Optimisation de fibres de carbone pour leur application à des composites hautes-performances à matrice organique polymérisés par voie radicalaire sous rayonnement.

par Arnaud Martin

Thèse de doctorat en Sciences - STS

Sous la direction de Xavier Coqueret.

Soutenue le 13-02-2014

à Reims , dans le cadre de Ecole doctorale Sciences, technologies, santé (Reims, Marne) , en partenariat avec (ICMR) Institut de Chimie Moléculaire de Reims (laboratoire) .

Le président du jury était Rezak Ayad.

Le jury était composé de Xavier Coqueret, Brigitte Vantorre-Defoort, Valérie Toniazzo.

Les rapporteurs étaient Laurence Lecamp, Eric Papon.


  • Résumé

    La polymérisation amorcée sous rayonnement ionisant est un procédé hors-autoclave prometteur pour la fabrication de structures de matériaux composites à hautes performances. Les faisceaux d’électrons en particulier peuvent amorcer les processus de polymérisation radicalaire de monomères à base acrylate. Cependant, les matériaux composites obtenus présentent une faiblesse au niveau des propriétés transverses et en particulier dans le sens perpendiculaire aux fibres de carbone. L’objectif de ce projet de recherche vise à améliorer les performances transverses de ces composites par le biais d’une modification de la surface des fibres de carbone. Cet objectif doit être atteint en premier lieu par la réalisation d’une étude de l’influence de la chimie présente à la surface des fibres de carbone sur la polymérisation amorcée sous rayonnement ionisant des matrices de ces composites. Nous avons cherché à comprendre comment la polymérisation intervenant à l’interface fibre / matrice pouvait être influencée et ainsi proposer une solution de modification de surface permettant de diminuer ou de contrer les effets inhibiteurs identifiés et quantifiés. Ensuite, l’objectif doit être atteint par la formulation et la mise au point à l’échelle laboratoire et pré-industrielle de solutions d’ensimage de fibres de carbone afin de permettre l’amélioration de la qualité de l’interface fibre / matrice par la création d’une interphase chimique et en particulier par la création d’une chimie covalente. Nous avons mis au point deux familles de formulations d’ensimage dont une s’est avérée compatible avec les procédures industrielles de traitement d’ensimage sur fibre de carbone. Finalement, la mise en émulsion à base aqueuse de ces formulations a permis d’améliorer le niveau d’industrialisation de la solution de modification de surface et la réalisation de matériaux démonstrateurs a démontré l’amélioration des performances.

  • Titre traduit

    Optimization of carbon fibers for high-performance organic matrix composite polymerised by high-energy radiation processing via free radical mechanism.


  • Résumé

    Polymerization under high energy radiation is a promising alternative to autoclave processing for manufacturing high-performance composite materials. Electron beam can initiate free radical polymerization processes of acrylate-based matrix. However, the comparison with state-of-the-art thermally cured composites reveals the lower transverse mechanical properties of radiation-cured composites. The aim of this project was to improve the transverse mechanical properties of these radiation-cured composites by a surface modification of carbon fiber. We have investigated several points related to these issues, and particularly we have inquired about the influence of the chemistry present at the surface of the carbon fiber on the polymerization step initiated under irradiation curing. We tried to have a better understand on their influence on the polymerization and on the curing process based on radiation-induced free radical chemistry. Then, the next step deals with the formulation of a surface modification treatment applied by sizing in order to improve the interface quality with the creation of an interphase and even better a covalent link between the fiber and the matrix. We worked on the compatibility of this formulation with the industrial process and we propose aqueous and non-aqueous-based emulsion processes to apply the surface treatment. Finally, demonstrator materials were manufactured and the mechanical properties in the fiber transverse direction were measured. The obtained results illustrate the efficiency of our surface modification solution on the mechanical performance of acrylate-based radiation cured composites.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Reims Champagne-Ardenne (Bibliothèque électronique). Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.