Étude d'une famille de transformations préservant la mesure de Z×T

par Alba Marina Málaga Sabogal (Málaga Sabogal)

Thèse de doctorat en Mathématiques

Sous la direction de Jean-Christophe Yoccoz.

Soutenue le 12-12-2014

à Paris 11 , dans le cadre de Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay) , en partenariat avec Laboratoire de mathématiques d'Orsay (laboratoire) .

Le président du jury était Anton Zorich.

Le jury était composé de Jean-Christophe Yoccoz, Anton Zorich, Pascal Hubert, Giovanni Forni, Samuel Lelièvre.

Les rapporteurs étaient Pascal Hubert, Corinna Ulcigrai.


  • Résumé

    L'objectif de cette thèse est d'étudier les comportements typiques d'une famille de transformations du cylindre discret Z×T (où T=R/Z est le cercle de longueur un). Appliquez une rotation à chaque cercle du cylindre puis coupez tous les cercles en deux et déplacez une moitié de chaque cercle d'un niveau vers le bas et une moitié d'un niveau vers le haut. Nous utilisons pour cela des résultats existants en théorie des échanges d'intervalles et en théorie des surfaces de translation compactes. Tout d'abord, nous avons prouvé que pour presque toute suite bi-infinie de rotations, le système obtenu est conservatif (c'est à dire il n'y a pas d'ensemble errant de mesure strictement positive). Ensuite, nous avons prouvé que pour un ensemble Gδ-dense de paramètres, le système est en même temps conservatif, minimal et ergodique. Ce système a un rapport heuristique avec une famille de billards planaires, ainsi qu'une traduction dans des flots sur des surfaces de translation de genre infini. Cela est expliqué dans la thèse.

  • Titre traduit

    Study of a family of measure-preserving transformations on Z×T


  • Résumé

    The main objective of this thesis is the study of the typical dynamical behaviour of a family of transformations on the discrete cylinder Z×T (where T=R/Z is the length one circle). Apply a rotation to every single circle of the cylinder then cut every circle in two and move half of each circle one level down and the other half one level up. To achieve this goal, we use existing results about interval exchange transformations and about compact translation surfaces. First, we proved that for almost every bi-infinite sequence of rotations, the obtained system is conservative (i.e. there is not wandering set of positive measure). Next, we proved that for a Gδ-dense set of parameters, the described system is ergodic, minimal and conservative. This system is heuristically related to a family of planar billiards, it has also a translation into flows on infinite genus translation surfaces.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.