Molecular Spintronics : from Organic Semiconductors to Self-Assembled Monolayers

par Marta Galbiati

Thèse de doctorat en Doctorat physique

Sous la direction de Frédéric Petroff et de Pierre Seneor.

Soutenue le 16-07-2014

à Paris 11 , dans le cadre de Ecole doctorale Physique de la Région Parisienne (....-2013) , en partenariat avec Unité mixte de physique CNRS/Thales (Palaiseau) (équipe de recherche) .

  • Titre traduit

    Spintronique moléculaire : des semi-conducteurs organiques aux monocouches auto-assemblées


  • Résumé

    Cette thèse s’inscrit dans le domaine de la spintronique moléculaire. Elle s’intéresse plus précisément aux nouvelles opportunités de façonnage de la polarisation de spin qui découlent de l'hybridation métal ferromagnétique/molécule à l'interface : le nouveau concept de « spinterface ».Dans une première partie nous présentons l’étude de nanojonctions tunnel magnétiques à base de monocouches auto-assemblées (SAMs). Ce système est un des plus prometteur dans l’optique de moduler les propriétés des dispositifs de spintronique par ingénierie chimique, tel un LEGO moléculaire. Nous y présentons la fonctionnalisation de la manganite demi-métallique (La,Sr)MnO3 (LSMO) avec des SAMs d’acides alkylphosphoniques et la fabrication de nanojonctions LSMO/SAMs/Co avec une surface de quelque 10 nm2. Une magnétorésistance de 30% à 50% est observée dans la majorité des dispositifs avec une magnétorésistance tunnel (TMR) jusqu'à 250 % à basse température. Un point remarquable est aussi le comportement très robuste du signal avec la tension: environ 20% de TMR est encore observée au-dessus d’une tension de 1 V. L'influence de la longueur de la chaîne moléculaire a été aussi étudiée et représente un premier pas vers la modulation des dispositifs au niveau moléculaire. Dans une deuxième partie nous présentons l’étude des dispositifs organiques à base de métaux ferromagnétiques à haute TC (température de Curie) et semi-conducteurs organiques. Nous avons réalisé des vannes de spin de Co/Alq3/Co avec des sections de 50 ou 100 µm et fabriquées in-situ par « shadow mask ». Des mesures à température ambiante ont permis d’observer -4% de magnétorésistance (MR) dans une vanne de spin Co/Alq3/Co et +8% MR dans une vanne de spin de Co/MgO/Alq3/Co. Le rôle des deux interfaces sur les propriétés de polarisation de spin des dispositifs est aussi étudié et détaillé. Une forte hybridation métal/molécule dépendant du spin à l'interface inferieure de Co/Alq3, présentant un effet de spinterface (inversion de la polarisation en spin), est observée. Ces études montrent que les effets de spinterface, comme l’inversion de la polarisation de spin, peuvent persister dans un dispositif jusqu’à température ambiante.


  • Résumé

    This thesis targets the field of molecular spintronics and more particularly the new spin polarization tailoring opportunities, unachievable with inorganic materials, which arise from the ferromagnetic metal/molecule hybridization at the interface.: the new concept of Spinterface.In a first part we investigate Self-Assembled Monolayers (SAMs) based magnetic tunnel nanojunctions. This system appears to be a highly promising candidate to engineer the properties of spintronics devices at the molecular level since SAMs are the equivalent of a molecular LEGO building unit. We present the functionalization of the half-metallic manganite (La,Sr)MnO3 (LSMO) with alkyl phosphonic acids SAMs and the fabrication of LSMO/SAMs/Co magnetic tunnel nanojunctions with an area of few 10 nm2. MR of 30% to 50% is observed in most of the devices, while we report even up to 250% tunnel magnetoresistance (TMR) at low temperature. The most striking point is the robustness of the signal with bias voltage with still 20% TMR observed in the volt range. The influence of the molecular chain length is also investigated and represents a first step towards achieving molecular tailoring.In a second part we develop organic spintronics devices relying on high Curie temperature metallic ferromagnetic electrodes and standard organic semiconductor such as Co/Alq3/Co organic spin valves (OSVs). Junctions have a large area (section of 50 or 100 µm) and are fabricated in-situ by shadow mask. Magnetoresistance (MR) effects at room temperature are investigated with -4% MR observed in Co/Alq3/Co OSVs and +8% MR in Co/MgO/Alq3/Co OSVs. The role of the two interfaces on the spin polarization properties of the devices is also investigated. A stronger spin-dependent hybridization is found to occur at the bottom Co/Alq3 interface inverting the spin polarization on the first molecular layer. The observation of spin polarization inversion at room temperature demonstrates that spinterface effects can strive up to room temperature.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?