Lower and upper bounds for online algorithms with advice

par Marc Paul Renault

Thèse de doctorat en Informatique

Sous la direction de Adi Rosén.

Soutenue en 2014

à Paris 7 .


  • Résumé

    Les algorithmes en ligne fonctionnent dans un contexte où l'entrée est révélé au fur et à mesure du temps; chaque morceau révélé est appelé une demande. Après réception de chaque demahde, les algorithmes en ligne doivent prendre une action avant que la prochaine demande soit révélée, c'est-à-dire que les algorithmes en ligne doivent prendre une décision irrévocable basée sur les demandes déjà révélées sans aucune connaissance des demandes à venir. Le but est d'optimiser une fonction de coût dépendante de l'entrée. L'analyse compétitive est la méthode standard utilisée pour analyser la qualité des algorithmes en ligne. Le ratio compétitif est un ratio de pire cas, parmi toutes les séquences de demande finis, entre la performance de l'algorithme en ligne contre un algorithme optimal hors ligne pour la même séquence. Le ratio compétitif compare la performance d'un algorithme sans aucune connaissance de l'avenir contre un algorithme en pleine connaissance de l'avenir. Car l'absence totale de connaissance de l'avenir n'est souvent pas une hypothèse raisonnable, des modèles ont été proposés, appelés algorithmes en ligne avec conseil, qui donne les algorithmes en ligne l'accès à une quantité quantifiée des connaissances de l'avenir. L'intérêt de ce modèle est d'examiner comment le ratio compétitif change en fonction de la quantité de conseil. Dans cette thèse, il est présenté des bornes supérieures et inférieures dans ce modèle pour des problèmes en ligne classiques, tels que le problème de la k-serveur, de bin packing, de dual bin packing (sac à dos multiple), d'ordonnancement sur m machines identiques, du tampon de réordonnancement et de la mise à jour de la liste.


  • Résumé

    Online algorithms operate in a setting where the input is revealed piece by piece; the pieces are called requests. After receiving each request, online algorithms must take an action before the next request is revealed, i. E. Online algorithms must make irrevocable decisions based on the input revealed so far without any knowledge of the future input. The goal is to optimize some cost function over the input. Competitive analysis is the standard method used to analyse the quality of online algorithms. The competitive ratio is the worst case ratio, over all valid finite request sequences, of the online algorithm's performance against an optimal offline algorithm for the same request sequence. The competitive ratio compares the performance of an algorithm with no knowledge about the future against an algorithm with full knowledge about the future. Since the complete absence of future knowledge is often not a reasonable assumption, models, termed online algorithms with advice, which give the online algorithms access to a quantified amount of future knowledge, have been proposed. The interest in this model is in examining how the competitive ratio changes as a function of the amount of advice. In this thesis, we present upper and lower bounds in the advice model for classical online problems such as the k-server problem, the bin packing problem, the dual bin packing (multiple knapsack) problem, scheduling problem on m identical machines, the reordering buffer management problem and the list update problem.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (146 p.)
  • Annexes : 91 réf.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque Universitaire des Grands Moulins.
  • PEB soumis à condition
  • Cote : TS (2014) 196
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.