Circuits booléens, prédicats modulaires et langages réguliers

par Charles Paperman

Thèse de doctorat en Informatique

Sous la direction de Olivier Carton et de Jean-Éric Pin.


  • Résumé

    La conjecture de Straubing, énoncée dans son livre publié en 1994, suggère qu'un langage régulier définissable par un fragment logique équipé d'une signature arbitraire, est définissable par le même fragment logique mais équipé d'une signature régulière. Les fragments logiques considérés sont des classes de férmules de la logique monadique du second ordre sur les mots finis. Cette thèse est une contribution à l'étude de le conjecture de Straubing. Pour prouver une telle conjecture, il semble nécessaire pour établir cette conjecture de prouver deux résultats de natures différentes : 1. Des caractérisations algébriques de classes de langages réguliers définies par des fragments logiques équipés de prédicats réguliers, 2. Des résultats de non-définissabilité de langages réguliers dans des fragments logiques équipés de prédicats numériques arbitraires. La première partie de cette thèse est dédiée à l'ajout des prédicats réguliers à un fragment logique et en particulier, celui des prédicats modulaires lorsque les fragments logiques disposent de structures algébriques. La seconde partie de cette thèse est dédiée à des résultats de non définissablité, et en particulier l'étude du fragment à deux variables de la logique du premier ordre.


  • Résumé

    The Straubing conjecture, stated in his book published in 1994, suggest that a regular language definable by a fragment of logic and equipped with an arbitrary numerical signature is definable using the same fragment of logic using only regular predicates. The considered fragments of logic are classed of formulas of monadic second order logic over finite words. This thesis is a contribution to the study of the Straubing conjecture. To prove such a conjecture, it seems necessary to obtain two results of two distinct types: 1. Algebraic characterizations of classes of regular languages defined by fragments of logics equipped with regular predicates, 2. Undefinability results of regular languages in fragments of logics equipped with arbitrary numerical predicates. The first part of this thesis is dedicated to the operation of adding regular predicates to a given fragment of logic, with a particular focus on modular predicates in the case where logical fragments have some algebraic structure. The second par of this thesis is dedicated to undefinability results with a particular focus on two-variable first order logic.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (191 p.)
  • Annexes : 76 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque Universitaire des Grands Moulins.
  • Consultable sur place dans l'établissement demandeur
  • Cote : TS (2014) 258
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.