Quasi transformées de Riesz, espaces de Hardy et estimations sous-gaussiennes du noyau de la chaleur

par Li Chen

Thèse de doctorat en Mathématiques

Sous la direction de Pascal Auscher et de Thierry Coulhon.

Soutenue le 24-04-2014

à Paris 11 en cotutelle avec l'Australian National University , dans le cadre de Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay) , en partenariat avec Laboratoire de mathématiques d'Orsay (laboratoire) .

Le président du jury était Andrew Hassell.

Le jury était composé de Pascal Auscher, Thierry Coulhon, Andrew Hassell, Alan McIntosh, Adam Sikora, Pierre Portal.

Les rapporteurs étaient Frédéric Bernicot, Peer Kunstmann.


  • Résumé

    Dans cette thèse nous étudions les transformées de Riesz et les espaces de Hardy associés à un opérateur sur un espace métrique mesuré. Ces deux sujets sont en lien avec des estimations du noyau de la chaleur associé à cet opérateur. Dans les Chapitres 1, 2 et 4, on étudie les transformées quasi de Riesz sur les variétés riemannienne et sur les graphes. Dans le Chapitre 1, on prouve que les quasi transformées de Riesz sont bornées dans Lp pour 1<p<2. Dans le Chapitre 2, on montre que les quasi transformées de Riesz est aussi de type faible (1,1) si la variété satisfait la propriété de doublement du volume et l'estimation sous-gaussienne du noyau de la chaleur. On obtient des résultats analogues sur les graphes dans le Chapitre 4. Dans le Chapitre 3, on développe la théorie des espaces de Hardy sur les espaces métriques mesurés avec des estimations différentes localement et globalement du noyau de la chaleur. On définit les espaces de Hardy par les molécules et par les fonctions quadratiques. On montre tout d'abord que ces deux espaces H1 sont les mêmes. Puis, on compare l'espace Hp défini par par les fonctions quadratiques et Lp. On montre qu'ils sont équivalents. Mais on trouve des exemples tels que l'équivalence entre Lp et Hp défini par les fonctions quadratiques avec l'homogénéité t2 n'est pas vraie. Finalement, comme application, on montre que les quasi transformées de Riesz sont bornées de H1 dans L1 sur les variétés fractales. Dans le Chapitre 5, on prouve des inégalités généralisées de Poincaré et de Sobolev sur les graphes de Vicsek. On montre aussi qu'elles sont optimales.

  • Titre traduit

    Quasi Riesz transforms, Hardy spaces and generalized sub-Gaussian heat kernel estimates


  • Résumé

    In this thesis, we mainly study Riesz transforms and Hardy spaces associated to operators. The two subjects are closely related to volume growth and heat kernel estimates. In Chapter 1, 2 and 4, we study Riesz transforms on Riemannian manifold and on graphs. In Chapter 1, we prove that on a complete Riemannian manifold, the quasi Riesz transform is always Lp bounded on for p strictly large than 1 and no less than 2. In Chapter 2, we prove that the quasi Riesz transform is also weak L1 bounded if the manifold satisfies the doubling volume property and the sub-Gaussian heat kernel estimate. Similarly, we show in Chapter 4 the same results on graphs. In Chapter 3, we develop a Hardy space theory on metric measure spaces satisfying the doubling volume property and different local and global heat kernel estimates. Firstly we define Hardy spaces via molecules and via square functions which are adapted to the heat kernel estimates. Then we show that the two H1 spaces via molecules and via square functions are the same. Also, we compare the Hp space defined via square functions with Lp. The corresponding Hp space for p large than 1 defined via square functions is equivalent to the Lebesgue space Lp. However, it is shown that in this situation, the Hp space corresponding to Gaussian estimates does not coincide with Lp any more. Finally, as an application of this Hardy space theory, we proved that quasi Riesz transforms are bounded from H1 to L1 on fractal manifolds. In Chapter 5, we consider Vicsek graphs. We prove generalised Poincaré inequalities and Sobolev inequalities on Vicsek graphs and we show that they are optimal.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.