Etude de l’émission cathodique sous vide en présence d'un champ électrique intense et des paramètres physiques gouvernant son intensité

par Khaled Almousa Almaksour

Thèse de doctorat en Physique

Sous la direction de Philippe Testé.


  • Résumé

    L’émission électronique par effet de champ est un domaine qui concerne de nombreuses applications techniques. Dans ce travail, nous avons réalisé une étude essentiellement expérimentale des différents paramètres susceptibles d’avoir une influence sur l’émission électronique. En première partie, nous exposons les résultats obtenus pour un champ électrique homogène correspondant aux faibles intensités de courant. Le rôle de la distance inter-électrodes à champ constant et l’influence de la rugosité de surface sur l’émission électronique ont été étudiés. Nous discutons la méthode classique de Fowler-Nordheim utilisée pour le dépouillement des mesures en y portant un regard critique. Un modèle simple visant à prendre en compte l’échauffement des sites émetteurs est proposé. La seconde partie concerne l’effet de l’injection de gaz sur l’émission électronique, effet qui se traduit par une diminution du courant émis quand on augmente la pression de 10⁻⁶ Pa à 10⁻² Pa à champ macroscopique constant. Nous exposons des résultats montrant un effet de seuil concernant l’apparition de l’effet du gaz sur l’émission électronique. Nous présentons également des résultats pour différents matériaux de cathode et pour différents gaz (He, H₂, N₂, Ar). Une réversibilité de cet effet est montrée après le pompage pour redescendre à 10⁻⁵ Pa. La décroissance de courant par effet de gaz est interprétée par la diminution de la valeur du facteur d’accroissement local du champ électrique (β) au niveau des émetteurs à cause du bombardement de ces sites par les ions créés à leur proximité. Un calcul du flux d’ions bombardant un site émissif a permis d’estimer le temps nécessaire pour modifier un émetteur de façon cohérente avec les observations expérimentales. La théorie de la migration des atomes en surface de l’électrode en présence d’un champ électrique est proposée pour expliquer la réversibilité de l’effet de gaz observée qui est, selon cette théorie, liée à l’augmentation de la valeur de β au niveau des émetteurs.

  • Titre traduit

    Study of cathodic emission in vacuum at high electric field and the physical parameters governing its intensity


  • Résumé

    Field electronic emission is a domain which concerns numerous different technical applications. In this work, we have taken an essentially experimental approach to study various parameters having influence on field emission. In the first part of the thesis, we have described the results obtained with a homogeneous electric field with relatively weak field emission. The role of the inter-electrode distance at constants field as well as that of the cathode surface roughness on field emission are studied. The classical method of Fowler-Norheim was then used for the analysis of the measurements. A simple model aiming to take into account the effect of the heating of the emission sites is then proposed. The second part of the theses concerns the effect of the injection of gas on the field emission; this effect being to significantly reduce emission intensity when the gas pressure is raised from 10⁻⁶ to 10⁻² Pa at constant field. A threshold value of emission intensity is shown to be necessary for the observation of this gas effect. The effect of different gas types (He, H₂, N₂, Ar) and cathode materials are also described. The gas effect is shown to be reversible upon lowering of the gas pressure to 10⁻⁵ Pa. The reduction in current is interpreted by a lowering of the field enhancement factor (β) of emission sites by ionic bombardment by ions created locally (within distances on the order of microns) near the cathode surface. A calculation of the flux of bombarding ions is used to estimate the time necessary to modify an emission site in a way corresponding to the observations. The phenomenon of surface migration in the presence of intense electric field is then proposed to explain the reversibility of the gas effect, increasing the local field enhancement factor.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?