Production et hydrolyse des amides : mécanismes chimiques, isotopie et applications : étude de la glutamine synthétase

par Caroline Mauve

Thèse de doctorat en Biologie

Sous la direction de Guillaume Tcherkez.

Soutenue le 15-12-2014

à Paris 11 , dans le cadre de Ecole doctorale Sciences du Végétal (1992-2015 ; Orsay, Essonne) , en partenariat avec Institut de Biologie des Plantes (Orsay, Essonne) (laboratoire) .

Le président du jury était Jaleh Ghashghaie.

Le jury était composé de Guillaume Tcherkez, Jaleh Ghashghaie, Richard Robins, Anis Limami, Pascal Brunerie.

Les rapporteurs étaient Richard Robins, Anis Limami.


  • Résumé

    La nutrition azotée des bactéries et des plantes est actuellement un sujet de grande importance, notamment pour comprendre comment améliorer les voies métaboliques aboutissant à l’assimilation de l’azote et à plus grande échelle, optimiser des apports d’engrais et augmenter le rendement des cultures. Dans ce contexte, la réaction d’amidation catalysée par la glutamine synthétase (GS), qui fixe l’ammonium (NH₄)⁺ en glutamine, est cruciale car elle est à la fois le point d’entrée de l’azote dans les végétaux, et une étape-clef du recyclage de l’azote (en particulier, NH₄⁺ photorespiratoire). Dans cette étude, nous nous sommes intéressés à la cinétique enzymatique et au mécanisme chimique de la GS. Des systèmes analytiques (HPLC, RMN , GC-MS) ont  été optimisés pour permettre la mesure de l’activité enzymatique in vitro et pour réaliser des analyses par spectrométrie de masse à ratio isotopique. Avec ces techniques, nous avons pu regarder précisément les effets isotopiques ¹²C/¹³C, ¹⁴N/¹⁵N et H₂O/D₂O (solvant) lors de la catalyse, en utilisant la GS d’E. coli et d’Arabidopsis thaliana (GS1,2). Nos résultats montrent qu’il n’y a pas d’effet isotopique ¹²C/¹³C, mais qu’il y a un fractionnement ¹⁴N/¹⁵N de »16‰. En outre, il y a un effet inverse du solvant (réaction 1.5 à 2 fois plus rapide dans D₂O).  Cela suggère que la création de la liaison C----N (amidation) est partiellement limitante (engagement catalytique de »14% seulement) et que le réseau de ponts hydrogènes dans le site actif est crucial pour déterminer la vitesse de la réaction. L’apparition d’effets ¹⁴N/¹⁵N inverses dans certaines circonstances et les effets drastiques causés par une substitution du cofacteur métallique (Mg²⁺) suggèrent en outre que l’étape d’amidation peut être réversible et que la coordination par un métal joue un rôle très important pour stabiliser les intermédiaires de la réaction, en interaction avec le solvant. Ainsi, dans son solvant naturel qu’est H₂O, la GS réalise une réaction ‘chimiquement difficile’ (barrière énergétique élevée de l’amidation) rendue possible par le clivage de l’ATP et son caractère exergonique.

  • Titre traduit

    Production and hydrolysis of amide : chemical mechanisms, isotopy and applications : study of glutamine synthetase


  • Résumé

    Nitrogen nutrition in bacteria and plants is currently an important topic, in particular to identify key points for metabolic improvements in N assimilation and more generally, to optimize fertilization and crop yield. In such a context, the amidation reaction catalyzed by glutamine synthetase (GS), which fixes ammonium (NH₄)⁺ into glutamine, is of crucial importance since it both represents the N entry in plants and the main step of N recycling (such as photorespiratory (NH₄)⁺. Here, we examined GS kinetics and chemical mechanism. Analytical methods (HPLC, NMR, GC-MS) have been set up so as to measure in vitro activities and isotopic abundance by isotope ratio mass spectrometry. These gave access to isotope effects (¹²C/¹³C, ¹⁴N/¹⁵N et H₂O/D₂O – solvent) during catalysis, with the GS from either E. coli or A. thaliana (GS1,2). Our results show that there no ¹²C/¹³C isotope effect but there is significant ¹⁴N/¹⁵N isotope fractionation of ca. 16‰. In addition, there is an inverse solvent isotope effect (reaction 1.5 to 2 times faster in D₂O). This suggests that forming the C----N bond (amidation) is partially rate-limiting (catalytic commitment of ca. 14% only) and the H-bond network in the active site is of substantial importance for the reaction rate. The occurrence of inverse ¹⁴N/¹⁵N isotope effects under certain circumstances as well as the drastic impact of changing the metal cofactor (Mg²⁺)) indicate that the amidation step can be reversible and that the coordination by the metal plays a key role in stabilizing reaction intermediates, by interfacing the solvent. In other words, in its natural solvent H₂O, the GS catalyses an intrinsically ‘difficult’ reaction (high energy barrier of amidation) made possible by both ATP cleavage and its exergonic nature.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Saclay. DIBISO. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.