Extension et analyse des schémas de Boltzmann sur réseau : les schémas à vitesse relative

par Tony Février

Thèse de doctorat en Mathématiques

Sous la direction de Benjamin Graille et de François Dubois.

Soutenue le 05-12-2014

à Paris 11 , dans le cadre de Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay) , en partenariat avec Laboratoire de mathématiques d'Orsay (laboratoire) .

Le président du jury était Pierre Sagaut.

Le jury était composé de Benjamin Graille, François Dubois, Pierre Sagaut, Francis Filbet, Frédéric Coquel, Frédéric Lagoutière.

Les rapporteurs étaient Francis Filbet, Frédéric Coquel.


  • Résumé

    Cette thèse introduit et étudie une nouvelle classe de schémas de Boltzmann sur réseau appelés schémas à vitesse relative. Les schémas de Boltzmann sur réseau visent à approcher des problèmes de nature macroscopique en mimant la dynamique microscopique d’équations cinétiques du type Boltzmann. L’algorithme calcule des distributions de particules évoluant au travers de deux phases de transport et de relaxation, les particules se déplaçant en les noeuds d’un réseau cartésien en espace. Les schémas de Boltzmann à plusieurs temps de relaxation (ou schéma MRT de d’Humières), dont la relaxation im- plique un ensemble de moments combinaison linéaire polynomiale des distributions, constituent le cadre initial de la thèse. Les schémas à vitesse relative sont une extension de ces schémas de d’Humières. Ils sont inspirés du schéma cascade de Geier apportant davantage de stabilité que les schémas de d’Hu- mières pour des régimes peu visqueux des équations de Navier-Stokes. La différence avec ces schémas se situe au niveau de la relaxation : elle utilise un ensemble de moments relatifs à un paramètre champ de vitesse fonction du temps et de l’espace. Cette différence se matérialise par une matrice de tran- sition des moments fixes (les schémas de d’Humières correspondent à un paramètre champ de vitesse nul) aux moments mobiles. La structure algébrique de cette matrice est étudiée. Le schéma cascade est ensuite traduit comme un schéma à vitesse relative pour un nouvel ensemble de polynômes définissant les moments. L’étude de la consistance des schémas à vitesse relative par la méthode des équations équivalentes est un point central de la thèse. Les équations limites pour un nombre arbitraire de dimen- sions et de vitesses sont dérivées et illustrées sur des exemples tels que le D2Q9 pour les équations de Navier-Stokes. Ces équations équivalentes sont également un outil pour prédire la stabilité des schémas grâce à l’analyse des termes de diffusion et dispersion. La dernière partie traite de la stabilité suivant le choix du paramètre champ de vitesse. Nous sommes particulièrement intéressés en les deux choix de paramètre nul (d’Humières) et la vitesse du fluide (cascade). Le schéma D2Q9 pour les équations de Navier-Stokes est étudié numériquement par une méthode de Von Neumann puis appuyé sur des cas tests non linéaires. La stabilité des schémas relatifs à la vitesse du fluide est dépendante du choix des polynômes définissant les moments. L’amélioration la plus notable se produit si les polynômes du schéma cascade sont choisis. Nous étudions enfin les stabilités théorique et numérique d’un schéma bidimensionnel minimal. Le contexte physique est la simulation d’une équation d’advection diffusion linéaire. Le choix de la vitesse d’advection comme paramètre champ de vitesse annule certains termes de dispersion des équations équivalentes contrairement aux schémas de d’Humières. Ceci se traduit par un meilleur comportement en termes de stabilité pour de grandes vitesses, appuyé théoriquement à l’aide d’une notion de stabilité à poids.

  • Titre traduit

    Extension and analysis of the lattice Boltzmann schemes : the relative velocity schemes


  • Résumé

    In this PhD thesis, a new class of lattice Boltzmann schemes called relative velocity schemes is introduced and studied. The purpose of lattice Boltzmann schemes is to approximate problems of macroscopic nature using the microscopic dynamic of Boltzmann type kinetic equations. They compute particle distributions through two phases of transport and relaxation, the particles moving on the nodes of a cartesian lattice. The multiple relaxation times schemes---MRT of d'Humières---, whose relaxation uses a set of moments, linear combinations of the particle distributions, constitutes the initial framework of the thesis. The relative velocity schemes extend the MRT d'Humières schemes. They originate from the cascaded automaton of Geier which provides more stability for the low viscosity regime of the Navier-Stokes equations. Their difference with the d'Humières schemes is carried by the relaxation : a set of moments relative to a velocity field parameter function of space and time is used. This difference is represented by a shifting matrix sending the fixed moments---The d'Humières schemes are associated with a zero velocity field parameter---On the relative moments. The algebraic structure of this matrix is studied. The cascaded automaton is then interpreted as a relative velocity scheme for a new set of polynomials defining the moments. The consistency study of the relative velocity schemes with the equivalent equations method is a keypoint of the thesis. These equations are derived for an arbitrary number of dimensions and velocities. They are then illustrated on examples like the D2Q9 scheme for the Navier-Stokes equations. These equivalent equations are also a tool to predict the stability behaviour of the schemes by analysing their diffusion and dispersion terms. In a last part, the stability according to the velocity field parameter is studied. Two cases especially interest us : a parameter equal to zero---D'Humières schemes---And equal to the fluid velocity---Cascaded automaton. The D2Q9 scheme for the Navier-Stokes equations is numerically studied with a linear Von Neumann analysis and some non linear test cases. The stability of the relative velocity schemes depends on the choice of the polynomials defining the moments. The most important improvement occurs if the polynomials of the cascaded automaton are chosen. We finally study the theoretical and numerical stability of a minimal bidimensional scheme for a linear advection diffusion equation. If the velocity field parameter is chosen equal to the advection velocity, some dispersion terms of the equivalent equations vanish unlike the d'Humières scheme. This implies a better stability behaviour for high velocities, characterized thanks to theoretical weighted stability notion.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.