Problèmes aux limites pour les systèmes elliptiques

par Sebastian Stahlhut

Thèse de doctorat en Mathématiques

Sous la direction de Pascal Auscher.

Soutenue le 30-09-2014

à Paris 11 , dans le cadre de Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay) , en partenariat avec Laboratoire de mathématiques d'Orsay (laboratoire) .

Le président du jury était Guy David.

Le jury était composé de Pascal Auscher, Guy David, Andreas Rosén, Herbert Koch, Pierre Portal.

Les rapporteurs étaient Andreas Rosén, Herbert Koch.


  • Résumé

    Dans cette thèse, nous étudions des problèmes aux limites pour les systèmes elliptiques sous forme divergence avec coefficients complexes dans L^{infty}. Nous prouvons des estimations a priori, discutons de la solvabilité et d'extrapolation de la solvabilité. Nous utilisons une transformation via des équations Cauchy-Riemann généralisées due à P. Auscher, A. Axelsson et A. McIntosh. On peut résoudre les équations Cauchy-Riemann généralisées via la semi-groupe engendré par un opérateur différentiel perturbé d'ordre un de type Dirac. A l'aide du semi-groupe, nous étudions la théorie L^{p} avec une discussion sur la bisectorialité, le calcul fonctionnel holomorphe et les estimations hors-diagonales pour des opérateurs dans le calcul fonctionnel. En particulier, nous développons une théorie L^{p}-L^{q} pour des opérateurs dans le calcul fonctionnel d'opérateur de type Dirac perturbé. Les problèmes de Neumann, Régularité et Dirichlet se formulent avec des estimations quadratiques et des estimations pour la fonction maximale nontangentielle. Cela conduit à à démontrer de telles estimations pour le semi-groupe d'opérateur de Dirac Pour cela, nous utilisons les espaces Hardy associés et les identifions dans certains cas avec des sous-espaces des espaces de Hardy et Lebesgue classiques. Nous obtenons enfin des estimations a priori pour les problème aux limites via une extension utilisant des espaces de Sobolev associés. Nous utilisons les estimations a priori pour une discussion sur la solvabilité des problèmes aux limites et montrer un théorème d'extrapolation de la solvabilité.

  • Titre traduit

    Boundary value problems for elliptic systems


  • Résumé

    In this this thesis we study boundary value problems for elliptic systems in divergence form with complex coefficients in L^{\infty}. We prove a priori estimates, discuss solvability and extrapolation of solvability. We use a transformation to generalized Cauchy-Riemann equations due to P. Auscher, A. Axelsson, and A. McIntosh. The generalized Cauchy-Riemann equations can be solved by the semi-group generated by a perturbed first order Dirac/differential operator. In relation to semi-group theory we setup the L^p theory by a discussion of bisectoriality, holomorphic functional calculus and off-diagonal estimates for operators in the functional calculus. In particular, we develop an L^p-L^q theory for operators in the functional calculus of the first order perturbed Dirac/differential operators. The formulation of Neumann, Regularity and Dirichlet problems involve square function estimates and nontangential maximal function estimates. This leads us to discuss square function estimates and nontangential maximal function estimates involving operators in the functional calculus of the perturbed first order Dirac/differential operator. We discuss the related Hardy spaces associated to operators and prove identifications by subspaces of classical Hardy and Lebesgue spaces. We obtain the a priori estimates by an extension of the square function estimates and nontangential maximal function estimates to Sobolev spaces associated to operators. We use the a priori estimates for a discussion of solvability and extrapolation of solvability.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.