One-Dimensional Power Spectrum and Neutrino Mass in the Spectra of BOSS

par Arnaud Borde

Thèse de doctorat en Physique

Sous la direction de Nathalie Palanque-Delabrouille.

  • Titre traduit

    Spectre de puissance à une dimension et masse des neutrinos dans les spectres de l'expérience BOSS


  • Résumé

    L'objet de cette thèse est le spectre de puissance à une dimension du flux transmis dans les forêts Lyman-alpha. Les forêts Lyman-alpha sont un motif d'absorption observé dans les spectres de quasars correspondant à l'absorption de la lumière du quasar par les nuages d'hydrogène le long de la ligne de visée. C'est un outil cosmologique puissant car il sonde des échelles relativement petites de l'ordre de quelques Mpc. Il est aussi sensible à de petits effets non-linéaires tel que celui produit par des neutrinos massifs.Premièrement, nous avons développé deux méthodes indépendantes pour mesurer le spectre de puissance. La première est fondée sur une transformée de Fourier et la seconde sur une fonction de vraisemblance. Les deux méthodes sont indépendantes et ont des incertitudes systématiques différentes. La détermination du niveau de bruit dans les données spectrales a fait l'objet d'un traitement particulier, du fait de son impact significatif sur le spectre de puissance calculé. Nous avons appliqué ces méthodes à 13821 spectres de quasars provenant de la 9e publication de données de l'expérience BOSS sélectionnés à partir d'un échantillon de plus de 60000 spectres sur des critères comme le rapport signal sur bruit et la résolution spectrale. Les deux spectres de puissance mesurés sont en bon accord sur les douze domaines de décalage vers le rouge (<z>=2.2 à <z>=4.4) et sur l'ensemble des échelles (0.001 (km/s)^−1 à 0.02 (km/s)^−1). Nous avons soigneusement déterminé les incertitudes systématiques d'origine instrumentale et méthodologique de notre mesure.Ensuite, nous présentons un ensemble de simulations cosmologiques N-corps incluant de la matière noire, du gaz baryonique et des neutrinos visant à modéliser les régions de basse densité sondées par les forêts Lyman-alpha. Les simulations sont conçues pour répondre aux exigences de précision des données BOSS et eBOSS. Elles comportent 768^3 ou 192^3 particules de chaque type et explorent des volumes allant de (25 Mpc/h)^3 pour les simulations haute résolution à (100 Mpc/h)^3 pour les simulations grand volume. En utilisant une technique de raboutage, nous atteignons une précision équivalente à une simulation comportant 3072^3 particules de chaque type dans un volume de (100 Mpc/h)^3. Nous montrons que cette technique est précise à 2% sur des échelles allant de quelques Mpc jusqu'à quelques dizaines de Mpc. Nous explorons l'effet sur le spectre de puissance de 4 paramètres cosmologiques (n_s, sigma_8, Omega_m ,H_0), 2 paramètres astrophysiques (T_0, gamma) décrivant la relation température/densité du milieu intergalactique et de la somme des masses des neutrinos. En faisant varier ces paramètres autour d'un modèle central choisi en accord avec les résultats de Planck, nous avons construit une grille de simulations, permettant non seulement l'étude de l'effet de chaque paramètre individuellement mais aussi l'effet de chaque paire de paramètres. Nous obtenons ainsi un développement au deuxième ordre complet, incluant les termes croisés, autour de notre modèle central. Nous avons vérifié la validité de ce développement avec des simulations indépendantes obtenues soit avec des paramètres différents soit une graine différente pour la génération des conditions initiales. Une comparaison entre le spectre de puissance mesuré à partir des données dans la première partie et celui obtenu à partir de nos simulations montre un excellent accord.Enfin, même s'il reste des biais potentiels et des erreurs systématiques à étudier dans nos simulations, nous avons réalisé des ajustements en combinant notre mesure du spectre de puissance à d'autres sondes cosmologiques comme les mesures du fond diffus cosmologique par le satellite Planck. Ces résultats préliminaires sont très encourageants car ils mènent à des contraintes sur les paramètres cosmologiques parmi les plus précises à ce jour, en particulier sur la sommes des masses des neutrinos avec une limite supérieure à 0.1 ev.


  • Résumé

    The framework of the studies presented in this thesis is the one-dimensional power spectrum of the transmitted flux in the Lyman-alpha forests. The Lyman-alpha forest is an an absorption pattern seen in the spectra of high redshift quasars corresponding to the absorption of the quasar light by the hydrogen clouds along the line of sight. It is a powerful cosmological tool as it probes relatively small scales, of the order of a few Mpc. It is also sensible to small non-linear effects such as the one induced by massive neutrinos.First, we have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-alpha forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two methods are independent and have different systematic uncertainties. The determination of the noise level in the data spectra was subject to a novel treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13,821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60,000 spectra on the basis of their high quality, large signal-to-noise ratio, and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from <z>=2.2 to <z>=4.4, and scales from 0.001 (km/s)^−1 to 0.02 (km/s)^−1. We carefully determined the methodological and instrumental systematic uncertainties of our measurements.Then, we present a suite of cosmological N-body simulations with cold dark matter, baryons and neutrinos aiming at modeling the low-density regions of the IGM as probed by the Lyman-alpha forests at high redshift. The simulations are designed to match the requirements imposed by the quality of BOSS and eBOSS data. They are made using either 768^3 or 192^3 particles of each type, spanning volumes ranging from (25 Mpc/h)^3 for high-resolution simulations to (100 Mpc/h)^3 for large-volume ones. Using a splicing technique, the resolution is further enhanced to reach the equivalent of simulations with 3072^3 = 29 billion particles of each type in a (100 Mpc/h)^3 box size, i.e. a mean mass per gas particle of 1.2x10^5 solar masses. We show that the resulting power spectrum is accurate at the 2% level over the full range from a few Mpc to several tens of Mpc. We explore the effect on the one-dimensional transmitted-flux power spectrum of 4 cosmological parameters (n_s, sigma_8, Omega_m ,H_0), 2 astrophysical parameters (T_0, gamma) related to the heating rate of the IGM and the sum of the neutrino masses. By varying the input parameters around a central model chosen to be in agreement with the latest Planck results, we built a grid of simulations that allows the study of the impact on the flux power spectrum of these seven relevant parameters. We improve upon previous studies by not only measuring the effect of each parameter individually, but also probing the impact of the simultaneous variation of each pair of parameters. We thus provide a full second-order expansion, including cross-terms, around our central model. We check the validity of the second-order expansion with independent simulations obtained either with different cosmological parameters or different seeds for the initial condition generation. Finally, a comparison to the one-dimensional Lyman-alpha forest power spectrum obtained in the first part with BOSS data shows an excellent agreement.Eventually, even if there are still some potential biases and systematic errors that need to be studied in our simulation, we performed cosmological fits combining our measurement of the one-dimensional power spectrum and other cosmological probes such as the CMB results provided by Planck. These preliminary results are very encouraging as they lead to some of the tighest cosmological constraints as of today, especially on the sum of the neutrino masses with an upper limit of 0.1 eV.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.