummer's func-

tion, etc. Therefore, unlike the well-known models, such as GMM, it requires special

formulations to incorporate the directional distributions in the model based cluster-

ing (Fraley and Raftery, 2007) framework. Recently, methods to estimate parameters

of these probability distributions have been revisited and better solutions are now

provided (Sra, 2012; Sra and Karp, 2013). Although these solutions are within the

context of clustering, they do not address the issue of automatic component selection.

We address this issue from the perspective of model based clustering. To this aim

we develop solutions, not only to estimate parameters e�ciently but also to �nd the

number of clusters automatically.

When a clustering method is applied for image analysis, it generates several groups

of pixels. Usually these groups represent a distinctive set of regions/segments in the

image. Therefore, the problem of image segmentation can be addressed from cluster

analysis (Szeliski, 2011). To perform clustering, image pixels are described by di�erent

attributes/features. Pixels of a depth image can be described by features such as

depth, 3D point, surface normal, etc. (Rusu, 2013). See Fig. 3.1(a) for an example,

which shows that segmentation using surface normals is most relevant to the ground

truth in certain cases. The reason is that, in some contexts it makes sense to group

together the normals belonging to similar planar surfaces in the image. Motivated

47



Chapter 3. Clustering with Directional Distributions

RGB Image Depth Image 3D points Image Normals

 Seg. with DepthGround Truth Seg. with points Seg. with Normals

(a) (b)

Figure 3.1: (a) Examples of Depth Image clustering. First row presents di�erent
image features. Second row illustrates the ground truth and segmentation results
using k-means with depth and with 3D points and using SP-kmeans (Banerjee et al.,
2005a) with surface normals. Note that, here we explicitly set k = 4. (b) Sample
space (sphere: S2) for surface normals.

by this observation, we address the problem of depth image analysis using surface

normals. Surface normal is a 3D unit vector that describes the planar property for

each pixel of a depth image. Its sample space belongs to the sphere (S2), see Fig.

3.1(b). Therefore, we can apply our proposed clustering methods (developed in this

Chapter) on the normals to segment and analyze the depth images.

In this Chapter, we present model based clustering methods with two fundamental

directional distributions: the von Mises-Fisher (also called Langevin) and the Watson

distribution. These methods are �rst evaluated with synthetic data. Then, they are

applied on real depth image data to cluster surface normals. We used the depth

images from the NYU Depth Database V2 (NUYD2) (Silberman et al., 2012) for the

experiments. Evaluations shown in Section 3.4 con�rm that, on simulated data the

proposed methods are better than the state of the art methods. Moreover, on real

data they have potential applications, such as to analyze depth images by clustering

image normals.

The remaining of this Chapter is structured as follows: Section 3.2 provides the

background related to the directional distributions. Section 3.3 presents the proposed

clustering method. Experimental results followed by discussions are reported in Sec-

tion 3.4. Finally, Section 3.5 draws conclusion and possible future extensions of the

proposed methods.
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3.2 Directional Distributions, Mixture Models and

Bregman Divergence

Directional data arise frequently in a number of practical data analysis applications

either due to their natural appearance or due to applying L2 normalization on the

data (Banerjee et al., 2005a; Gopal and Yang, 2014). The `magnitude' of these data

is unknown or irrelevant, whereas the direction is the prominent information. In

several cases the sign of these data is also unknown and hence they are represented

with only an axis (Mardia and Jupp, 2009). In both directional and axial forms of

these data, the Spherical geometry is the appropriate choice for them rather than the

standard Euclidean geometry. Moreover, the popular data modeling approach such as

the Gaussian mixture model is inadequate to characterize this type of data (Banerjee

et al., 2005a). Directional distributions are the appropriate choice for them. Among

the number of directional distributions, we particularly focus on the von Mises-Fisher

distribution for signed directional data and the Watson distribution for unsigned

directional data or axial data.

3.2.1 von Mises-Fisher (vMF) Distribution

The fundamental directional distribution is called the von Mises-Fisher (vMF) dis-

tribution, which models data concentrated around a mean-direction. Originally, it is

known as the Langevin distribution (Watson, 1984). Moreover, for d = 2 it is called

the von-Mises distribution and for d = 3 it is called the Fisher distribution (Mardia

and Jupp, 2009).

For a d (d ≥ 2) dimensional random unit vector x = [x1, ..., xd]
T ∈ Sd−1 ⊂ Rd (i.e.,

‖x‖2 = 1), the von Mises-Fisher (or Langevin) distribution is de�ned as (Mardia and

Jupp, 2009):

Vd(x|µ, κ) = Qd(κ) exp(κµTx) (3.1)

Here, µ denotes the mean (with ‖µ‖2 = 1) and κ denotes the concentration parameter

(with κ ≥ 0). The normalization constant Qd(κ) is equal to:

Qd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)

Here I(.) represents the modi�ed Bessel function of the �rst kind and order , which

has the following power series expression (Mardia and Jupp, 2009):

I(κ) =
∞∑
r=0

1

Γ(+ r + 1)Γ(r + 1)

(κ
2

)2r+p

(3.2)
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Figure 3.2: 3 dimensional directional samples from the von Mises-Fisher distribution
(top row) and the Watson distribution (bottom row). Samples are shown in the S2

sphere for di�erent values of the concentration (κ) parameters.

For higher (d > 3) dimensional data, the analytical solution to estimate the con-

centration parameter (κ) of vMF is non-trivial since it involves functional inversion

of ratios of the Bessel functions (Banerjee et al., 2005a). However, for d = 3 the nor-

malizing factor simpli�es and can be written without the Bessel function as (Mardia

and Jupp, 2009):

Qd(κ) =
κ

sinh(κ)

For this reason, we limit our study of vMF for d = 3. Considering this normalizing

factor, we can rewrite Eq. (3.1) as:

Vd(x|µ, κ) = exp
(
κµTx− log

(
sinh(κ)

κ

))
(3.3)

The shape of the vMF distribution depends on the value of the concentration pa-

rameter κ. For high value of κ, i.e. highly concentrated observations, the distribution

has a mode at the mean direction µ. In contrary, for low values of κ the distribution is

almost uniform, i.e. the samples appear as to be almost uniformly distributed on the

sphere. Beside these, the shape of the distribution is rotationally symmetric about µ

as the density function in Eq. (3.1) or (3.3) depends on x only through µTx. The top

row of Figure 3.2 illustrates examples of 3D samples in the S2 sphere, which are dis-

tributed according to the vMF distribution with di�erent values of the concentration

κ.
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3.2.2 Watson Distribution

Multivariate Watson Distribution (mWD) is a fundamental distribution that models

axially symmetric directional data (i.e., unit vectors where ±x is equivalent). For

a d dimensional axially symmetric unit vector ±x = [x1, ..., xd]
T ∈ Sd−1 ⊂ Rd (i.e.,

‖x‖2 = 1), the multivariate Watson distribution (mWD) is de�ned as (Mardia and

Jupp, 2009):

Wd(x|µ, κ) = M (a, c, κ)−1 exp
(
κ(µTx)2

)
(3.4)

and Wd(−x|µ, κ) = Wd(x|µ, κ)

Here, µ is the mean direction (with ‖µ‖2 = 1), κ ∈ R the concentration, a = 1/2,

c = d/2 and M (a, c, κ) is the Kummer's con�uent hypergeometric function de�ned

as (Sra and Karp, 2013):

M (a, c, κ) =
∑
ρ≥0

aρ

cρ
κρ

ρ!
, a, c, κ ∈ R, ρ ∈ N (3.5)

where, a0 = 1 , aρ = a(a+ 1)...(a+ ρ− 1), ρ ≥ 1 denotes the rising factorial.

Similar to the vMF distribution, mWD is rotationally symmetric about the mean

µ and the shape depends on the value of the concentration parameter κ. However,

unlike vMF the κ value can have both positive and negative values. For κ < 0,

the distribution is concentrated around the great circle orthogonal to µ and it is a

symmetric girdle distribution (Mardia and Jupp, 2009). For κ > 0, the distribution

has maxima at ±µ and it is bipolar. In such case, the Watson distribution exhibits

similar shape as the vMF w.r.t. the value of κ. The bottom row of Figure 3.2

illustrates examples of 3D samples in the S2 sphere, which are distributed according to

the mWD distribution with di�erent values of the concentration κ. The line indicates

the direction of the axis. We see that, the samples are bipolar and concentrated about

µ based on the value of κ.

3.2.3 Clustering with Mixture of Directional Distributions

Clustering is a fundamental tool which has been vastly used for data modeling and

analysis. It can be de�ned as the task of automatically identifying the groups of

similar observations from a given set of data points. Numerous clustering methods,

such as k-means based (Buchta et al., 2012; Maitra and Ramler, 2010), Bayesian

approach (Gopal and Yang, 2014), mixture model based (Banerjee et al., 2005a; Sra

and Karp, 2013), non-parametric (Kobayashi and Otsu, 2010) etc. already exist to

model and analyze directional data. Among them, the statistical mixture model

51



Chapter 3. Clustering with Directional Distributions

based methods are most popular and powerful due to their ability to model and

cluster data as well as provide greater insight into the anatomy of the clusters via the

model parameters (Banerjee et al., 2005a; Sra and Karp, 2013). In this Chapter, we

mainly focus on the methods related to the mixture of directional distributions.

3.2.3.1 von Mises-Fisher (vMF) Mixture Model

Let us recall notations and models from Chapter 2 and denote a set of data samples as

X = {xi}i=1,...,N and associated labels as Γ = {γi}i=1,...,N , γi ∈ {1, ..., k}. We assume

a generative model (Murphy, 2012), which consists of a mixture of k von Mises-Fisher

(vMF) distributions, also called vMF Mixture Model (vMFMM) as:

gv (xi|Θk) =
k∑
j=1

πj,kVd (xi|µj,k, κj,k) (3.6)

where Θk = {(π1,k, µ1,k, κ1,k), ..., (πk,k, µk,k, κk,k)} is the set of component parameters,

πj,k is the mixing proportion and Vd (xi|µj,k, κj,k) is the density function (Eq. (3.3))

of the vMF distribution for the jth component.

Finite vMFMM was introduced by Banerjee et al. (2005a). They proposed soft

clustering for mixture of vMF, called soft-MoVMF algorithm, that employs Expec-

tation Maximization (EM) method for computing parameters of the mixture model.

Very recently, Gopal and Yang (2014) proposed a Bayesian formulation for vMF

clustering models. However, none of the above methods automatically select the

number of components. In�nite vMFMM (iMFMM) was proposed by Bangert et al.

(2010), which addressed the issue of components selection. However, iMFMM is a

non-deterministic approach and computationally very expensive. A nonlinear least-

squares technique to compute parameters of vMFMM was proposed by McGraw et al.

(2006). However, their method do not explicitly address the clustering issue. To se-

lect the number of components for directional data, Banerjee et al. (2005a) suggested

the PAC-MDL1 bound for vMFMM in a semi-supervised case.

3.2.3.2 Watson Mixture Model

Similar to the vMF mixture model (Eq. (3.6)), let us now de�ne a mixture of k

Watson distributions, also called Watson Mixture Model (WMM) as (Sra and Karp,

2013):

gw (xi|Θk) =
k∑
j=1

πj,kWd (xi|µj,k, κj,k) (3.7)

1PAC - Probably Approximately Correct, MDL - Minimum Description Length
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where xi denotes a single sample, Θk = {(π1,k, µ1,k, κ1,k), ..., (πk,k, µk,k, κk,k)} is the
set of component parameters, πj,k is the mixing proportion and Wd (xi|µj,k, κj,k) is

the density function (Eq. (3.4)) of the Watson distribution for the jth component.

The multivariate Watson Distribution (mWD) has received relatively less attention

in comparison to the other distributions in the directional statistics. Most recently

Sra and Karp (2013) provided theoretically well justi�ed estimation of the parame-

ters of mWD. They considered the Watson Mixture Model (WMM) to model axially

symmetric data and used the EM algorithm to estimate the model and cluster data.

Before that, Bijral et al. (2007) employed WMM for hyperspherical embedding and

shown its application to digit clustering. Vu and Haeb-Umbach (2010) employed

WMM for blind speech separation. Both of them used Expectation Maximization

(EM) methods with di�erent approximations of the model parameters. However,

according to Sra and Karp (2013) those approximations are not numerically well jus-

ti�ed. Souden et al. (2013) recently used WMM for speech clustering and computed

parameters following Sra and Karp (2013). None of these methods explicitly focus

on selecting the number of clusters in the data.

Studying the related work on clustering directional data using mixture model

based approaches, we observed that there is no method that performs automatic

component selection and that considers a model based clustering approach. These

observations motivate us to extend the model based clustering method (presented in

Chapter 2) for the directional distributions. To this aim, the �rst step is to derive

Exponential family formulations and the computation of Bregman Divergence among

the directional distributions.

3.2.4 Bregman Divergence for Directional Distributions

Bregman Divergences (BD) generalize a number of distortion functions which are

commonly used in clustering (Banerjee et al., 2005b). It is one of the most important

elements of the model based clustering method proposed in Chapter 2. A probability

distribution can take the bene�ts of Bregman Divergence if its canonical exponential

family representation is available. While it exists for several commonly used proba-

bility distributions (Garcia and Nielsen, 2010), the directional distributions are yet

to have such representation. In this sub-Section, we derive the Bregman Divergence

for the von Mises-Fisher and the Watson distribution.

Let us shortly recall the Exponential Family of Distributions (EFD) and Bregman

Divergence, see Chapter 2 for details. A probability density function f(x|θ) belongs
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to the EFD if it has the following form:

f (x|θ) = exp (〈t(x), θ)〉 − F (θ) + k(x)) (3.8)

Here, t(x) is the su�cient statistics, θ is the natural parameter, F (θ) is the log

normalizing function, k(x) is the carrier measure and < ., . > is the inner product.

The expectation of the su�cient statistics E[t(x)] is called the expectation parameter

(η). There exists a one-to-one correspondence between η and θ, which is expressed

as:

η = ∇θF (θ) and θ = (∇θF (θ))−1(η) (3.9)

with ∇ is the gradient operator. The Bregman Divergence with the expectation

parameter η can be de�ned as:

DG (η1, η2) = G(η1)−G(η2)− 〈η1 − η2,∇G(η2)〉 (3.10)

where, G(.) is the Legendre dual of F (.).

3.2.4.1 Bregman Divergence among vMF Distributions

Considering the canonical form of exponential family (Eq. (3.8)), the vMF de�ned in

Eq. (3.3) can be decomposed as:

• su�cient statistics t(x) = x,

• natural parameter θ = κµ,

• log normalizing function F (θ) = log
(

sinh(κ)
κ

)
, which is a convex function and

• carrier measure k(x) = 0.

The mean µ (‖µ‖2 = 1) and concentration parameter κ (κ > 0) can be written in

terms of the natural parameter θ as:

θ = κµ; µ =
θ

‖θ‖2

and κ = ‖θ‖2 (3.11)

The gradient of the log normalizing function (∇θF (θ)) can be written as:

∇θF (θ) = ∇κlog
(
sinh (κ)

κ

)
.∇θκ

Considering Eq. (3.9) we can write:

η = ∇θF (θ) =
{
tanh(κ)−1 − (κ)−1

}
.
θ

κ
(3.12)
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and

θ =
η

R(κ)
(3.13)

where,

R(κ) =
{

(tanh(κ))−1 − (κ)−1
}

(κ)−1 (3.14)

Using property of collinear vectors in Eq. (3.12) we can write:{
(tanh(κ))−1 − (κ)−1

}
= ‖η‖2

We can then apply the Newton-Raphson method to compute κ from ‖η‖2 using

an iterative update equation as:

κn+1 = κn −
a− b− ‖η‖2

1− a2 + b2
(3.15)

where, a = tanh(κ)−1 and b = (κ)−1. Now, considering θ = ∇ηG(η) (Nielsen and

Garcia, 2009), we can use equations (3.10, 3.13, 3.14 and 3.15) to compute Bregman

Divergence among the vMF distributions.

3.2.4.2 Bregman Divergence among Watson Distributions

In order to obtain canonical Exponential Family form of a multivariate Watson dis-

tribution, let us rewrite Eq. (3.4) as:

Wd(y|ν, κ) = exp
{
κνTy − logM (κ)

}
(3.16)

with y, ν ∈ Rp, p = d+ Cd
2 :

y =
[
x2

1, ..., x
2
d,
√

2x1x2, ...,
√

2xd−1xd

]T
ν =

[
µ2

1, ..., µ
2
d,
√

2µ1µ2, ...,
√

2µd−1µd

]T
where, y and ν are the vectors associated with the sample (x) and mean (µ). In Eq.

(3.16), we writeM(κ) instead ofM(1/2, p/2, κ) for the sake of brevity. Following Eq.

(3.8), we can decompose the multivariate Watson distribution in Eq. (3.16) as:

• su�cient statistics t(x) = y,

• natural parameter θ = κν,

• log normalizing function F (θ) = logM(κ) and

• carrier measure k(x) = 0.
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Then, we can write ν and κ in terms of natural parameter θ as:

θ = κν; ν =
θ

‖θ‖2

and κ = ‖θ‖2 (3.17)

Now, we can write the gradient of the log normalizing function F (θ) as:

η = ∇θF (θ) = q(a, c;κ)
θ

κ
(3.18)

where, q(a, c;κ) is called the Kummer-ratio and de�ned as (Sra and Karp, 2013):

q(a, c;κ) =
M ′(κ)

M(κ)
:=

M ′(a, c, κ)

M(a, c, κ)
=
a

c

M(a+ 1, c+ 1, κ)

M(a, c, κ)
(3.19)

From Eq. (3.18) we can de�ne the natural parameter θ as:

θ =
ηκ

q(a, c;κ)
(3.20)

Moreover, using Eq. (3.17) and (3.18) we can write:

q(a, c;κ) = ‖η‖2 (3.21)

Similar to Sra and Karp (2013), we can apply Newton-Raphson root �nder method to

approximate κ from ‖η‖2 (in Eq. (3.21)) using the following iterative update equation:

κl+1 = κl −
q(a, c;κl)− ‖η‖2

q′(a, c;κl)
(3.22)

where, q′(a, c;κ) is the �rst derivative of the Kummer-ratio (Eq. (3.21)) and can be

calculated as (Sra and Karp, 2013):

q′(a, c;κ) = (1− c

κ
) q(a, c;κ) +

a

κ
− q(a, c;κ)2 (3.23)

Now, considering θ = ∇ηG(η) (Garcia and Nielsen, 2010), we can use equations

(3.10, 3.20, and 3.22) to compute Bregman Divergence among the Watson distribu-

tions. Note that instead of computing the mean µ directly, we compute ν. Then to

obtain µ, we take the square root of the �rst d elements of ν. However, to recover

the sign we use a lookup table.

3.3 Methodology

In this Section, �rst we present the methodology for the proposed model based clus-

tering method. Then, we present how the clustering method is applied for depth

image analysis.
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3.3.1 Model Based Clustering

Model based clustering estimates a model for the data and produces probabilistic

clustering. It identi�es the best model by �tting a set of models with di�erent param-

eterizations and/or number of components and then applying a statistical criterion

for model selection (Fraley and Raftery, 2007). Currently, there exists no model based

clustering method with the directional distributions. In this Section, we develop such

method with the von Mises-Fisher and the Watson distribution. Since these distribu-

tions belong to the Exponential families, we follow the same methodologies presented

in Chapter 2.

Model based clustering requires a certain model to be de�ned for the data. For

directional data, we consider the von Mises-Fisher Mixture Model (vMFMM) which

is de�ned in Eq. (3.6) (see Section 3.2.3.1). For axial data, we consider the Watson

Mixture Model (WMM) which is de�ned in Eq. (3.7) (see Section 3.2.3.2). Interest-

ingly, both vMFMM and WMM consist of the same type of parameters. Therefore,

using expectation parameters (η), let us uniquely de�ne a k components vMFMM

or WMM as Θk = {(π1,k, η1,k), ..., (πk,k, ηk,k)}. Similarly, Θkmax denotes the mixture

model with kmax components and Θko denotes the optimal mixture model with ko

components. To cluster a set of observations (directional/axial), the model based

clustering method follows the step-by-step procedure as:

• Step 1: Apply Bregman soft clustering algorithm to compute Θ̂kmax .

• Step 2: Generate a set of models {Θ̂k}k=kmin,...,kmax−1 from Θ̂kmax .

• Step 3: Select the optimal model Θ̂ko from {Θ̂k}k=kmin,...,kmax−1.

As described in Chapter 2, the proposed method begins with applying Bregman soft

clustering on the observations to estimate model parameters Θ̂kmax . Then, it applies

the hierarchical agglomerative clustering on Θ̂kmax to obtain {Θ̂k}k=kmin,...,kmax−1. Fi-

nally, it employs a model selection method on {Θ̂k}k=kmin,...,kmax−1.

First, in Step 1, we apply Bregman Soft Clustering (BSC) algorithm on the model

Θkmax de�ned by Eq. (3.6) or (3.7) with kmax components. The goal of applying the

BSC algorithm is to obtain Θ̂kmax such that the value of likelihood function is maxi-

mized. The BSC algorithm for vMFMM and WMM is provided in Algorithm 2. At

the beginning, we initialize π and η of the mixture model. We employ the kmeans++

(Arthur and Vassilvitskii, 2007) to initialize the vMFMM parameters (Eq. (3.6))

and diametric clustering (Dhillon and Sra, 2003) to initialize the WMM parameters
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Algorithm 2: Bregman Soft Clustering algorithm for vMFMM or WMM.
Input: X = {xi}i=1,...,N and K; xi ∈ S2 for vMFMM or xi ∈ Sd−1 for WMM

(d ≥ 2)
Output: A soft clustering of X over a vMFMM or WMM with K components.
Initialize πj,K and ηj,K for 1 ≤ j ≤ K with kmeans++ for vMFMM or
diametric clustering for WMM;
while not converged do

{Perform the E-step of EM};
foreach i and j do

pij = p (γi = j|xi) =
πj,K exp (G(ηj,K) + 〈t(xi)− ηj,K ,∇G(ηj,K)〉)∑K
l=1 πl,K exp (G(ηl,K) + 〈t(xi)− ηl,K ,∇G(ηl,K)〉)

(3.24)
end
{Perform the M-step of EM};
for j = 1 to K do

πj,K =
1

N

N∑
i=1

pij and ηj,K =

∑N
i=1 pij xi∑N
i=1 pij

(3.25)

end

end

(Eq. (3.7)). After initialization, we iteratively apply the E-step and M-step until

convergence.

Next, in Step 2, we apply Hierarchical Agglomerative Clustering (HAC) on Θ̂kmax

and generate a set of models {Θ̂k}k=kmin,...,kmax−1. For di�erent settings of HAC

method, we empirically determine the distance type as `left sided Bregman Diver-

gence', linkage criterion as `average link' and centroid type as `left sided Bregman

Centroid'. See Section 2.4 of Chapter 2 for details of the computations and see Sec-

tion 3.4.1.3 in this Chapter for empirical justi�cations.

Finally, in Step 3, we apply an empirical model selection criterion in order to select

the best model Θ̂ko from the set of models {Θ̂k}k=kmin,...,kmax−1. See Section 2.5 of

Chapter 2 for details of the model selection methods.

After applying the above steps, we have the estimated model Θ̂ko and a soft

clustering of the observations. However, if a hard clustering is desired, then it can be

obtained by using Bregman Divergence as:

γ̂i = arg min
j=1,...,ko

G(ηj,ko) + 〈t(xi)− ηj,ko ,∇G(ηj,ko)〉 (3.26)
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where γ̂i is the class label corresponding to the observation xi. Now, for further uses

let us de�ne several abbreviations for the methods developed so far in this Chapter:

BSC-vMFMM: Bregman soft clustering with von Mises-Fisher Mixture Model.

Algorithm 2 with vMFMM is used as the model. Number of components is

pre-speci�ed.

BSC-WMM: Bregman soft clustering with Watson Mixture Model. Algorithm

2 with WMM is used as the model. Number of components is pre-speci�ed.

MBC-vMFMM: Model based clustering with von Mises-Fisher Mixture Model.

Clustering method presented in Section 3.3.1 with vMFMM is used as the model.

MBC-WMM: Model based clustering with Watson Mixture Model. Clustering

method presented in Section 3.3.1 with WMM is used as the model.

3.3.2 Depth Image Analysis

We follow a clustering based approach for depth image analysis. To this aim, our

method clusters the surface normals of a depth image. The normal is usually com-

puted by �tting a plane on the neighborhood 3D points of each pixel. For a plane:

ax + by + cz + d = 0, the vector (a, b, c) is the normal. Therefore, given a depth

image, �rst we obtain the 3D points (using camera parameters) and then compute

the normal for each pixel. In the experiments with real images, we used the toolbox

of NYU database (Silberman et al., 2012) to compute normals.

Fig. 3.3 illustrates the block diagram of our proposed method. First, we compute

the surface normals of the depth image. Then, we apply the MBC-vMFMM or MBC-

WMM to cluster the normals. Using hard clustering (Eq. (3.26)), we assign a cluster

label to each pixel. This generates a set of regions/segments of the depth image.

Based on literature, our method belongs to the family of agglomerative/bottom up

image segmentation method (Szeliski, 2011).

3.4 Experiments

We evaluate MBC-vMFMM and MBC-WMM methods by conducting experiments

with directional and axial data samples processed from both synthetic and real

dataset. The results associated with each method are presented separately in two
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Depth Image Image Normals Clustering Clustered Image

INPUT FEATURE ANALYSIS OUTPUT

Model Based Clustering

Figure 3.3: Block diagram of the proposed depth image analysis method.

sub-Sections. Note that, we found a number of similarities among these methods, es-

pecially for setting the parameters and di�erent criteria. Therefore, we present brief

results only for MBC-vMFMM and skip redundant results for MBC-WMM.

For each method, the results are presented in two parts. In the �rst part, the

method is evaluated with simulated data samples for which the true cluster labels are

known. We use the global clustering accuracy for evaluation, which is computed as the

total number of true positives for all classes divided by the total number of samples.

We also computed the Purity, Rand Index and Mutual Information (Murphy, 2012),

which provide a complementary result. In the second part, the method is evaluated

using real data by applying it to depth image analysis.

3.4.1 Model Based Clustering with von Mises-Fisher Mixture
Model (MBC-vMFMM)

The simulated data experiments with MBC-vMFMM method consist of: (1) �nding

appropriate setting (e.g., initialization, convergence criteria, distance and centroid

type, linkage criteria) and (2) comparative evaluation w.r.t. the state of the art

methods. Experiments with depth images consist of comparing the results from MBC-

vMFMM with the state of the art clustering methods which are commonly employed

for image analysis (see Chapter 5.3 of Szeliski (2011)).

3.4.1.1 Simulated Data Samples

Using a standard sampling method for vMFMM (Dhillon and Sra, 2003), we draw

a �nite set of 3D sample unit vectors X = {xi}i,...,N ∈ R3, from a vMFMM with

di�erent numbers (3, 5 and 7) of components. For the experiments, we generate

100 sets of data from two types of samples: (a) well separated (ws) with manually

selected parameters and (b) not-well separated (nws) with random parameters. For
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(a) (b)

Figure 3.4: Simulated data samples drawn from vMFMM (a) Well separated 3 classes;
(b) Not-well separated 5 classes.

each type and each set, we generate 10,000 identically and independently distributed

samples. Fig. 3.4 illustrates an example of simulated data samples.

3.4.1.2 Bregman Soft Clustering for vMFMixture Model (BSC-vMFMM)

Since we follow a deterministic approach for model selection, we set the bounds for

the number of components as kmax = 15 and kmin = 1. The convergence criteria of

the BSC-vMFMM (Algorithm-2 with vMFMM) are based on maximum number of

iterations, set2 to 100, and a threshold di�erence, set to 0.001, between the negative

log likelihood values (nLLH) of successive iterations. We compute the nLLH with

k = kmax as:

nLLH(Θk) = −log(gv(X|Θk)) = −
N∑
i=1

log

(
k∑
j=1

πj,kVd(xi|µj,k, κj,k)

)
(3.27)

We begin by evaluating the initialization methods for BSC-vMFMM. Table 3.1

presents the results, which shows that, for higher number of clusters with not-well

separated samples, the initialization provided by kmeans++ (Arthur and Vassilvitskii,

2007) leads to better classi�cation accuracy. Moreover, from experiments we observed

that initialization with kmeans++ is better w.r.t. the stability and convergence time.

Next, we evaluate and compare the performance of BSC-vMFMM w.r.t. the state

of the art methods: Gaussian mixture model, Spherical kmeans (Banerjee et al.,

2005a), k-means-directions algorithm (Maitra and Ramler, 2010) and soft-MoVMF

(Banerjee et al., 2005a). We use the simulated data set (Section 3.4.1.1) for which

2In practice, these settings depend on the requirements from clustering methods, such as speed
of convergence, computation time, etc. For example, in MATLAB the default values of clustering
with Gaussian mixture model are: maximum iteration = 100, threshold log likelihood di�erence =
1e− 6.
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Table 3.1: Evaluation of the initialization methods for clustering with the BSC-
vMFMM (clustering accuracy in %). Experimented on not-well separated (nws)
samples of 3 and 5 classes. Methods: randomly initialized kmeans (KM), kmeans++
(KMPP) (Arthur and Vassilvitskii, 2007) and stochastic EM mean (SEMmean) (Bier-
nacki et al., 2003).

KM KMPP SEMmean
3 cl, nws 99.05 99.05 99.05
5 cl, nws 95.16 97.16 95.18

Table 3.2: Comparison of clustering accuracy (in %). Experimented on simulated data
samples containing 3 and 5 components mixture of two types: well separated (ws) and
not-well separated (nws). Methods: Gaussian Mixture Model (GMM), Spherical
kmeans (SPKM), k-means-directions algorithm (KMDR), soft-MoVMF and BSC-
vMFMM (Algorithm 2 with vMFMM). True numbers of components are provided as
input.

GMM SPKM KMDR
soft-

MoVMF
BSC-

VMFMM
3 cl, ws 91.71 98.23 98.30 98.92 99.99
3 cl, nws 90.5 92.25 98.55 93.07 99.05
5 cl, ws 83.93 97.07 97.92 97.6 99.99
5 cl, nws 86.06 93.64 93.95 94.96 97.16

ground truth labels and the number of components are known. Table 3.2 presents

the comparison3 based on clustering accuracy.

From the results in Table 3.2, it is evident that BSC-vMFMM provides the best

clustering accuracy. Particularly, for the not-well separated samples BSC-vMFMM

performs notably better than others.

3.4.1.3 Hierarchical Agglomerative Clustering (HAC) for Model Gener-
ation

Sided distance, centroid type and linkage criteria

Following Garcia and Nielsen (2010), we evaluate appropriate BD types (left /right

/symmetric) and linkage criteria (ex: single, complete, average, etc.) w.r.t. the KLD

and number of components. Note that, the choice of centroid type should correspond

to the type of BD. In the Table 3.3 and Fig. 3.5, we present results from a vMFMM

with well separated 7 components.
3In order to compare di�erent methods, we used MATLAB implementation provided either by

the authors (SPKM and soft-MoVMF) or by standard toolbox (GMM). For the k-means-directions
algorithm (KMDR), we used the available R package skmeans (Buchta et al., 2012).
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Table 3.3: Numerical evaluation using cophenetic correlation coe�cient. Each table
entry indicates the evaluated value for a particular choice of BD type and linkage
criteria.

Linkage type Left-sided Right-sided Symmetric
Single 0.4594 0.5212 0.4679
Complete 0.4051 0.4109 0.4135
Average 0.5297 0.5231 0.5331
Ward 0.4396 0.4455 0.4483
Weighted 0.4438 0.4497 0.4526
Median 0.4222 0.5171 0.4311
Centroid 0.4669 0.4715 0.4753

Figure 3.5: Evaluation of distance type and linkage criteria. (a) Average KLD values
for di�erent types of distances. Linkage criteria: `average link'. KLD threshold value:
0.1. (b) a closer view is provided for the selected rectangular area in the left image.

First, we select the linkage criteria. To this aim, we compute cophenetic correlation

coe�cient (Martinez et al., 2010). Table 3.3 presents the numerical evaluation, which

indicates that the `average linkage' is the best choice (i.e., the highest cophenetic

correlation coe�cient).

Fig. 3.5 illustrates the results obtained for evaluating the types of divergences.

Here the KLD value among Θkmax and {Θk}k=kmin,...,kmax−1 is used as a measure (lower

is better) of quality. See Garcia and Nielsen (2010) for details of this evaluation crite-

rion. Our experiments reveal that the left-sided BD provides the best simpli�cation

quality for the data sampled from a vMFMM with well separated 7 components.

We applied these experiments on all simulated data (see Section 3.4.1.1). Indeed,

for all mixture models we observe the same behavior. Therefore, we choose the `left-

sided' BD with the `average-link' as the linkage criteria for our HAC method.
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Table 3.4: Comparison of MBC-MoVMF and MBC-vMFMM.

MBC-MoVMF MBC-vMFMM

Initialization & EM
Soft-MoVMF

(Banerjee et al., 2005a) BSC

Objective of HAC
Min Entropy

(Baudry et al., 2010) Min BD

Parameter Estimation
for HAC merged clusters

Single step EM
+

Heuristic app.
(Banerjee et al., 2005a)

Centroid averaging

Component Annihilation Yes No

Comparative evaluation

To the best of our knowledge, it does not exist model based clustering method for

vMFMM. However, for the purpose of comparison we follow the state of the art

and combine MBC-GMM (Baudry et al., 2010) method with soft-MoVMF (Baner-

jee et al., 2005a). Let us call this method the MBC-MoVMF and our method the

MBC-vMFMM (see Section 3.3.1) for further uses. A methodological comparison

among the two methods is presented in Table 3.4. To experiment with both methods,

we set kmax = 15 and provide the true number of components. Note that, we ap-

ply component annihilation (Figueiredo and Jain, 2002) for MBC-MoVMF method.

This annihilation takes place inside the EM algorithm (soft-moVMF) that we apply

immediately after HAC (based on entropy minimization) step. We annihilate a com-

ponent if its probability is close to zero (e.g., less than 0.0001). The annihilation

strategy allows the algorithms to avoid from approaching towards the boundary of

the parameter space. Additional advantages observed due to following this strategy

are: (i) reduce the number of EM iterations and hence speed up the convergence and

(ii) allows skipping several merging steps of HAC and hence reducing computational

time.

Next, we perform numerical evaluation (Table 3.5) based on the accuracy of the

classi�cation and computational time. For the experiments we used MATLAB on a

64 bit machine with Intel(R) Xenon(R) CPU and 16 GB RAM.

We observe from these results that, the proposed MBC-vMFMM outperforms

MBC-MoVMF with both evaluation criteria. Specially, we observe that the MBC-

MoVMF is ∼3 times slower than the MBC-vMFMM.

Recall that, the MBC-vMFMM employs HAC to estimate the mixture models

{Θk}k=kmin,...,kmax−1 from the parameters of a principal model Θkmax . This guarantees
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Table 3.5: Evaluation of MBC based methods (M1: MBC-MoVMF , and M2:
MBC-vMFMM ) for vMFMM.

Classi�c. Acc (%) Comp. Time (sec)
M1 M2 M1 M2

3,ws 87.913 99.992 8.9187 2.953
5,ws 84.487 99.995 8.1757 2.9494
7,ws 76.991 99.994 7.8314 2.8663
3,nws 93.788 99.039 10.74 2.9201
5,nws 90.012 97.156 8.6715 2.9004
7,nws 80.709 92.966 7.9239 2.8822

(unlike Maitra and Ramler (2010)) the structural relations, i.e., consistency of the

cluster centers among the mixture models with di�erent k. Moreover, this makes

MBC-vMFMM faster as it does not incorporate the data points and an iterative

procedure to estimate {Θk}k=kmin,...,kmax−1. However, to observe the e�ect of model

estimation from the data, we include an additional EM step in MBC-vMFMM just

after parameter estimation by HAC. Results e�ectively show that the performance

remains almost same while increases a fraction of computational time.

In order to observe the results of estimating models with and without the HAC,

we compare results from MBC-vMFMM in Table 3.5 and BSC-vMFMM in Table 3.2.

In both cases, the true numbers of components are given as input. Results show that

the di�erence in clustering accuracy is insigni�cant. However, let us recall that only

the MBC-vMFMM permits to proceed towards model selection.

3.4.1.4 Model Selection

KLD based approach

In this approach, a simpli�ed mixture model is obtained with a user de�ned thresh-

old value (Garcia and Nielsen, 2010). Fig. 3.5 gives an idea of how to select such

threshold. Experimentally we observe that, for the well separated samples, a very

small threshold value (' 0.01, see Fig. 3.5) perfectly selects the correct number of

components. However, this is not trivial for the not-well separated samples. There-

fore, for these samples, we learn the threshold from the ground truth data. To this

aim, we did experiments using simulated data with di�erent amount of samples (2k,

5k, 10k, 20k, 50k) and di�erent numbers of components (3, 5, 7).

Table 3.6 presents the learned threshold values, which shows that a single thresh-

old is not applicable in all cases. This implies that, the user must choose di�erent

thresholds for di�erent number of components, which is impractical. Therefore, the
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Table 3.6: Empirical thresholds obtained from learning threshold values from simu-
lated data.

Num. classes 3 5 7
Th. Value 0.1 0.07 0.05
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Figure 3.6: Graphical representation for component selection with di�erent criteria.
Arrows indicate the selected number of components. The data for clustering was
sampled from two vMFMMs of 7 components (see Section 3.4.1.1) where: (a) all
criteria select the same number of components and (b) the selection is di�erent from
di�erent criteria.

KLD based approach (Garcia and Nielsen, 2010) is not an appropriate choice for our

MBC approach.

Parsimony based methods and Evaluation graph

From a wide selection of criteria for parsimony based approach (Melnykov and Maitra,

2010; Figueiredo and Jain, 2002), we select BIC, Φβmin
and ICL. This selection is based

on the observation (similar to Alata and Quintard (2009)) that other criteria (AIC

and MML) do not provide signi�cantly di�erent results than BIC4. Fig. 3.6 illustrates

two study cases of applying these criteria.

Fig. 3.7 illustrates two examples of the evaluation graph based methods applied on

the same data used in Figure 3.6(a). From the results of the L-method (Fig. 3.7(a))

(Salvador and Chan, 2004) we observe that: (a) the �tted lines tend to underestimate

the number of components and (b) it does not consider the fact that the BIC values

change almost linearly after ko = 7. Indeed, the L-method is a generalized proposal
4AIC overparameterize w.r.t. BIC. We are not giving the results with AIC as they are not better

than those obtained with BIC
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Figure 3.7: Evaluation graphs and selected optimal numbers of components (ko) by
knee point detection approach (a) the `L-method on BIC plot ' selects ko = 5 and
(b) the `linear regression �t on rescaled entropy plot ' selects ko = 5. The data was
sampled from a vMFMMs of 7 components, i.e. ko = 7 . Clusters in the simulated
data are not-well separated (see Section 3.4.1.1), which is similar to the data used in
Figure 3.6(a).

and is not intended to analyze BIC plot. However, it shows an informative hint to

exploit BIC plot in a better way.

Next, we analyze the rescaled entropy plot (Fig. 3.7(b)) (Baudry et al., 2010),

�tted with linear regression. We observe that it underestimates ko. In this plot, unlike

BIC curve, it is not possible to �nd an appropriate reason for the underestimation by

analyzing the entropy values.

The hint observed from the BIC curve (Fig. 3.7(a)) is also evident from the KLD

plot in Fig. 3.5. The KLD plot shows that from kmax to ko, the KL distance exhibits

linear change. Such change can be �tted by linear regression with very small error.

In contrary, the change from ko to kmin is not equivalent and hence a linear regression

�t produces comparatively higher error. Such phenomenon validates our approach to

set higher weight on the right side, such that it is balanced in both side.

Table 3.7 presents numerical evaluation of the parsimony based and evaluation

graph based methods for the simulated data (see Section 3.4.1.1). Let us denote

the methods as: min BIC (BIC), min Φβ (Φβmin
), min ICL (ICL), piecewise linear

regression �t on rescaled Entropy plot (REP-LR) (Baudry et al., 2010), L-method

(Lm) (Salvador and Chan, 2004), weighted linear regression �t on BIC plot, with τ = 1

(WPLR-1) and with τ = 300 (WPLR-300) and the k-means-directions algorithm

(KMDR) (Maitra and Ramler, 2010). We observe (from Table 3.7) that, both Φβmin

and WPLR-300 successfully determines the optimal number of components. Among
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Table 3.7: Accuracy evaluation of di�erent methods for determining the optimal
number of components.

Well Separated samples
BIC Φβmin

ICL REP-LR Lm WPLR-1 WPLR-300 KMDR
3 100 100 100 82 100 100 100 78
5 100 100 100 98 100 100 100 96
7 100 100 100 100 100 100 100 52
not-well Separated samples

BIC Φβmin
ICL REP-LR Lm WPLR-1 WPLR-300 KMDR

3 100 100 100 78 100 16 100 96
5 100 100 100 84 96 10 100 92
7 92 100 24 2 0 0 100 22

the other methods BIC, ICL, Lm and WPLR-1 are accurate for the well separated

samples. However, they are inconsistent for the not-well separated samples. The

REP-LR and KMDR methods provide inconsistent results for both types of samples.

Let us concentrate more on the data samples from not-well separated 7 compo-

nents, where most of the methods perform an underestimation. We compare Lm and

WPLR-1 since for detecting 7 components mixture both are nearly same (for Lm,

ωr = 1.33 and for WPLR-1, ωr = τ = 1). Now, looking at Fig. 3.7(a) we realize that

such small weight does not support the observation that �BIC values from kmax to ko
change linearly�. And hence, higher weight should be imposed to obtain correct ko.

This is immediately evident from the result provided by WPLR-300 (in Table 3.7).

Now, from the perspective of determining the value of τ , we present additional

results about the proposed WPLR-τ method (see Table 3.8). We see that, for τ = 1,

the number of components are underestimated; and the number of underestimations

decreases with the increase of τ . Additionally, we see that the accuracy is stable after

τ ≥ 300. Beside this, the results in Table 3.7 show that a single value of τ = 300

successfully determines the correct number of components for the entire data-set (see

Section 3.4.1.1) containing mixture of di�erent numbers of components. This validates

that, unlike the KLD threshold (see Section 3.4.1.4), a single value of τ is su�cient

for a dataset. For di�erent dataset and applications, we propose a two steps heuristic

as:

1. Evaluate dataset with a range of τ values.

2. Select the minimum of τ values from which the evaluation is stable.
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Table 3.8: E�ect of τ for WPLR-τ method. Data for this experiments are sampled
from not-well separated 7 components vMFMM. Each row presents the evaluations
for a particular value of τ . Evaluation criteria: Correct (Corr), over estimation (OE)
and under estimation (UE).

τ Corr OE UE
1 0 0 100
10 18 0 82
20 24 0 76
50 24 0 76
100 42 0 58
200 96 0 4
300 100 0 0
400 100 0 0
500 100 0 0
800 100 0 0
1000 100 0 0

The above experiments and analysis reveal that the proposed MBC-vMFMM

method successfully performs unsupervised classi�cation of the simulated 3D direc-

tional data. It performs better than the state of the art methods in terms of classi-

�cation accuracy and detecting the true number of clusters. In the next Section, we

demonstrate an application of MBC-vMFMM for depth image analysis.

3.4.1.5 Depth Image Analysis

We consider the NYU depth dataset v2 (Silberman et al., 2012) for our experiments.

It contains 1449 synchronized color and depth images of indoor environment. In this

research, we consider only the depth images for experiments. Notice that, in Fig. 3.8

and 3.11 the color images are provided to show the readers the contents of the scene.

First, we analyze a depth image (see Section 3.3.2) with the KLD based approach.

This helps us to understand the importance of selecting the correct number of com-

ponents. Fig. 3.8 illustrates such an example. The KLD thresholds exhibit an inverse

relation with the number of components. Therefore, we can interpret the clustered

images from the perspective of increasing or decreasing the KLD threshold value.

Increasing threshold is equivalent to merge image regions. This is evident when the

threshold value increases from 0.19 to 0.2 (number of components decreases from 7

to 6). In contrary, decreasing threshold is equivalent to splitting the image regions.
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RGB Image Depth Image (color coded) Image Normals

(2, 0.59) (3, 0.57) (4, 0.55)

(5, 0.46) (6, 0.20) (7, 0.19)

Figure 3.8: Resulting clusters generated for di�erent numbers of components. Asso-
ciated KLD threshold values are provided.

We observe from the results (Fig. 3.8) that, the best clustering provides su�cient

semantic interpretation about the structure of the indoor scene. Most interestingly,

it provides the three principal surfaces (planes in the indoor scene) when the number

of components is 4. It appears that, the more we increase the number of components

(starting from 2), the more we can detect the principal surfaces. However, increasing

the number of components too much will enforce over-segmentation (evident from 7

clusters). Therefore, careful choice of the KLD threshold value is very important. On

the other hand, based on the observation from Table 3.6 we can say that a unique

threshold is not su�cient to provide the true number of clusters for all images. Rather

it could create an over-segmentation or under-segmentation. Therefore, we can say

that the KLD based approach is not appropriate in the context of unsupervised depth

image clustering.

Next, we address the issue of automatically identifying the number of clusters

in the depth image. For this reason, we apply parsimony based (BIC, Φβmin
and

ICL criteria) and evaluation graph based (WPLR-τ and L-method) model selection

approaches. Let us consider τ = 30 (based on Fig. 3.13(a)) since it exhibits a good

compromise between the over-segmentation and under-segmentation. The plots of

Fig. 3.9 and 3.10 illustrate the model selection experiments, where Fig. 3.9 shows

details for a single image and Fig. 3.10 shows overall analysis for all images of the
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Figure 3.9: Number of clusters selection of a depth image (same image shown in Fig.
3.8) based on: (a) parsimony based (BIC, Φβmin

and ICL criteria) and (b) evaluation
graph based (WPLR-τ with τ=30) method.

NYU dataset (Silberman et al., 2012).

We begin with the analysis of a single image (same image of Fig. 3.8). We observe

(in Fig. 3.9(a)) that, all the criteria favor the maximum number (i.e. ko = kmax = 15)

of clusters. This produces over-segmentation (see Fig. 3.8). However, Fig. 3.9(b)

shows that WPLR-τ with τ = 30 selects ko = 6, which is the correct number of

clusters according to our judgment. Hence, we see that, for this depth image the

WPLR-τ method outperforms others.

Now, we evaluate WPLR-τ on the entire NYU database (Silberman et al., 2012).

Fig. 3.10 illustrates details of the evaluation. We see that BIC and Φβmin
criteria tend

to choose a higher number of clusters, which indeed over-segment the images (based

on Fig. 3.8). We observe opposite scenario from the L-method, which tends to under-

segment the images. The ICL criterion provides a combination of both cases (over

and under segmentation). Lastly, let us analyze the performance of our proposed

WPLR-τ method with τ = 30. We observe that, unlike other methods WPLR-30

does not perform over or under segmentation. This provides additional evidence that

compare to other experimented methods the WPLR-τ shows better compromise both

for the simulated and the real data. In order to further clarify this claim, either we

need the associated ground truth for this particular image analysis task or we need

an unsupervised depth image segmentation quality measure. Since none of these are

available at present, we consider providing such evaluation as a future perspective of

the proposed method.
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(a) BIC (b) (c) ICL

(f) WPLR-30(d) L-method (e) WPLR-1

Figure 3.10: Details of the evaluation for selecting the number of components. Meth-
ods: min BIC (BIC), min Φβ (Φβmin

), min ICL (ICL), L-method, weighted linear
regression �t on BIC plot with τ=1 (WPLR-1) and with τ=30 (WPLR-30).

Fig. 3.11 illustrates additional image analysis results with MBC-vMFMM (with

τ=30). We noticed that the computed normals contain noisy information, which

a�ects the clustering result. This is evident from Fig. 3.8, where a new cluster

appears around the �paper towel dispenser� if the number of components is 6 or

more (see 3rd row). The source of noise is caused by the low accuracy of the depth

information (addressed by Barron and Malik (2013)) and directional ambiguity of the

computed normal (Rusu, 2013).

Now, we compare the MBC-vMFMM w.r.t. the state of the art. Among the

most relevant methods for unsupervised image analysis (see Section 5.3 of Szeliski

(2011)), we select K-means (KM), Gaussian Mixture Model (GMM) and Mean shift

(MS). While MBC-vMFMM, KM and GMM are parametric methods, MS is non-

parametric (Szeliski, 2011). Fig. 3.12 illustrates a comparison with settings: k = 6

(for KM and GMM), τ = 30 (for MBC-vMFMM) and bandwidth = 0.5 (for MS). We

observe that, KM and MS methods generate nearly same result, which is smoother

and hence visually more pleasing. However, they do not always respect the true

nature of the directional data. For example, the pixels which belong to the corners

have di�erent normal directions and should form a separate cluster. Interestingly,

such clusters often able to characterize the corners and edges. We see that, while KM

and MS do not identify such clusters, MBC-vMFMM and GMM can do. However,

results from GMM are noisier. This is intuitive since in a unit sphere S2 data should

be explained with concentration (Mardia and Jupp, 2009) rather than ellipsoids in

R3.
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RGB Image Depth (Color coded) Image Normals MBC-vMFMM

6

5

4

6

Figure 3.11: Illustration of clustering of the depth images obtained by applying MBC-
vMFMM with τ = 30. The last column indicates the associated number of clusters.

(a) (b) (c) (d)

Figure 3.12: Comparison of depth image clustering generated by di�erent methods.
(a) GMM with 6 components; (b) MBC-VMFMM with τ = 30; (c) K-means with 6
components and (d)Mean Shift with bandwidth = 0.5.
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(b) Mean-Shift

Figure 3.13: Comparison of component selection with MBC-vMFMM and Mean Shift
clustering methods. (a) E�ect of τ for WPLR-τ method applied on MBC-vMFMM
clustering method and (b) E�ect of bandwidth parameter of the Mean Shift cluster-
ing method. For evaluation, we explore di�erent values of τ and bandwidth param-
eters.

Parametric methods employ di�erent strategies to automatically identify the num-

ber of components. However, a common strategy applicable for all purposes is yet

to become available. We propose WPLR-τ method, which shows better compromise

for the simulated and the real data. The Mean Shift is a well known non-parametric

method, that automatically determines the number of clusters. However, it needs an

input for the bandwidth parameter. This is similar to the τ (weight of right sided

�tted line) parameter of our proposed (WPLR-τ) method. From Fig. 3.13 we observe

that, the τ parameter has an inverse relationship with the bandwidth. Moreover, if

we increase τ gradually, then the clustering method moves from generating under-

segmentation to over-segmentation. It is balanced in the middle for certain values of

τ . We observe similar phenomenon for the Mean Shift method, when the bandwidth

decreases gradually.

3.4.2 Model Based Clustering with Watson Mixture Model
(MBC-WMM)

To evaluate MBC-WMM, �rst we use simulated data samples for comparing it w.r.t.

the state of the art methods. Next, we apply it on real depth image data samples.
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(a) (b)

Figure 3.14: Synthetic data samples from WMM (a) Well separated (ws) 3 classes
and (b) Not-well separated (nws) 5 classes.

3.4.2.1 Evaluation with Simulated Data Samples

In order to generate simulated data, we draw a �nite set of axially symmetric 3D

unit vectors (d = 3) from the Watson mixture models with di�erent numbers of

components. For this reason, we modi�ed the standard sampling method proposed

by Dhillon and Sra (2003). We generate 100 sets of data from two types of samples:

(a) well separated (ws) and (b) not-well separated (nws). Each set consists of 10,000

identically and independently distributed samples. Fig. 3.14 illustrates an example

of di�erent types of samples.

The MBC-WMM method requires the setting of parameters and criteria, such as

setting: (a) kmax and convergence criteria for the BSC-WMM algorithm and (b) the

distance type, linkage criterion and centroid type for the Hierarchical Agglomerative

Clustering (HAC) algorithm. We set kmax = 10 and the convergence criteria of BSC-

WMMmethod is set same as the criteria of BSC-vMFMMmethod, see Section 3.4.1.2.

Similar to the experiments in Section 3.4.1.3, we empirically �nd the setting of the

HAC method for MBC-WMM which is: `left sided' distance measure, `average link'

criterion and `left sided' centroid.

To evaluate MBC-WMM (without component selection) w.r.t. the state of the art

methods, we begin with a comparison of the average clustering accuracy (in %) which

is presented in Table 3.9. From the results, we observe that MBC-WMM provides

best average clustering accuracy. We also notice in Table 3.9 that EM-moW (Sra and

Karp, 2013) is very competitive. However, we see from Table 3.11 that, performance

of EM-moW (Sra and Karp, 2013) decreases signi�cantly when it is included in the

model based clustering framework.
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Table 3.9: Comparison of clustering accuracy (in %). Experimented on several num-
bers (2 - 5) of classes and two types (ws and nws) of samples. Methods: diametrical
(DM) (Dhillon and Sra, 2003), EM-Watson (EMW) (Bijral et al., 2007), EM-moW
(Sra and Karp, 2013) and MBC-WMM.

DM EM-W EM-moW MBC-WMM

2, ws 99.99 99.99 100 100

3, ws 99.04 98.05 99.99 99.99

4, ws 93.26 98.13 99.99 99.99

5, ws 94.65 96.35 99.96 99.96

2, nws 97.17 97.22 97.22 97.22

3, nws 95.63 95.66 96.4 94.35

4, nws 97.93 95.21 96.28 98.06

5, nws 96.03 93.63 94.2 96.09

Avg. 96.71 96.78 98 98.21

To the best of our knowledge, no model based clustering method exists for the

Watson mixture model. However, for the purpose of comparison, we follow similar

strategy as in Section 3.4.1.3 and combine state of the art methods to perform model

based clustering. We combine: (a) the diametric clustering method (Dhillon and

Sra, 2003), for initialization; (b) the EM-Watson (Bijral et al., 2007) or the EM-

moW (Sra and Karp, 2013) method, for parameter estimation and (c) the entropy

based cluster merging approach (Baudry et al., 2010), for hierarchical merging of

clusters. Let us call these methods the MBC-EMW (with EM-Watson (Bijral et al.,

2007)) and MBC-MOW (with EM-moW (Sra and Karp, 2013)) for further uses. A

methodological comparison among these methods is presented in Table 3.10. Table

3.11 presents a numerical evaluation of these methods based on clustering accuracy

(in %) and computation time (in sec). For the experiments we used MATLAB in a

64 bit machine with Intel Xenon CPU and 16 GB RAM. The average accuracy and

computation time (bottom row of Table 3.11) show that the MBC-WMM is better in

both cases.

Now, let us focus on selecting the number of components using the methods dis-

cussed in Section 2.5 of Chapter 2. We begin with the KLD based approach for com-

ponent selection and observed similarities with the MBC-vMFMM method presented

in Section 3.4.1.4. We do not proceed with this approach because: (a) it requires the

threshold as an external input and (b) the learned threshold values change for di�er-

ent number of components, which is impractical to �x in real applications. Next, we
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Table 3.10: Methodological comparison of MBC-EMW, MBC-MOW and MBC-
WMM.

MBC-EMW MBC-MOW MBC-WMM

Initialization
Diam. clust.

(Dhillon and Sra, 2003)

Diam. clust.

(Dhillon and Sra, 2003)

Diam. clust.

(Dhillon and Sra, 2003)

EM
EM-Watson

(Bijral et al., 2007)

EM-moW

(Sra and Karp, 2013)
BSC

Obj of HAC
Min Entropy

(Baudry et al., 2010)

Min Entropy

(Baudry et al., 2010)
Min BD

Param. Est.
Heuristic

(Bijral et al., 2007)

Closed form

(Sra and Karp, 2013)
Centroid avg.

Table 3.11: Numerical evaluation of MBC methods (M1: MBC-EMW, M2: MBC-
MOW and M3: MBC-WMM)

Classi�c. Acc (%) Comp.Time (sec)
M1 M2 M3 M1 M2 M3

Well Separated

2 100.00 100.00 100.00 6.76 66.50 8.52
3 92.00 82.00 99.99 8.01 201.17 7.17
4 91.12 86.35 99.99 8.52 355.48 7.18
5 87.36 81.51 99.96 9.21 110.14 8.40

Not well Separated

2 97.36 97.37 97.22 10.58 307.72 7.94
3 93.47 96.19 94.35 14.11 386.26 7.41
4 96.07 95.70 98.05 12.70 135.51 8.50
5 94.68 88.11 96.09 10.69 229.95 8.05

Average 94.01 90.90 98.21 10.07 224.09 7.89

evaluate di�erent model selection criteria as in Section 3.4.1.4. Table 3.12 presents

the rate of correct components selection by di�erent methods. According to the av-

erage rate (bottom row of Table 3.12) of correct components selection, the L-method

(Salvador and Chan, 2004) provides the best results. From detail results we observed

that, the BIC and Φβ criteria often over-estimate the number of components in com-

parison with ICL criterion (similar to Alata and Quintard (2009)). Based on these

observations, we consider the ICL and the L-method for the further experiments.
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Table 3.12: Evaluation of the rate of correct components selection by di�erent meth-
ods: min BIC (BIC), min Φβ (Φβmin

), min ICL (ICL), L-method (Lm) and Weighted
Linear Regression Fit on BIC plot, with τ = 1 (WPLR-1).

Num of cl BIC Φβ ICL Lm WPLR-1
Well Separated

2 0 0 100 100 100
3 62 98 100 100 100
4 88 88 88 88 88
5 26 42 100 98 98
Not well Separated
2 80 90 98 100 100
3 34 36 86 92 94
4 82 84 100 100 82
5 46 46 66 68 60
Average 52.25 60.5 92.25 93.25 90.25

Color Image Depth Image Image Normal 2 3 4 5

Figure 3.15: Illustration of depth image analysis for di�erent numbers of clusters
obtained by applying MBC-WMM method.

3.4.2.2 Evaluation of Depth Image Analysis

We follow the method described in Section 3.3.2 and apply MBC-WMM on the surface

normals. The setting for MBC-WMM is the same as for simulated experiments, except

we set kmax = 12. We conduct experiments with the depth images from NYU Depth

Dataset V2 (NYUD2) (Silberman et al., 2012). It is worth mentioning that, due to

axially symmetric property of Watson distribution, MBC-WMM can handle the noise

or directional ambiguity in the surface normals (Rusu, 2013). Moreover, this causes

the segments from MBC-WMM to be smoother. Therefore, for depth image analysis,

MBC-WMM is more suitable over MBC-vMFMM method in case of the existence of

noisy normals.

Fig. 3.15 illustrates the results of applying the MBC-WMM method (without

component selection) on two depth images. For brevity let us denote k as the number

of clusters. From the results we observe that, for a particular choice of k, the method
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Figure 3.16: Selection of the number of components using: (a) L-method and (b) ICL
criterion for a depth image (�rst row of Fig. 3.15). (c) Evaluation of components
selection from NYU database (using both methods).

identi�es di�erent image regions w.r.t. the dominant (in terms of total number of

pixels) axes of the scene. We see that, the identi�ed regions represent piecewise

planar surfaces (associated with a particular axis) of the scene. For example, when

k = 2 it provides the plane which belongs to the �rst dominant axis. Similarly, it

identi�es the planes belonging to other axes for k = 3 and 4. Notice also that, one

of the k clusters represents the normals which do not belong to a dominant axes.

Let us denote this cluster as the Non-Dominant-Axial (NDA) cluster. Often a NDA

cluster indicates the presence of non-planar objects such as corners of indoor surface,

inhomogeneous shaped objects, noise, etc. Therefore, one could exploit the NDA

clusters to discover additional (other than planar) category of objects.

Next, we evaluate MBC-WMM to select k automatically. Our component selection

strategy can be explained with Fig. 3.16(a) and 3.16(b) which correspond to the �rst

(top row) depth image shown in Fig. 3.15. The plots show that the L-method (using

BIC plot) selects k = 4 and the ICL criterion selects k = 12. Based on our subjective

(w.r.t. the axes) and visual observation we can verify that the L-method is correct.
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On the other hand ICL over-estimates the k. Next, we evaluate component selection

on the entire NYU database. Fig. 3.16(c) illustrates the results. Let us observe that

ICL selects components on the entire range (1 to kmax = 12). This indicates (based

on Fig. 3.16(b)) that ICL performs a large number of over-segmentation. In contrary

(based on Fig. 3.16(a)), L-method performs better for selecting k (1 to 8). Therefore,

we can justify that L-method is the right choice for the objectives of our analysis with

MBC-WMM.

Additional results are given in Fig. 3.17. Let us note that, depending on the

contents of images studied, MBC-WMM selects di�erent k for di�erent images. From

these results we identify two cases about the NDA clusters. In the �rst case (case-1),

the NDA cluster merges with one of the dominant clusters (see c, d, h, and j, Fig.

3.17). In the second case (case-2), the NDA cluster appears as an independent cluster

(see a, b, e, f, g, i, k and l, Fig. 3.17). From our analysis over the entire database, we

observed that case-1 occurs when the number of NDA data points is signi�cantly lower

(i.e., prior probability of NDA cluster is very low). Such low probability allows MBC-

WMM to ignore the NDA cluster and merge it with a dominant cluster. However, one

could �nd such NDA cluster in MBC-WMMmethod by looking at the next level of the

hierarchy of mixture models. Therefore, from a theoretical standpoint MBC-WMM

method can characterize the dominant planes as the clusters with high concentration

and NDA as the cluster with low concentration.

Now, let us focus on the clustered depth images with higher values of k (see k

and l, Fig. 3.17). We identify two cases: (1) more than one NDA cluster (see k) and

(2) over-segmentation (see l). While case-1 is acceptable, case-2 (a degenerated case)

highlights the necessity to pay more attention on component selection. In order to

face this issue, we suggest to pre-process (e.g., spatial �ltering) the image normals

(which we did not apply) and hence further improve the e�ciency of the depth image

analysis using the proposed MBC-WMM method.

One should also notice the e�ectiveness of MBC-WMM method to handle the

directional ambiguity of image normals (see 3rd column of Fig. 3.17). The results

show that although there is a signi�cant amount of noise (due to low accuracy of

depth sensor and incorrect surface normal directions), MBC-WMM could be used to

identify the planar and non-planar surfaces in an unsupervised way.

Besides the above analysis, we study the planar statistics of the regions of the

images from NYUD2 (Silberman et al., 2012). These regions are obtained using

the MBC-WMM method. Each region is associated with a cluster of surface normals.

Such cluster can be interpreted with the concentration parameter (κ) of the associated
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Figure 3.17: Depth image analysis with MBC-WMM method. Results obtained for
several images of NYU database (Silberman et al., 2012). The right most column
indicates the number of clusters.
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Watson distribution. We particularly study the values of κ of the regions with the

aim to distinguish between planar and non-planar regions.

Fig. 3.18 illustrates the histograms of κ (concentration of surface normal) val-

ues for the planar and non-planar surfaces. These histograms are obtained from an

analysis of four category of segmented surfaces: (1) planar; (2) non-planar ; (3) pla-

nar + non-planar and (d) unknown (category not sure). We asked an analyst to

categorize total 5410 segments obtained from the depth images into one of the four

above-mentioned category. After categorizing the segments, we found 2559 segments

as planar and 793 segments as non-planar. Then we construct the histogram from

the κ values associated to these categories. Besides analyzing the histograms, we also

observed that 99.88% of the planar surfaces has κ > 5 and 99.5% of the non-planar

surfaces has κ < 5. This provides an interesting observation that the planar property

of the regions can be characterized with the κ values. In the next Chapter, we will

see how we can e�ciently exploit this observation to design a semantic scene analysis

method.
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Figure 3.18: Histogram of κ values for planar and non-planar surfaces.

We believe that, if ambiguities and noises are absent in the computed normals,

the analysis and discussions above will also be applicable for analyzing depth images

with MBC-VMFMM method.

3.5 Discussions and Conclusions

Let us now discuss and summarize the contributions and future perspectives of the re-

search presented in this Chapter. We proposed novel Model Based Clustering (MBC)

methods with two directional distributions, called MBC-vMFMM and MBC-WMM.

These methods perform unsupervised clustering of the directional and axial data

which are in the form of unit vectors. The proposed methods assume a generative
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model and exploit Bregman Divergence within the MBC framework. According to our

knowledge, no such method exists for directional distributions. Moreover, observing

the individual elements of the method, we can highlight several key contributions for

directional statistics:

• An e�cient soft clustering method, based on Bregman soft clustering (Banerjee

et al., 2005b), with the vMFMM and the WMM.

• A hierarchical mixture model (Goldberger and Roweis, 2004) generation method

that can be used for simplifying (Garcia and Nielsen, 2010) the vMFMM and

the WMM.

• A hybrid MBC method (Zhong and Ghosh, 2003) for the vMFMM and the

WMM (by combining Bregman soft clustering and hierarchical agglomerative

clustering).

We evaluated these methods �rst with synthetic data. Results show that they

are relevant for clustering directional and axial data. Moreover, they perform better

than the state of the art in terms of: (a) accuracy of clustering; (b) rate of correct

selection of the optimal number of components and (c) computational e�ciency. In

practice, we also applied them to cluster image normals with the goal of analyzing real

depth images. Results show that, as an unsupervised method they are able to detect

and discriminate the planar and non-planar surfaces. Therefore, we show that these

methods are also relevant to provide semantic (planar/non-planar) interpretation of

indoor scenes using only directional features. There are several future perspectives of

the proposed methods:

• Develop model based clustering method (Fraley and Raftery, 2007) with the

Kent and Bingham distributions (Mardia and Jupp, 2009). Such development

will allow us to model complex structure of the data with more parameters, e.g.,

the Kent distribution can model data with an elliptical shape whereas the vMF

and Watson distributions model data with circular shape. This can be done by

deriving Bregman Divergence (Banerjee et al., 2005b) for these distributions.

• Extend the MBC-vMFMM method for high dimensional data, as currently it is

limited for 3D data only.

• Include pre-processing and post-processing (e.g., spatial �ltering and regular-

ization) to extend the methods, such that they can be used for semantic depth
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image segmentation. However, knowing the properties of directional features

we should not expect a complete semantic categorization.

• Extend these methods such that they can incorporate additional features (e.g.,

color) and that they can cluster heterogeneous data. Eventually, extend these

methods for joint color and depth (RGB-D) image analysis, see next Chapter.

• Beside image analysis, apply these methods to cluster data from di�erent do-

mains, such as speech (Souden et al., 2013; Vu and Haeb-Umbach, 2010), gene

expressions (Sra and Karp, 2013), digits (Bijral et al., 2007), etc.

Number of components selection is yet a challenging problem in clustering and no sin-

gle method is found to be the best for all purposes. We propose WPLR-τ for vMFMM

and select L-method (Salvador and Chan, 2004) for MBC-WMM. They provided sat-

isfactory results for the experiments with synthetic and real data. However, it would

be interesting to compare them with other methods, such as the Dirichlet Process

Mixture Model (DPMM) (Murphy, 2012). This could be another perspective for the

methods presented in this Chapter.
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Chapter 4

Unsupervised RGB-D image

segmentation using joint clustering

and region merging

Résumé: Des avancées récentes dans le domaine des capteurs, comme la caméra

Kinect de Microsoft, donnent accès à des données couleur et des données de pro-

fondeur synchronisées, appelées images RGB-D. Dans ce chapitre, nous exploitons

les méthodes et les observations des précédents chapitres a�n de proposer une méth-

ode non supervisée de segmentation d'images RGB-D de scènes intérieures. La nou-

velle méthode est basée sur un modèle génératif d'image exploitant la couleur et la

géométrie de la scène: elle réalise une classi�cation jointe de données couleur, spa-

tiales et axiales, puis une méthode de fusion de régions de géométrie plane. Nous

évaluons la méthode sur la base de données de profondeur NYU et nous la comparons

aux méthodes existantes de segmentation non supervisée de données RGB-D. Les ré-

sultats obtenus montrent que la nouvelle méthode donne des résultats comparables

aux méthodes de l'état de l'art tout en demandant un temps de calcul inférieur. De

plus, elle ouvre des perspectives intéressantes pour fusionner des informations couleur

et géométriques de manière non supervisée.

Recent advances in imaging sensors, such as Microsoft Kinect camera, provide

access to the synchronized depth with color information, called RGB-D image. In

this Chapter, we exploit the methods and observations from previous Chapters and

propose an unsupervised method for indoor RGB-D image segmentation and analysis.

The proposed method considers a statistical image generation model based on the

color and geometry of the scene. It consists of a joint color-spatial-axial clustering

method followed by a statistical planar region merging method. We evaluate the
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method on the NYU Depth Database and compare it with existing unsupervised

RGB-D segmentation methods. Results show that, it is comparable with the state of

the art methods and it needs less computation time. Moreover, it opens interesting

perspectives to fuse color and geometry in an unsupervised manner.

4.1 Introduction

Segmentation is considered as one of the oldest and most widely studied problems in

image analysis and computer vision. The central goal of this task is to group percep-

tually similar pixels based on certain features (e.g., color, texture etc.) in an image,

which are based on human perception according to the Gestalt theory in psychology

(Nock and Nielsen, 2004). This problem has been addressed from many di�erent

perspectives and therefore a variety of di�erent techniques are available in literature

(Szeliski, 2011). In this Chapter, we address the problem of segmenting synchronized

color and depth images from indoor scene and propose a solution that combines a

clustering method (Murphy, 2012) with a statistical region merging technique (Nock

and Nielsen, 2004).

After the introduction of Microsoft Kinect camera, the availability and accessi-

bility of RGB-D images is widespread now. As a consequence, traditional computer

vision algorithms which are previously developed for color/intensity image, have been

enhanced to incorporate depth information (Han et al., 2013). Notable progress have

been reported on RGB-D image segmentation of indoor scenes (Gupta et al., 2013;

Taylor and Cowley, 2013; Silberman et al., 2012; Ren et al., 2012; Dal Mutto et al.,

2012a; Koppula et al., 2011). These researches have shown that depth as an additional

feature improves accuracy of scene segmentation. Most of the techniques address the

problem with supervised approaches (e.g., Gupta et al. (2013)). In contrary, unsu-

pervised approach (e.g., Dal Mutto et al. (2012a)) to accomplish this task remains

underexplored. Moreover, it remains an important issue - what is the best way to fuse

color and geometry in an unsupervised manner? This motivates us to conduct further

research and contribute towards unsupervised indoor RGB-D image segmentation or

scene labeling with the aim to improve the performance of the task. In this Chapter,

we focus on this issue and propose a solution.

This Chapter proposes a scene segmentation approach which �rst identi�es the

possible image regions using a statistical image generation model. Then it merges

regions based on the statistics associated to the planar property. The proposed model
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is based on three di�erent cues/features1 of the RGB-D image: color, 3D location and

surface normals. It follows generative model approach for these features in which they

are issued independently (â��naïveâ�� Bayes (Murphy, 2012) assumption) from a

�nite mixture of certain probability distributions. The model considers the Gaussian

distribution (Murphy, 2012) for color and 3D features and the multivariate Watson

distribution (mWD) (Mardia and Jupp, 2009) for surface normals. The use of mWD

is motivated by the observations from Chapter 3 which are: (a) it overcomes the

directional ambiguity and noise (Rusu, 2013) related to surface normals (b) it provides

adequate statistics to explain the planar property of regions and (c) it helps us to

develop a simple and e�ective region merging method.

Finite Mixture Models are commonly used for cluster analysis (Fraley and Raftery,

1998; Biernacki et al., 2000; Fraley and Raftery, 2007). In the context of image anal-

ysis and segmentation these models have been employed with the Gaussian distribu-

tion for clustering the color image pixels (Ma et al., 2007; Alata and Quintard, 2009;

Garcia and Nielsen, 2010; Szeliski, 2011; Nguyen and Wu, 2013). These clusters are

obtained by using the Expectation Maximization (EM) algorithm that performs Max-

imum Likelihood Estimate (MLE) of the model parameters (Murphy, 2012; Bishop,

2006). In Chapter 2 and 3, we presented e�cient algorithms to estimate mixture

models based on individual distributions from the Exponential families (Nielsen and

Garcia, 2009), such as the Gaussian, the von Mises-Fisher and the Watson. In this

Chapter, we propose a clustering method that combines a mixture model of multiple

distributions from the Exponential families.

Bregman Soft Clustering (BSC) is a centroid based parametric clustering method

(Banerjee et al., 2005b). It has been e�ectively employed to estimate parameters of

the mixture models which are based on Exponential Family of Distributions (Garcia

and Nielsen, 2010; Nielsen and Garcia, 2009). Compare to the traditional EM based

algorithm, BSC provides additional bene�ts, see Chapter 2 for details related to this

method. In this Chapter, we extend the BSC algorithm in order to perform e�cient

clustering with our proposed image generation model.

Image segmentation based on region merging is one of the oldest techniques in

computer vision (Murphy, 2012). Existing methods which merge regions in a RGB

1Clustering using only 3D points often fails to locate the intersections among the planar surfaces
with di�erent orientations such as wall, �oor, ceiling, etc. This is due to the fact that the 3D points
associated to the intersections are grouped into a single cluster. On the other hand, the use of only
normals groups multiple objects with nearly similar orientations into the same cluster irrespective
of their 3D location. In order to overcome these limitations and to describe the geometry of indoor
scenes, we take both features into account.
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image exploit color and edge information (Trémeau and Colantoni, 2000; Nock and

Nielsen, 2004; Peng and Zhang, 2011; Martínez-Usó et al., 2013). For indoor scenes,

the use of color is often unreliable due to numerous e�ects caused by spatially varying

illumination (Gupta et al., 2013) and the presence of shadows. Therefore, for indoor

scenes color based merging is not as e�ective as it is for outdoor scenes. On the other

hand, in indoor scenes the planar surfaces are considered as important geometric

primitives. They are often employed for scene decomposition (Silberman et al., 2012;

Rusu, 2013; Gupta et al., 2013) and grouping coplanar segments into extended regions

(Taylor and Cowley, 2011). This motivates us to develop a region merging algorithm

exploiting planar property of the regions rather than color. In Chapter 3, we observed

that the concentration parameter (κ) of the directional distributions can be exploited

for characterizing planar surfaces. In the proposed merging method, we e�ciently

exploit the concentration (κ) of the surface normals in order to accept or reject a

merging operation.

In this Chapter, we present a novel RGB-D segmentation method. The proposed

method �rst applies a joint clustering method on the features (color, position and

normals) extracted from the RGB-D image. As an outcome of clustering, it obtains

a set of regions. Next, it applies a statistical region merging method on the initially

obtained regions to obtain the �nal segmentation. We evaluate the proposed method

by applying it on RGB-D images of the NYU depth database (NYUD2) (Silberman

et al., 2012) and compare the results with the state of the art unsupervised tech-

niques. To benchmark the segmentation task, we consider commonly used evaluation

metrics such as (Arbelaez et al., 2011; Freixenet et al., 2002): segmentation covering,

probability rand index, variation of information, boundary displacement error and

boundary F-measure. Moreover, we consider the computation time of comparable

methods as a measure of evaluation.

Finally, the contributions related to the work developed in this Chapter can be

highlighted as follows:

• A statistical RGB-D image generation model (section 4.3.1) that incorporates

both color and geometric properties of the scene.

• Development of an e�cient probabilistic joint clustering method (section 4.3.3)

exploiting the Bregman divergence (Banerjee et al., 2005b). It has following

properties: (a) performs clustering with respect to the proposed image model;

(b) provides an intrinsic view of the indoor scene and (c) provides statistics

w.r.t. the planar property of the regions.
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• A statistical region merging method (Section 4.3.4) based on certain region

merging predicates. This method can be incorporated independently with any

other existing indoor RGB-D scene segmentation method.

• A benchmark (Section 4.4) on the NYUD2 (Silberman et al., 2012) for unsu-

pervised scene segmentation. Results from the proposed method show that it

is comparable w.r.t. the state of the art and better in terms of computational

time.

The outline of the rest of this Chapter is as follows: Section 4.2 discuss the

background of RGB-D segmentation methods and related works. Section 4.3 presents

the proposed method. Section 4.4 provides the experimental results and discussion.

Finally, Section 4.5 draws conclusions and discusses future perspectives.

4.2 Background of RGB-D Segmentation

Color image segmentation of natural and outdoor scene is a well-studied problem

due to its numerous applications in computer vision. Di�erent methods to solve the

problem have been already established based on di�erent perspectives such as contour,

clustering, a�nity, energy minimization, etc. Chapter 5 of Szeliski (2011) provides a

detail overview of these methods.

Many of the established image analysis methods have been either modi�ed or

directly employed to the depth image data in order to analyze and to modelize it,

see Chapter 6 of Dal Mutto et al. (2012b) for a detail review. In the simplest cases,

the depth image is considered as a grayscale image or converted to a cloud of 3D

points. However, such simple approaches have limitations (Dal Mutto et al., 2012b)

and hence better features such as surface normals are suggested to use (Rusu, 2013;

Holz et al., 2012). We followed such suggestions and developed method in Chapter

3. From the results, we observed that: (a) the use of surface normals solely is not

su�cient to extract full semantics of the scene and (b) it is necessary to incorporate

additional features, such as color, texture etc. for providing better interpretation of

indoor environments. Such observations raise the necessity to jointly exploit depth,

color and other features for the task of image analysis.

A number of recent research activities, such as Dal Mutto et al. (2012a), Gupta

et al. (2013), Ren et al. (2012) and Silberman et al. (2012), proposed di�erent method-

ologies for indoor scene understanding and analysis with promising results. Most of

these researches incorporate depth as complementary information with color images.
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They are di�erent among themselves mainly from two aspects: (a) feature-wise: dif-

ferent types, levels and dimensions of features and (b) method-wise: numerous dis-

tinctions, such as supervised, unsupervised, clustering based, graph based, split-merge

based, etc. Di�erent methods emphasize on di�erent aspects of the problem, which

eventually opens a number of interesting and challenging part to focus on.

A common approach to tackle the RGB-D scene analysis problem is to extract dif-

ferent features, design kernels and classify pixels with learned classi�ers. For example,

Ren et al. (2012) proposed contextual models in a supervised setting. Their model

combines kernel descriptors with a segmentation tree or with superpixels Markov Ran-

dom Field (MRF). To this aim, they extended the well-known gPb-UCM algorithm

(Arbelaez et al., 2011) to incorporate the global probability of boundaries (gPb) of

depth image with gPb of RGB image. The RGB-D scene analysis method proposed

by Silberman et al. (2012) �rst gives an over-segmentation of the scene by apply-

ing watershed on the gPb of the RGB image. Next, it aligns the over-segmentation

with the 3D planes. Finally, using a trained classi�er it applies a hierarchical seg-

mentation in order to merge regions. Beside proposing the method, Silberman et al.

(2012) released an annotated RGB-D dataset (NYUD2) to perform scene analysis.

Recently, Gupta et al. (2013) extended the gPb-UCM (Arbelaez et al., 2011) method

in a supervised setting. First, they combine geometric contour cues: convex and con-

cave normal gradients with monocular cues: brightness, color, texture. Then, they

detect pixels as contours via learned classi�ers for 8 di�erent orientations. Finally,

they generate a hierarchy of segmentations from all oriented detectors. All of the

above-mentioned methods use supervised approach in order to combine/fuse di�erent

features or information extracted from them. Let us now focus on the methods in

unsupervised domain.

Dal Mutto et al. (2012a) discussed about the fusion of color with geometry in

an unsupervised setting and provide a solution using the normalized cut spectral

clustering method. Their approach consists of identifying an optimal multiplier to

balance between color and depth. For this reason, they generate several segmentations

with di�erent values of the multiplier. Each segmentation is obtained by applying

spectral clustering on the fused subsampled features. Finally, they select the best

segmentation based on their proposed RGB-D segmentation quality evaluation score.

In practice, this method requires more computation time as it generates a number

of di�erent segmentations for a single image. Taylor and Cowley (2011) proposed a

method which �rst extract edges from RGB image, apply Delaunay Triangulation on

the edges to construct triangular graph and then apply Normalized Cut algorithm to
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the graph. In the second step, they extract planar surfaces from the segments using

RANSAC (Szeliski, 2011) and �nally merge the coplanar segments using a greedy

merging procedure. The unsupervised method that we propose in this Chapter is

di�erent than the above proposals as: (a) it considers surface normals as features; (b)

it employs mixture model based joint clustering rather than Normalized Cut and (c)

it merges regions based on statistics rather than a greedy approach.

Beside these approaches, the well-known graph based segmentation (Felzenszwalb

and Huttenlocher, 2004) is extended for joint color and depth image segmentation.

For example, Niu et al. (2012) extended it by including disparity with color for the

purpose of segmenting stereopsis images. Strom et al. (2010) extended it by incorpo-

rating surface normals to segment colored 3D laser point clouds. For the purpose of

comparison, we develop an extension of the graph based method that considers both

3D and normals along with color.

Despite all of these researches, it remains an interesting issue about what could

be an appropriate statistical model to describe RGB-D images of indoor scenes and

how to exploit such model to segment the captured images. Scene-SIRFS (Barron and

Malik, 2013) is a recently proposed model whose aim is to recover intrinsic scene prop-

erties from single RGB-D image. It considers a mixture of shapes and illuminations

where the mixture components are embedded in a soft segmentation of 17 eigenvec-

tors. These eigenvectors are obtained from the normalized Laplacian corresponding

to the input RGB image. Although the concept of using mixture is similar to the

proposed method of this Chapter, the underlying objective, model and methodologies

are di�erent. We consider a mixture of shape (via 3D and normals) and color that

consists of a feature vector of length 9. In the next Section, we present our proposed

scene analysis method.

4.3 Methodology

4.3.1 Image Generation Model

We propose a statistical image model that fuses color and shape (3D and surface

normals) features according to the â��naïveâ�� Bayes assumption (Murphy, 2012),

i.e., the features are independent of each other. Furthermore, it is based on a gen-

erative model (Murphy, 2012) where the features are issued from a �nite mixture of

di�erent probability distributions. We consider the multivariate Gaussian (Bishop,

2006) distribution for the color and 3D features and the multivariate Watson (Mardia

91



Chapter 4. Unsupervised RGB-D image segmentation

and Jupp, 2009) distribution for surface normals. Mathematically, such a model with

k components has the following form:

g (xi|Θk) =
k∑
j=1

πj,k fg(x
C
i |µCj,k,ΣC

j,k) fg(x
P
i |µPj,k,ΣP

j,k)Wd

(
xNi |µNj,k, κNj,k

)
(4.1)

Here xi = {xCi ,xPi ,xNi } is the 9 dimensional feature vector of the ith pixel with i =

1, ...,M . Superscripts denote: C - color, P - 3D position and N - normal. Θk = {πj,k,
µCj,k,Σ

C
j,k, µ

P
j,k,Σ

P
j,k, µ

N
j,k, κ

N
j,k}j=1...k denotes the set of model parameters where πj,k is

the prior probability, µj,k is the mean, Σj,k is the variance-covariance symmetric

positive-de�nite matrix and κj,k is the concentration of the jth component. fg(.) and

Wd(.) are the density functions of the multivariate Gaussian distribution (Section

4.3.3.2) and the multivariate Watson distribution (Section 4.3.3.3) respectively.

4.3.2 Segmentation method

Figure 4.1 illustrates the work �ow of the proposed RGB-D segmentation method

that consists of two sub-tasks such as: (1) clustering heterogeneous (color, 3D and

Normal) data and (2) merging regions. The �rst task performs a joint color-spatial-

axial clustering and generates a set of regions. The second task performs a re�nement

on the set with the aim to merge regions which are susceptible to be over-segmented.

In the next two sub-sections we present our methods to accomplish these tasks.
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(a)

(b)

Figure 4.1: Work �ow of the proposed segmentation method. (a) Block diagram and
(b) Illustration with an example.

4.3.3 Joint Color-Spatial-Axial (JCSA) clustering

In order to cluster heterogeneous data, we develop a Joint Color-Spatial-Axial (JCSA)

clustering method. The clustering method estimates the parameters of the mixture

model (Eq. (4.1)) as well as clusters the image data/features. As an outcome, we

obtain the groups of image pixels which form the regions in the image. However,

notice that in an unsupervised setting the true number of segments are unknown.

Therefore, we cluster features with the assumption of certain maximum number of

clusters (k = kmax). Such assumption often causes an over-segmentation of the image.

In order to tackle this issue, it is necessary to merge the over-segmented regions (see

Section 4.3.4).

The proposed joint clustering method exploits and extends the clustering method-

ologies developed in Chapter 2 and 3. Recall that, both the Gaussian and the Watson

distributions belong to the Exponential Family of Distributions. Therefore, based on

the Linearity property (Boissonnat et al., 2010) of Bregman divergence (see Section

2.3.5 of Chapter 2), it is possible to compute Bregman divergence among two distri-

butions of the following combined form:

fcomb(xi|Θj,k) = fg(x
C
i |µCj,k,ΣC

j,k) fg(x
P
i |µPj,k,ΣP

j,k)Wd

(
xNi |µNj,k, κNj,k

)
(4.2)
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where Θj,k = {πj,k, µCj,k,ΣC
j,k, µ

P
j,k,Σ

P
j,k, µ

N
j,k, κ

N
j,k} denotes the jth component parame-

ters of Θk. This eventually allows to develop a joint Bregman soft clustering method

for the model in Eq. (4.1).

We refer readers to Chapter 2 and 3 for a detail review of Exponential Family of

Distributions, Bregman divergence and Bregman soft clustering. However, to keep

the presentation of the proposed joint clustering method independent, in the following

sub-sections we will repeat necessary elements in a concise form.

4.3.3.1 Exponential Family of Distributions (EFD) and Bregman Diver-
gence

A multivariate probability density function f(x|η) belongs to the exponential family

if it has the following (Eq. (3.7) of (Banerjee et al., 2005b), Eq. (60) of (Nielsen and

Garcia, 2009)) form2:

f (x|η) = exp (−DG (t(x), η)) exp (k(x)) (4.3)

and

DG (η1, η2) = G(η1)−G(η2)− 〈η1 − η2,∇G(η2)〉 (4.4)

with G(.) the Legendre dual of log normalizing function which is a strictly convex

function. ∇G the gradient of G. t(x) denotes the su�cient statistics and k(x) is the

carrier measure. The expectation of the su�cient statistics t(x) w.r.t. the density

function (Eq. (4.3)) is called the expectation parameter (η). DG is the Bregman

divergence computed from expectation parameters: it can be used to compute a

measure of distance between two distributions of the same exponential family, de�ned

by two expectation parameters η1 and η2. We will de�ne in the following Section the

particular forms obtained with the Gaussian distribution and the Watson distribution.

4.3.3.2 Multivariate Gaussian Distribution

For a d dimensional random vector x = [x1, ..., xd]
T ∈ Rd, the multivariate Gaussian

distribution is de�ned as:

fg(x|µ,Σ) =
1

(2π)d/2 det(Σ)1/2
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(4.5)

Here, µ ∈ Rd denotes the mean and Σ denotes the variance-covariance symmetric

positive-de�nite matrix. To write the multivariate Gaussian distribution in the form of
2In order to keep our formulations concise, we use the expectation parameters η to de-

�ne the Exponential Family of Distributions. However, we provide the other form: f (x|θ) =
exp (〈t(x), θ)〉 − F (θ) + k(x)) and related derivations in the previous Chapters.
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Eq. (4.3), the elements are de�ned as (Nielsen and Garcia, 2009): su�cient statistics

t(x) = (x,−xxT ); carrier measure k(x) = 0; expectation parameter η = (φ,Φ) =(
µ,−(Σ + µµT )

)
and Gg(η) = −1

2
log(1 + φTΦ−1φ)− 1

2
log(det(Φ))− d

2
log(2πe).

4.3.3.3 Multivariate Watson Distribution

For a d dimensional unit vector x = [x1, ..., xd]
T ∈ Sd−1 ⊂ Rd (i.e. ‖x‖2 = 1), the

multivariate (axially symmetric) Watson distribution (mWD) is de�ned as (Mardia

and Jupp, 2009):

Wd(x|µ, κ) = M (1/2, d/2, κ)−1 exp
(
κ(µTx)2

)
= Wd(−x|µ, κ) (4.6)

Here, µ is the mean direction (with ‖µ‖2 = 1), κ ∈ R the concentration and

M (1/2, d/2, κ) the Kummer's function (Mardia and Jupp, 2009). To write the

mWD in the form of Eq. (4.3), the elements are de�ned as: su�cient statistics

t(x) =
[
x2

1, ..., x
2
d,
√

2x1x2, ...,
√

2xd−1xd
]T
; carrier measure k(x) = 0; expectation pa-

rameter η as:

η = ‖η‖2 ν (4.7)

where ν =
[
µ2

1, ..., µ
2
d,
√

2µ1µ2, ...,
√

2µd−1µd
]T

and

Gw(η) = κ ‖η‖2 − logM (1/2, d/2, κ) (4.8)

With the above formulation, for a set of observations X = {xi}i=1,...,M we estimate

η = E[t(X)] and κ with a Newton-Raphson root �nder method as (Sra and Karp,

2013):

κl+1 = κl −
q(1/2, d/2;κl)− ‖η‖2

q′(1/2, d/2;κl)
(4.9)

where q(1/2, d/2; .) is the Kummer-ratio, q
′
(1/2, d/2; .) is the derivative of q(1/2, d/2; .).

See Chapter 3 for details.

4.3.3.4 Bregman Divergence for the combined model

Our image model (in Eq. (4.1)) combines di�erent exponential family of distributions

(associated to color, 3D and normals) based on independent (naïve Bayes (Murphy,

2012)) assumption. Therefore, Bregman Divergence (BD) of the combined model can

be de�ned as a linear combination of the BD of each individual distributions:

Dcomb
G (ηi, ηj) = DC

G,g(η
C
i , η

C
j ) +DP

G,g(η
P
i , η

P
j ) +DN

G,w(ηNi , η
N
j ) (4.10)
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where, DG,g(., .) denotes BD using multivariate Gaussian distribution and DG,w(., .)

denotes BD using multivariate Watson distribution. Then, it is possible to de�ne,

with expectation parameter η =
{
ηC , ηP , ηN

}
:

Gcomb(η) = Gg(η
C) +Gg(η

P ) +Gw(ηN) (4.11)

4.3.3.5 Bregman Soft Clustering for the combined model

Bregman soft clustering exploits Bregman Divergence (BD) in the Expectation Max-

imization (EM) framework (Murphy, 2012) to compute the Maximum Likelihood

Estimate (MLE) of the mixture model parameters and provides a soft clustering of

the observations (Banerjee et al., 2005b). In the expectation step (E-step) of the

algorithm, the posterior probability is computed as (Nielsen and Garcia, 2009):

p (γi = j|xi) =
πj,k exp

(
Gcomb(ηj,k) +

〈
t(xi)− ηj,k,∇Gcomb(ηj,k)

〉)∑k
l=1 πl,k exp (Gcomb(ηl,k) + 〈t(xi)− ηl,k,∇Gcomb(ηl,k)〉)

, j = 1, ..., k

(4.12)

Here, ηj,k and ηl,k denote the expectation parameters for any cluster j and l given

that the total number of components is k. The maximization step (M-step) updates

the mixing proportion and expectation parameter for each class as:

πj,k =
1

M

M∑
i=1

p (γi = j|xi) and ηj,k =

∑M
i=1 p (γi = j|xi)xi∑M
i=1 p (γi = j|xi)

(4.13)

Initialization is a prominent issue and has signi�cant impact on clustering. Our

initialization procedure consists of setting initial values for prior class probability

(πj,k) and the expectation parameters (ηj,k) with 1 ≤ j ≤ k. We initialize π and η

associated to the Gaussian and Watson using a combined k-means type clustering.

After initialization, we iteratively apply the E-step and M-step until the convergence

criteria are met. These criteria are based on maximum number of iterations (e.g.

200) and a threshold di�erence (e.g. 0.001) between the negative log likelihood values

(see Eq. (4.14)) of two consecutive steps.

nLLH(Θk) = −
M∑
i=1

log (g (xi|Θk)) (4.14)

The above procedures lead to a soft clustering algorithm, which generates associated

probability and parameters for each component of the proposed model in Eq. (4.1).

Let us call this the BSC-COMB algorithm (Algorithm 3). Finally, for each sample

we get the class label (γ̂i) using the updated combined BD (Eq. 4.10) as:

γ̂i = arg min
j=1,...,k

Dcomb
G (t(xi), ηj,k) (4.15)
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Algorithm 3: BSC-COMB algorithm for Joint Color-Spatial-Axial clustering.
Input: X ={

xi | xi = {xCi ,xPi ,xNi }, xCi ∈ Rd,xPi ∈ Rd,xNi ∈ Sd−1 ∧ 1 6 i 6M
}

Output: A soft clustering of X with k components.
Initialize πj,k and ηj,k for 1 ≤ j ≤ k using combined kmeans;
while not converged do

{Perform the E-step of EM};
foreach i and j do

Compute p(γi = j|xi) using Eq. (4.12)
end
{Perform the M-step of EM};
for j = 1 to k do

Update πj,k and ηj,k using Eq. (4.13)
end

end

Applying Algorithm 3 on RGB-D image features (color, position and normals)

performs a joint color-spatial-axial clustering. Note that, we apply this clustering

method with the assumption of certain maximum number of components k = kmax.

Image regions obtained by such clustering often lead to over-segmentation. Therefore,

it is necessary to merge the over-segmented regions. In the following, we propose a

region merging method to tackle such over-segmentation.

4.3.4 Region Merging

In this sub-task, we merge the over-segmented regions which are generated from

previous step. To this aim, �rst we build a Region Adjacency Graph (RAG) (Trémeau

and Colantoni, 2000) (see Figure 4.1). The graph considers that each region is a

node and each node has edges with its adjacent nodes. In order to de�ne the edge

connectivity among nodes, we consider a measure of statistical distance among two

regions. Moreover, we consider the boundary strength among regions as a measure of

their eligibility to merge. Similar to the standard region merging methods (Trémeau

and Colantoni, 2000; Nock and Nielsen, 2004; Peng and Zhang, 2011), we de�ne the

region merging predicates and merging order. As an outcome of region merging we

obtain the �nal segmentation.
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Figure 4.2: Illustration of a Region Adjacency Graph (RAG) constructed from JCSA
clustered regions of the image in Figure 4.1(b). The circle at each node represents
the concentration of image normals at the region. Each edge represents the weight
wd among two adjacent nodes/regions.

4.3.4.1 Region Adjacency Graph (RAG)

In our proposed region merging method, RAG provides an inherent view of the merg-

ing strategy. Figure 4.2 illustrates an example of the RAG constructed from clustered

regions of the image in Figure 4.1(b). Let R = {ri}i=1,...,Z be the set of regions that we

obtain from the JCSA clustering; G = (V,E) be the undirected graph that represents

the RAG, where vi ∈ V is the set of nodes corresponding to the regions ri ∈ R and

E is the set of edges among adjacent nodes.

Each node vi consists of the parameters (mean direction µ and concentration κ) of

the Watson distribution (Section 4.3.3.3) associated with region ri. In Figure 4.3 the

radius of the circles (nodes) represents the κ value and the orientation of the nodes

represents the mean direction µ.

Each edge eij consists of two weights: wd, based on statistical dissimilarity and

wb, based on boundary strength between adjacent nodes vi and vj. The dissimilarity

based weight wd is computed using the Bregman divergence (Eq. (4.4)) among two

adjacent nodes vi and vj as:

wd(vi, vj) = min
(
DN
G,w(ηNi , η

N
j ), DN

G,w(ηNj , η
N
i )
)

(4.16)

where, DN
G,w(ηNi , η

N
j ) is the Bregman divergence (Eq. (4.4)) among the Watson dis-

tributions associated with regions ri and rj. The boundary based weight wb between

two nodes vi and vj is computed from the average normalized gradient values along

the boundary of their corresponding regions ri and rj as:

wb(vi, vj) =
1

|ri
⋂
rj|

∑
b∈ri

⋂
rj

IrgbdG (b) (4.17)
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where, ri
⋂
rj is the set of boundary pixels among two regions, |.| denotes the car-

dinality and IrgbdG is the normalized magnitude of image gradient3 (MoG) (Szeliski,

2011) computed from the RGB-D image. IrgbdG is obtained by �rst computing MoG

for each color channels (IrG, I
g
G, I

b
G) and depth (IdG) individually, and then taking the

maximum of those MoGs at each pixel.

4.3.4.2 Merging Strategy

Our region merging strategy is an iterative procedure that proceeds by employing

merging predicates among adjacent nodes in a certain order. The merging predicates

consist of evaluating the candidacy of each node, the eligibility of merging adjacent

nodes and verifying the consistency of the merged nodes. Once two nodes are merged,

the information regarding the merged node and its edges are updated instantly. This

procedure continues until no valid candidates are left to merge.

candidacy of a node/region de�nes whether it is a valid candidate to be merged

with the adjacent nodes. For each node, �rst we check its candidacy. This helps us to

�lter out a number of nodes which are not a valid candidate to be merged and hence

reduce the computational time. Our proposed candidacy criterion for a node checks

the planar property of its associated region. Since our goal is to merge the adjacent

planar regions, we do not consider any region which is non-planar. This property can

be easily investigated by analyzing the concentration parameter (κ) associated with

each node vi. We de�ne the candidacy of a node vi as follows:

candidacy(vi) =

{
true, if κi > κp,

false, otherwise.
(4.18)

Here κi is the concentration parameter computed from the region ri. κp is the thresh-

old that de�nes the planar property of a region. In Chapter 3, we observed that the

concentration of the normals associated with a region can be exploited to discrimi-

nate among the planar and non-planar surfaces. In Eq (4.18) we are exploiting that

observation. See Section 4.4 for details about the κp threshold value.

We de�ne the eligibility of merging two regions (ri and rj) based on the dissimi-

larity based weight wd (using Eq. (4.16)) and boundary based weight wb (using Eq.

3To compute image gradient ∆I =
(

∂I(x,y)
∂x , ∂I(x,y)∂y

)
, with ∂I(x,y)

∂x ≈ I(x+1,y)−I(x−1,y)
2 and

∂I(x,y)
∂y ≈ I(x,y+1)−I(x,y−1)

2 , we used the 'sobel' operator in MATLAB implementation.
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(4.17)) among the corresponding nodes (vi and vj) as:

eligibility(vi, vj) =


true, (a) wb(vi, vj) < thb; and

(b) wd(vi, vj) < thd;

false, otherwise.
(4.19)

where, thb and thd are the thresholds associated with the boundary weight wb and

the distance weight wd. See Section 4.4 for details about their in�uence on region

merging and segmentation.

We employ the plane outlier ratio in order to verify the consistency (Peng and

Zhang, 2011) of a merged region. It is computed by �rst �tting a plane to the 3D

points belonging to the merged region and then computes the ratio of inliers and

outliers based on a threshold distance (Taylor and Cowley, 2013). We employed

the widely used RANSAC (Szeliski, 2011) algorithm for the purpose of plane �tting.

Therefore, we de�ne consistency among two regions ri and rj as follows:

consistency(vi, vj) =

{
true, if planar outlier ratio > thr,

false, otherwise.
(4.20)

where, thr is the threshold associated with the plane outlier ratio. We set this thresh-

old following the existing methods, such as Taylor and Cowley (2013).

Finally, we de�ne the region merging predicate (Peng and Zhang, 2011) Pij based

on: (a) candidacy (using Eq. (4.18)); (b) eligibility of merging (using Eq. (4.19)) and

(c) consistency of merged node (using Eq. (4.20)) as:

Pij =


true, if (a) candidacy(vj) = true; and

(b) eligibility(vi, vj) = true; and
(c) consistency(ri, rj) = true

false, otherwise.

(4.21)

Let us note that the conditions in the merging predicate are applied sequentially

and hence reduce computational time. The condition (b) in the merging predicate

is related to the statistical properties extracted from the regions. One could ignore

this condition and expect similar results. However, this will signi�cantly increase the

computational time.

The region merging order (Peng and Zhang, 2011) sorts the adjacent regions that

should be evaluated and merged sequentially. However, it changes dynamically af-

ter each merging occurs. We de�ne the merging order based on dissimilarity based

weights wd among the adjacent nodes. The adjacent node vj which has minimum
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wd(vi, vj) is considered to be evaluated �rst. We use wd as the merging order con-

straint due to its ability to provide a measure of dissimilarity among regions. Such a

measure is based on the mean direction (µ) and the concentration (κ) of the surface

normals of the regions. Therefore, with this constraint, the neighboring region, which

is most similar w.r.t. µ and κ will be selected as the �rst candidate to evaluate using

Eq. (4.21).

Algorithm 4 provides the pseudo code for the proposed region merging method. It

begins with a set of regions obtained by applying Algorithm 3 on an RGB-D image.

As an outcome, it provides the �nal segmentation result. In the next Section, we

evaluate the results obtained from the RGB-D segmentation method developed in

this Chapter.

Algorithm 4: Region Merging algorithm.
Input: R = {ri}i=1,...,Z , G = (V,E), κp, thb, thd and thr
Output: Final segmentation after region merging.
Compute candidacy(vi) for {vi}i=1,...,Z using Eq. (4.18);
Set i = 1 ;
foreach i do

if candidacy(vi) is true then
while no adjacent of vi is left to check do

Sort eij in ascending order according to wb(vi, vj) ;
Evaluate each vj with the merging predicate Pij (Eq. (4.21)) ;
if Pij is true then

Merge two nodes vi and vj and update the RAG;
Start over again from sorting the adjacents eij of the node vi.

else
Check the next node

end

end

end

end

4.4 Experiments and Results

In this Section, we evaluate the proposed method on the benchmark image database

NYUD2 (Silberman et al., 2012) which consists of 1449 indoor images with RGB,

depth and ground-truth information. We convert (using MATLAB function) the

RGB color information into L∗a∗b∗ (CIELAB space) color because of its perceptual

accuracy (Cheng et al., 2011). From the depth images, we compute the 3D coordinates
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and surface normals using the toolbox available with the database (Silberman et al.,

2012).

Our clustering method requires to set initial labels of the pixels and the number of

clusters k. We initialize it following the k-means++ (Arthur and Vassilvitskii, 2007)

strategy with k = 20. For the region merging we empirically set the thresholds as:

κp = 5 to decide a region as planar (see Section 3.4.2.2 of Chapter 3), thb = 0.2 to

decide the existence of boundary among two regions, thd = 3 to decide the distance

among two regions and thr = 0.9 to determine the goodness of a plane �tting.

We evaluate performance using standard benchmarks (Arbelaez et al., 2011) which

are applied to compare the test and ground truth segmentation: (1) probability rand

index (PRI ), it measures likelihood of a pair of pixels that has same label; (2) variation

of information (VoI ), it measures the distance between two segmentations in terms of

their average conditional entropy; (3) boundary displacement error (BDE ) (Freixenet

et al., 2002), it measures the average displacement between the boundaries of two

segmentations; (4) Ground truth region covering (GTRC ), it measures the region

overlaps between ground truth and test and (5) Boundary based F-measure (BFM ),

a boundary measure based on precision-recall framework (Arbelaez et al., 2011). With

these criteria a segmentation is better if PRI, GTRC, BFM are larger whereas VoI

and BDE are smaller.

First, we study the sensitivity of the proposed method w.r.t. the parameters (k, κp,

thb, thd), which is presented in table 4.1. The parameter k is related to the clustering

method (Section 4.3.3) while κp, thb and thd are related to the region merging method

(Section 4.3.4). Note that, the parameter thr = 0.9 is set by following Taylor and

Cowley (2013) and hence we do not analyze it further. From table 4.1, we observe

that while PRI (1%) is quite stable, VoI (6%), BDE (8%) and GTRC (7%) provide

discriminating view w.r.t the parameters. The parameter k is inversely related to the

number of pixels in a cluster. In segmentation, a smaller k causes to loose details

in the scene while higher k splits the scene into more regions. We set κp based on

the study we did on NYUD2 (see Section 3.4.2.2 of Chapter 3) for details) which

reveals that planar surfaces can be characterized with concentration κ >= 5. While,

a lower κ value selects non-planar surfaces to be merged, a higher value may reject

true planar surfaces for merging. Following the OWT-UCM (Arbelaez et al., 2011)

method, we empirically set the value of thb. Similarly, we set thd empirically. In

theory two regions which belong to the same direction have a negligible value of the

Bregman divergence. However, the inaccurate computation of the shape features and

the presence of noise in the acquired depth information often causes the Bregman
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divergence to be high. From our experience with the images of NYUD2, thd should

be within the range between 2 to 4.

{k, 5, 0.2, 3} {20, κp, 0.2, 3} {20, 5, thb, 3} {20, 5, 0.2, thd}
15 20 25 2 5 8 0.1 0.2 0.3 2 3 4

VoI 2.31 2.29 2.42 2.32 2.29 2.38 2.43 2.29 2.32 2.37 2.29 2.32

BDE 10.64 9.83 10.05 10.52 9.83 10.00 9.98 9.83 10.34 10.10 9.83 10.00

PRI 0.89 0.90 0.89 0.89 0.90 0.90 0.89 0.90 0.89 0.90 0.90 0.90
GTRC 0.56 0.58 0.57 0.56 0.58 0.56 0.54 0.58 0.56 0.56 0.58 0.57

Table 4.1: Sensitivity of JCSA-RM with respect to the parameters {k, κp, thb, thd}.

We also compare the proposed method JCSA-RM (joint color-spatial-axial clus-

tering and region merging) with several unsupervised RGB-D segmentation methods

such as: RGB-D extension of OWT-UCM (Ren et al., 2012) (UCM-RGBD), modi�ed

Graph Based segmentation (Felzenszwalb and Huttenlocher, 2004) with color-depth-

normal (GBS-CDN), Geometry and Color Fusion method (Dal Mutto et al., 2012a)

(GCF) and the Scene Parsing Method (Taylor and Cowley, 2013) (SP). For the UCM-

RGBD method we obtain best score with threshold value 0.1. The best results from

GBS-CDN method are obtained by using σ = 0.4. To obtain the optimal multiplier

(λ) in GCF (Dal Mutto et al., 2012a) we exploit the range 0.5 to 2.5. For the SP

method, we scaled the depth values (1/0.1 to 1/10 in meters) to use author's source

code Taylor and Cowley (2013).

Table 4.2 presents (best appears as bold) the comparison w.r.t. the average score

of the benchmarks. Results show that JCSA-RM performs best in PRI, VoI and

GTRC and comparable in BDE. However, in the BFM it is not comparable. The

reason is that, BFM favors methods like UCM-RGBD which is specialized in con-

tours detection. This indicates that JCSA-RM can be improved by incorporating the

boundary information more e�ciently, e.g., by incorporating boundary information

within the joint clustering method.

Several segmentation examples to visualize the results are illustrated in Fig 4.3.

These examples con�rm that the segmentation from JCSA-RM (our proposed) and

UCM-RGBD are competitive. However, they have several distinctions: (a) JCSA-

RM is better in providing the details of indoor scene structures whereas UCM-RGBD

loose them sometimes (see ex. 3-5); (b) UCM-RGBD provides better estimation of

the object boundaries whereas JCSA-RM gives a rough boundary and (c) UCM-

RGBD shows more sensitivity on color whereas JCSA-RM is more sensitive on di-

rections. The GBS-CDN method provides visually pleasing results, however it often
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PRI VoI BDE GTRC BFM
UCM-RGBD 0.90 2.35 9.11 0.57 0.63
GBS-CDN 0.81 2.32 13.23 0.49 0.53
GCF 0.84 3.09 14.23 0.35 0.42
SP 0.85 3.15 10.74 0.44 0.50
JCSA 0.87 2.72 10.33 0.45 0.46
JCSA-RM 0.90 2.29 9.83 0.58 0.59

Table 4.2: Comparison with the state of the art. Methods: UCM-RGBD (Ren
et al., 2012), GBS-CDN (Felzenszwalb and Huttenlocher, 2004), GCF (Dal Mutto
et al., 2012a), SP (Taylor and Cowley, 2013), JCSA and JCSA-RM (proposed).

tends to loose details (see ex. 1-4) of the scene structure (e.g. merges wall with

ceiling). Results from the SP method seems to be severely sensitive to the varying

illumination and rough changes in surfaces (see ex. 3). The GCF method performs

over-segmentation (see ex. 1, 3, and 5-7) or under-segmentation (see ex. 2 and 4),

which is a drawback of such algorithm as it is often unable to estimate the correct

number of clusters in real data. Moreover, the GCF method often fails to discriminate

major surface orientations (see ex. 1, 2 and 4) as it does not consider the direction

of surfaces (normals).

Comparing JCSA with JCSA-RM (Table 4.2), we can decompose the contributions

of clustering and region merging in JCSA-RM. We see that region merging improves

clustering output from 0.45 to 0.58 (28.88%) in GTRC. We believe that JCSA-RM

can be improved and extended further in the following ways:

• Including a pre-processing stage, which is necessary because the shape features

are often computed inaccurately due to noise and quantization (Barron and Ma-

lik, 2013). Moreover, we observed signi�cant noise in the color images which are

captured especially in low light condition. A method like Scene-SIRFS (shape,

illumination and re�ectance from shading) (Barron and Malik, 2013), which

recover the intrinsic scene properties, can be used for pre-processing purpose.

• Enhancing the clustering method by adding contour information (Arbelaez

et al., 2011) e�ciently. Additionally, we may consider spatially constrained

model such as (Nguyen and Wu, 2013) which incorporates boundary informa-

tion by adding spatially varying constraints in the clustering task.

• Enhancing the region merging method with color information. To this aim,

we can exploit the estimated re�ectance information (using (Barron and Malik,
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Figure 4.3: Segmentation examples (from top to bottom) on NYU RGB-D database
(NYUD2). (a) Input Color image (b) Input Depth image (c) Ground truth (d) JCSA-
RM (our proposed) (e) UCM-RGBD (Ren et al., 2012) (f) GBS-CDN (Felzenszwalb
and Huttenlocher, 2004) (g) SP (Taylor and Cowley, 2013) and (h) GCF (Dal Mutto
et al., 2012a).

2013)), such that the varying illumination is discounted.

In order to conduct the experiments we used a 64 bit machine with Intel Xenon

CPU and 16 GB RAM. The JCSA-RM method is implemented in MATLAB, which

on average takes 38 seconds, where 31 seconds for the clustering and 7 seconds for

region merging. In contrast, UCM-RGBD (MATLAB and C++) takes 110 seconds.

Therefore, JCSA-RM is ≈3 times faster4 than UCM-RGBD. Moreover, we believe

that implementing JCSA-RM in C++ will signi�cantly reduce the computation time.

To further analyze the computation time of JCSA-RM, we run it for di�erent

image scales. Table 4.3 presents relevant information from which we see that the
4To perform a fair comparison, we conducted this experiment with half scaled image. This is due

to the fact that the computational resource did not support to run UCM-RGBD for the full scale
image.
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reduction rate of JCSA computation time (in sec) w.r.t. di�erent scales is approxi-

mately equivalent to the reduction rate of the number of pixels.

Scale 1 1/2 1/4 1/8
Num. pixels 239k 60k 15k 4k

JCSA (req. time in sec) 132 31 8 1.5

RM (req. time in sec) 42 7 1.4 0.33

Table 4.3: Computation time of JCSA-RM w.r.t. di�erent image scales.

In Table 4.1 and 4.2 we observed that the Ground Truth Region Covering (GTRC)

(Arbelaez et al., 2011) benchmark provides reasonable score to evaluate and di�er-

entiate among the di�erent methods. Fig. 4.4 provides further analysis on NYUD2

(Silberman et al., 2012) using histograms of the GTRC scores. We observe that, while

the JCSA-RM and UCM-RGBD covers quite similar regions in the histogram, others

are quite di�erent specially in the higher GTRC region.
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Figure 4.4: Histogram of GTRC (Arbelaez et al., 2011) scores of di�erent methods.

Now, in Fig. 4.5 let us focus and analyze some segmentation examples which have

lower (less than 0.4) GTRC score. Average GTRC score of JCSA-RM is 0.58 (see

Table 4.1 and 4.2). Results show several cases for low scores:

• JCSA-RMmethod tends to provide more details (over-segment) while the ground

truth keeps minimum detail, see ex. 1-3, and 5 in Fig. 4.5.

• JCSA-RM method do not provide enough detail (under-segment) while the

ground truth does, see ex. 4 and 6 in Fig. 4.5. This is a very di�cult case, as

looking at the images we can see that the under-segmented regions have similar
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color, depth and normal which in a general case di�cult to segment without

additional knowledge.

• Example 7 shows a characteristic example of JCSA-RM, which is to be biased on

surface normals. This causes the furniture (sofa) to be segmented into several

parts. Perhaps this can be improved by incorporating color based merging

heuristics in our region merging method.

Figure 4.5: Segmentation examples with lower GTRC scores (less than 0.4). (a) Input
Color Image (b) Ground Truth Segmentation (c) Segmentation with the JCSA-RM
method and (d) GTRC score.

4.5 Conclusion

We proposed an unsupervised indoor RGB-D scene segmentation method. Our

method is based on a statistical image generation model, which provides a theo-

retical basis for fusing di�erent cues (e.g. color and depth) of an image. In order

to cluster w.r.t. the image model, we developed an e�cient joint color-spatial-axial

clustering method based on Bregman divergence. Additionally, we proposed a region

merging method that exploits the planar statistics of the image regions. We evaluated

the proposed method with a database of benchmark RGB-D images and using widely

accepted evaluation metrics. Results show that our method is competitive w.r.t. the

state of the art and opens interesting perspectives for fusing color and geometry. We

foresee several possible extensions of our method: more complex image model and

clustering with additional features, region merging with additional hypothesis based

on color. Moreover, we believe that the methodology proposed in this paper is equally
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applicable and extendable for other complex tasks, such as joint image-speech data

analysis.
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Chapter 5

Conclusions

In this thesis, we focused on exploring, evaluating and developing unsupervised meth-

ods to analyze indoor images captured by Microsoft Kinect camera which is a syn-

chronized color and depth sensor, also called RGB-D sensor. Kinect camera provides

a low cost solution to access color with depth information at a reasonable rate. At

present it is very popular and widely employed camera in a variety of applications re-

lated to the image processing and computer vision. Numerous researches have already

shown that the performance of traditional image and vision algorithms enhances with

the use of RGB-D images from Kinect.

This thesis begins shortly after the introduction of Kinect in the consumer market.

Therefore, the methods developed during this thesis were concurrent with the demand

from communities, particularly in the direction of developing relatively underexplored

problems, such as unsupervised methods for indoor scene understanding and analysis.

At the beginning, this thesis focused on developing an unsupervised depth image

analysis method using the primitive depth features. To this aim, it proposed novel

model based clustering algorithms with directional distributions to cluster surface

normals. Next, it focused on extending the methods for the RGB-D image analysis.

For this, it proposed e�cient joint clustering method, which fuses di�erent (color,

spatial, directional) information together and performs joint clustering.

We evaluated the methods developed during this thesis w.r.t. the state of the

art. Results show that they are better in terms of accuracy and computational ef-

�ciency. Although we applied the methods only for image analysis, they are mostly

independent of particular domain. Hence, we believe that they will help practition-

ers and researchers of di�erent domains which have similar requirements, such as

unsupervised classi�cation, clustering directional observations, fusion and clustering

heterogeneous data, etc.
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In the remaining part of this Chapter, �rst in Section 5.1 we provide a meta-

summary of the contributions and �ndings of Chapters 2 and 3, and then we provide

potential future work in Section 5.2.

5.1 Summary of contributions

The contributions of this thesis arise from applying, evaluating and developing clus-

tering algorithms for unsupervised classi�cation of patterns and its applications for

indoor depth and RGB-D image analysis. The following is a summary of the principal

contributions in this thesis.

5.1.1 Model Based Clustering with Directional Distributions

We consider the surface normals as one of the most important primitive depth fea-

tures. Therefore, we particularly focused on developing algorithms to cluster normals.

To this aim, in Chapter 2 and 3, we proposed novel Model Based Clustering (MBC)

methods for the fundamental directional distributions called von Mises-Fisher (vMF)

and multivariate Watson distributions. To the best of our knowledge there exists no

similar MBC method for any directional distributions.

The proposed unsupervised method consists of several independent contributions

such as: (a) Bregman Soft Clustering (Banerjee et al., 2005b) algorithm for vMF

Mixture Models (vMFMM) and Watson Mixture Models (WMM); (b) Hierarchical

Agglomerative Clustering (HAC) on expectation parameter space using Bregman Di-

vergence (BD) and (c) empirical model selection using information criteria or WPLR-

τ method. Now let us discuss each of them individually.

• Compare to the traditional EM based soft clustering methods, Bregman Soft

Clustering (BSC) has already proved as an e�cient algorithm with additional

bene�ts (Banerjee et al., 2005b). There exists no BSC method for vMFMM

and WMM and we are the �rst to propose one. We empirically validate that to

cluster directional and axial data our proposed BSC-vMFMM and BSC-WMM

algorithms are better compare to other clustering methods.

• The HAC on the source and natural parameter space of GMM is already pro-

posed in the context of mixture model simpli�cation (Goldberger and Roweis,

2004; Garcia and Nielsen, 2010) and hybrid Model Based Clustering method

(Zhong and Ghosh, 2003). We applied it in the expectation parameter space of
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vMFMM and WMM using BD. Therefore, our HAC method is also a simpli�ca-

tion method for vMFMM and WMM. Note that, there exists no vMFMM and

WMM simpli�cation method. The HAC procedure is independent and is able

to handle any space of parameters. Therefore, one can easily plug the method

in an external soft clustering method (vMFMM and WMM). In such case, this

method behaves similar to the hybrid Model Based Clustering method (Zhong

and Ghosh, 2003).

• In order to select best model, we applied widely used parsimony based approach

(Melnykov and Maitra, 2010; Alata and Quintard, 2009; Biernacki et al., 2000).

Beside this, we propose a novel model selection approach (called WPLR-τ).

Compare to the parsimony based approaches, WPLR-τ exhibits better com-

promise for both the simulated and real data. Moreover, we have shown that

the Ï� parameter exhibits similar behavior of the bandwidth parameter of the

non-parametric Mean Shift method.

The above discussion reveals that, for directional and axial data our method can

be an interesting tool for clustering, model simpli�cation, model selection and even-

tually unsupervised classi�cation. Hence we believe that the proposed method will

be an interesting tool for the machine learning, data mining and pattern recognition

community.

As an application we have shown its usability for depth image analysis through

clustering. We demonstrated that our method can be used as a potential tool to

perform unsupervised segmentation of the indoor scene. They are able to provide

piecewise planar segments which are important geometric primitives of man-made

structures, such as the indoor environments. Moreover, we have shown that the

methods are able to provide su�cient distinctions among the planar and non-planar

surfaces via the concentration parameters. The �ndings in this work were very helpful

for us to develop a novel RGB-D segmentation method based on joint clustering and

region merging.

5.1.2 Joint Clustering and Region merging for RGB-D seg-
mentation

The observations from the initially developed clustering methods revealed that we

should consider heterogeneous features, such as color, position, depth, etc. in order

to obtain better results in scene analysis and understanding. Therefore, we focused on

developing a joint clustering method with the aim to fuse di�erent features together.
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However, we were also interested to exploit the interesting �ndings from our previous

work. To this aim, in Chapter 4, we developed a RGB-D scene analysis method,

which �rst performs a joint clustering of the color-position-axial features, and then

applies a region merging based on planar statistics. The individual contributions of

this work can be highlighted as follows:

• A statistical image generation model for RGB-D data that incorporates both

color and geometric properties of the scene. Such model provides an interesting

formulation of how di�erent features can be incorporated into a single model

with simple assumptions. Moreover, this type of model is very �exible to extend

with additional features.

• A novel and e�cient probabilistic joint clustering method based on Bregman

Soft Clustering (Banerjee et al., 2005b) approach. The proposed method is a

solution to cluster image pixels based on the proposed image generation model.

Such clustering algorithm is computationally e�cient and expressive to provide

better interpretation in terms of individual features. For example, it provides

the planar statistics which can be used e�ciently for scene interpretation by

incorporating region merging.

• A statistical region merging method (Nock and Nielsen, 2004) based on cer-

tain region merging predicates. This method can be incorporated indepen-

dently with any other existing indoor RGB-D scene segmentation method. This

method used the planar statistics from the clustering method.

• A benchmark on the NYU Depth Dataset V2 (Silberman et al., 2012) for unsu-

pervised scene segmentation. At present no such benchmark exists in literature

for unsupervised tasks.

The method presented in Chapter 4 shows how we e�ciently extended the pre-

viously proposed method by exploiting the �ndings in Chapter 3. Moreover, this

method opens many interesting perspectives for further improving the e�ciency of

the scene analysis task.

5.2 Future Work

There are numerous perspectives and future extensions of the methods that naturally

follow on from the work in this thesis. Let us now discuss them individually.
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5.2.1 Extension of Model Based Clustering methods

Other Directional Distributions

The proposed Model Based Clustering methods can be extended for the other direc-

tional distributions, such as Kent, Bingham, etc. This might be interesting as the

Kent and Bingham distributions incorporate more parameters which naturally allow

them to provide better model data with complex structure of the data. Note that, the

shape of both von Mises-Fisher and Watson distribution is circular around the mean

direction, see Section 3.2 of Chapter 3. The Kent allows having elliptical shape of

the clusters via additional parameters. Therefore, in certain applications it would be

e�ective to use the Kent distribution rather than the von Mises-Fisher distribution.

Other Probability Distributions

Beside the extension to the directional distributions, one can extend the Model Based

Clustering method proposed in Chapter 2 for any probability distributions which

belongs to the Exponential Family of Distributions (EFD). Note that, the extension

can be accomplished once the canonical EFD form for that distribution is derived

and the associated Bregman Divergence is computed.

Spatially Variant Methods

Spatial smoothness is one of the most widely considered constraints for image analysis.

There exists several methods based on spatially variant �nite mixture models (Nguyen

and Wu, 2013). Since, the core assumption of our proposed method is a �nite mixture

model therefore one can consider to extend the method by adding spatial constraints.

Selecting Number of Component

Selection of number of components remains a challenging problem in clustering. We

believe that, it is necessary to invest more e�ort on �nding unique solution for com-

ponent selection such that it can be applied globally to perform clustering with any

probability distribution and particularly clustering real data which contains signi�-

cant amount of noise.

Extend Applicability

In order to be focused on the core objectives of this thesis, we did not evaluate the

applicability of the proposed method for other applications. However, we know that

such methods are commonly employed for a variety of di�erent domains. Therefore,
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in future we should consider applying them for di�erent tasks associated with di�erent

domains.

5.2.2 RGB-D segmentation method

Extend Joint Clustering with Additional Information

For image segmentation, it would be interesting to extend the proposed joint cluster-

ing method by adding di�erent constraints, such as spatial smoothness and by adding

information, such as contour, texture, etc.

The joint clustering method sometimes exhibits sub-standard performance due to

the improper initialization. It should be investigated further to avoid such initializa-

tion.

Extend Region Merging Method

Currently, the region merging method only considers the planar information. This

method can be easily extended by incorporating color information. At present, color

information from Kinect exhibits challenges due to the presence of noise as well as

due to the presence of shadows in the scene. One must consider �rst to reduce their

e�ects and then incorporate color based merging procedure.

One may consider enhancing the in�uence of edges during region merging. At

present the edges associated to the regions are obtained naively from the initially

clustered regions. We observed numerous artifacts of such edges. Therefore, it should

be properly addressed by incorporating a pre-processing step prior to region merging.
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Conclusion

Dans cette thèse, nous avons proposé de nouvelles méthodes non supervisées pour

la classi�cation d'images 3D et la segmentation prenant en compte de manière con-

jointe les informations de couleur et de profondeur. A cet e�et, nous avons formulé

l'hypothèse que les normales aux surfaces dans les images 3D sont des éléments à

prendre en compte pour leur analyse, et leurs distributions sont modélisable à l'aide

de lois de mélange. Nous avons utilisé la méthode dite � Bregman Soft Cluster-

ing � a�n d'être e�cace d'un point de vue calculatoire. De plus, nous avons étudié

plusieurs lois de probabilités permettant de modéliser les distributions de directions:

la loi de von Mises-Fisher et la loi de Watson. Les méthodes de classi�cation � basées

modèles � proposées sont ensuite validées en utilisant des données de synthèse puis

nous avons montré leur intérêt pour l'analyse des images 3D (ou de profondeur). Une

nouvelle méthode de segmentation d'images couleur et profondeur, appelées aussi im-

ages RGB-D, exploitant conjointement la couleur, la position 3D, et la normale locale

est alors développée par extension des précédentes méthodes et en introduisant une

méthode statistique de fusion de régions � planes � à l'aide d'un graphe. Les résultats

ont montré que la méthode proposée donne des résultats au moins comparables aux

méthodes de l'état de l'art tout en demandant moins de temps de calcul. De plus, elle

ouvre des perspectives nouvelles pour la fusion non supervisée des informations de

couleur et de géométrie. Nous sommes convaincus que les méthodes proposées dans

cette thèse pourront être utilisées pour la classi�cation d'autres types de données

comme la parole, les données d'expression en génétique, etc. Elles devraient aussi

permettre la réalisation de tâches complexes comme l'analyse conjointe de données

contenant des images et de la parole.
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