Fluid flow control by visual servoing

par Xuan Quy Dao

Thèse de doctorat en Mathématiques et applications

Sous la direction de Christophe Collewet.

  • Titre traduit

    Commande des écoulements fluides par asservissement visuel


  • Résumé

    Cette thèse a pour but l'étude de la mise en œuvre de commandes par asservissement visuel pour le contrôle actif d'un écoulement de Poiseuille. D'un point de vue général, le contrôle d'écoulements vise à modifier ou à maintenir l'état de l'écoulement, malgré une éventuelle perturbation extérieure. Une des situations d'intérêt concerne par exemple la transition vers la turbulence où l'écoulement peut devenir turbulent avec la croissance de sa densité d'énergie cinétique. La réduction de la traînée est également une application potentielle dans des problèmes d'ingénierie. Un des buts applicatifs de cette thèse cherchera ainsi à minimiser à la fois la densité d'énergie cinétique et la traînée. Des modèles numériques peuvent être utilisés pour générer un modèle d'état des équations aux dérivées partielles d'un écoulement de Poiseuille. Le modèle d'état considéré dans cette thèse s'appuie sur une représentation spectrale afin de transformer les équations aux dérivées partielles originelles en un système d'équations différentielles ordinaires. Le vecteur d'état rassemble dans notre cas la vitesse et la vorticité. Les signaux de commande dépendent eux de conditions aux limites de type Dirichlet non homogènes qui correspondent à des actions de soufflage/aspiration. Le nombre de degrés de liberté commandé du problème correspond à la dimension du signal de commande. La densité d'énergie cinétique et la traînée sont modélisées en fonction du vecteur d'état et du signal de commande. Dans cette thèse nous avons plus particulièrement considéré un asservissement visuel partitionné. Celui-ci est appliqué au modèle d'état de l'écoulement avec deux degrés de liberté afin de minimiser simultanément la densité d'énergie cinétique et la traînée. La traînée, contrairement à l'énergie cinétique, diminue de façon monotone en fonction du temps. Une augmentation du nombre de degrés de liberté permet d'améliorer la décroissance de la densité d'énergie cinétique. Lorsque le nombre de degré de liberté correspond à la dimension du vecteur d'état, et en s'appuyant sur une commande par asservissement visuel, nous montrons que la densité d'énergie cinétique décroit de façon monotone au cours du temps. Le modèle d'état de l'écoulement de Poiseuille vit dans un espace de très grande dimension. Par conséquent, il est nécessaire d'un point de vue pratique de réduire la dimension du contrôleur. Nous démontrons que la loi de commande s'appuyant sur un modèle réduit peut être appliquée au système complet. Dans ce cas la densité d'énergie cinétique décroit presque de façon monotone au cours du temps en utilisant une commande par asservissement visuel à deux degrés de liberté.


  • Résumé

    The visual servoing control approach is formulated for the flow control of the plane Poiseuille flow. Generally, the flow control can lead the flow from its current state to a desired state. In transition to turbulence, the growth of kinetic energy density can lead the flow to turbulence. Moreover, the drag reduction is a potential application in the engineering applications. Therefore, this thesis aims to minimize the kinetic energy density and the skin friction drag. The governing equations of the plane Poiseuille flow are modeled to a standard form in the automatic control. More precisely, the partial differential equations of the plane Poiseuille flow are transformed to a state space representation by using the spectral method. The streamwise and spanwise directions are discretized based on the Fourier series while the wall-normal direction is discretized based on the Chebyshev polynomials. The state vector involves the wall-normal velocity and vorticity. The control signals depend on the inhomogeneous Dirichlet boundary conditions which correspond to blowing/suction boundary control. The number of independent control signals is called the number of the degree of freedom. Moreover, the skin-friction drag and the kinetic energy density are modeled as a function of the state vector. The goal is to minimize both the skin-friction drag and the kinetic energy density by appropriate methods. The partitioned visual servoing control is used to minimize, simultaneously, the skin-friction drag and the kinetic energy density with two degrees of freedom. As a result, the behavior of the skin-friction drag monotonically decreases in time. However, the behavior of the kinetic energy density does not monotonically decrease in time, the similar results from the other methods such as: PID and LQR controls. Therefore, the number of the degree of freedom increases, which leads to the improvement of the kinetic energy density. In addition, when the number of the degree of freedom equals the number of state vector, the kinetic energy density monotonically decreases in time by using the visual servoing control. The dimension of linearized plane Poiseuille flow is large, therefore, we need to reduce the order of controller. We demonstrate that the control law based on a mode reduction can be applied for the full system. Moreover, the kinetic energy density almost will monotonically decreases in time even using two degrees of freedom when the visual servoing control is designed based on the model order reduction.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (231 p.)
  • Annexes : Bibliogr. p. 221-231

Où se trouve cette thèse ?

  • Bibliothèque : Université de Rennes I. Service commun de la documentation. Section sciences et philosophie.
  • Disponible pour le PEB
  • Cote : TA RENNES 2014/11
  • Bibliothèque : Université de Rennes I. Service commun de la documentation. Bibliothèque de ressources électroniques en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.