Des tests non paramétriques en régression

par Samuel Maistre

Thèse de doctorat en Mathématiques et applications

Sous la direction de Valentin Patilea et de Pascal Lavergne.


  • Résumé

    Dans cette thèse, nous étudions des tests du type : (H0) : E [U | X] = 0 p.s. contre (H1) : P {E [U | X] = 0} < 1 où U est le résidu de la modélisation d'une variable Y en fonction de X. Dans ce cadre et pour plusieurs cas particuliers – significativité de variables, régression quantile, données fonctionnelles, modèle single-index –, nous proposons une statistique de test permettant d'obtenir des valeurs critiques issues d'une loi asymptotique pivotale. Dans chaque cas, nous donnons également une méthode de bootstrap appropriée pour les échantillons de petite taille. Nous montrons la consistance envers des alternatives locales – ou à la Pitman – des tests proposés, lorsque ce type d'alternative ne tend pas trop vite vers l'hypothèse nulle. À chaque fois, nous vérifions à partir de simulations sous l'hypothèse nulle et sous une séquence d'hypothèses alternatives que les résultats théoriques sont en accord avec la pratique.

  • Titre traduit

    Of nonparametric testing in regression


  • Résumé

    In this thesis, we study test statistics of the form : (H0) : E [U | X] = 0 p.s. contre (H1) : P {E [U | X] = 0} < 1 where U is the residual of some Y modeling with respect to covariates X. In this setup and for several particular cases – significance, quantile regression, functional data, single-index model –, we introduce test statistics that have pivotal asymptotic critical values. For each case, we also give a suitable bootstrap procedure for small samples. We prove the consistency against local – or Pitman – alternatives for the proposed test statistics, when such an alternative does not get close to the null hypothesis too fast. Simulation studies are used to check the effectiveness of the theoretical results in applications.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Rennes I. Service commun de la documentation. Bibliothèque de ressources électroniques en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.