Reconnaissance de primitives discrètes multi-échelles

par Jean Serge Dimitri Ouattara

Thèse de doctorat en Informatique et applications

Sous la direction de Éric Andres et de Théodore Tapsoba.

Le président du jury était Rémy Malgouyres.

Le jury était composé de Éric Andres, Théodore Tapsoba, Gaëlle Largeteau-Skapin, Yukiko Kenmochi.

Les rapporteurs étaient Rémy Malgouyres, Isabelle Debled-Rennesson.


  • Résumé

    Dans cette thèse, nous nous intéressons à la reconnaissance des primitives discrètes multi-échelles. Nous considérons qu'une primitive discrète multi-échelles est une superposition de primitives discrètes de différentes échelles ; et nous proposons des approches qui permettent de déterminer les caractéristiques d'une primitive discrète ou d'une partie d'une primitive discrète.Nous proposons une nouvelle approche de reconnaissance de sous-segment discret qui se base sur des propriétés portant sur l'ordre des restes arithmétiques de la droite discrète. Nous établissons des liens entre les points d'appuis du sous-segment discret et les points ayant des restes arithmétiques minimaux et maximaux sur la droite discrète. D'après les résultats de nos comparaisons, cette approche se relève être plus efficace que des approches existantes.Nous nous intéressons ensuite à des approches de reconnaissance d'arcs et de cercles discrets par le centre généralisé. Nous étudions le dual de la médiatrice généralisée et proposons de calculer le centre généralisé par des calculs de visibilité dans l'espace dual afin de réduire son temps de calcul. Cette approche est valide aussi bien dans une grille régulière que dans une grille irrégulière isothétique.Finalement, nous nous intéressons à des approches de reconnaissance de droite discrète par la préimage généralisée. Nous utilisons la notion de frontière afin de diminuer le nombre d'éléments rentrant dans le calcul de la préimage généralisée ; ce qui simplifie le calcul et réduit le temps de calcul. Cette approche s'applique aussi dans une grille régulière comme dans une grille irrégulière isothétique.

  • Titre traduit

    Multi-scale discrete primitives recognition


  • Résumé

    This thesis is about discrete geometry and particularly recognition of multi-scale discrete primitives. We consider that a multiscale discrete primitive is a superimposition of many discrete primitives of different scales. Then we propose approaches of recognition of discrete primitives or parts of a discrete primitives.Firstly we propose a new approach for the recognition of digital subsegment that is based on properties of the sequence of arithmetic remainders of the digital straight line. We show there are sorne links between the leaning points of the digital subsegment and the points that have the minimal and maximal arithmetic remainders on the digital straight line. Based on the results of comparisons with others approaches, the approach seems more efficient. Secondly we present sorne work on improving digital rings and circles recognition by general circumcenter. We use the dual of the generalized bissector in order to simplify the computation of the intersections of generalized bissectors as a polygon stabbing problem. The dual of the generalized bissector is computed likely for pixels of a regular grid or paves of an irregular isothetic grid. Finaly we present some work on improving digital straight line recogrutlon by generalized preimage. To reduce the number of elements to take into account for the computation of the generalized preimage we introduce the concept of boundary. The approach based on boundary could be used in a regular grid or an irregular isothetic grid.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Poitiers. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.