Classicité de formes modulaires surconvergentes sur une variété de Shimura

par Stéphane Bijakowski

Thèse de doctorat en Mathématiques

Sous la direction de Pascal Boyer et de Benoît Stroh.

Le président du jury était Christophe Breuil.

Le jury était composé de Gaëtan Chenevier, Vincent Pilloni.

Les rapporteurs étaient Kevin Buzzard, Laurent Fargues.


  • Résumé

    Nous nous intéressons aux formes modulaires surconvergentes définies sur certaines variétés de Shimura, et prouvons des théorèmes de classicité en grand poids. Dans un premier temps, nous étudions les variétés ayant bonne réduction, associées à des groupes non ramifiés en p. Nous nous intéressons aux variétés de Shimura PEL de type (A) et (C), qui sont associées respectivement à des groupes unitaires et symplectiques. Pour démontrer un théorème de classicité, nous utilisons la méthode du prolongement analytique, qui a été développée par Buzzard et Kassaei dans le cas de la courbe modulaire. Nous généralisons ensuite ce résultat de classicité à des variétés en ne supposant plus que le groupe associé est non ramifié en p. Dans le cas des formes modulaires de Hilbert, nous construisons des modèles entiers des compactifications de la variété, et démontrons un principe de Koecher. Pour des variétés de Shimura plus générales, nous travaillons avec le modèle rationnel de la variété, et utilisons un plongement vers une variété de Siegel pour définir les structures entières.

  • Titre traduit

    Classicality of overconvergent modular forms on Shimura variety


  • Résumé

    We deal with overconvergent modular forms défined on some Shimura varieties, andprove classicality results in the case of big weight. First we study the case of varieties with good reduction, associated to unramified groups in p. We deal with Shimura varieties of PEL type (A) and (C), which are associated respectively to unitary and symplectic groups. To prove a classicality theorem, we use the analytic continuation method, which has been developed by Buzzard and Kassaei in the case of the modular curve. We then generalize this classicality result for varieties without assuming that the associated group is unramified in p. In the case of Hilbert modular forms, we construct integral models of compactifications of the variety, and prove a Koecher principle. For more general Shimura varieties, we work with the rationnal model of the variety, and use an embedding to a Siegel variety to define the integral structures.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (128 p.)
  • Annexes : Bibliogr. p. 125-128

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris 13 (Villetaneuse, Seine-Saint-Denis). Bibliothèque universitaire.
  • Disponible pour le PEB
  • Cote : TH 2014 091
  • Bibliothèque : Université Paris 13 (Villetaneuse, Seine-Saint-Denis). Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.