Accrétion sur les étoiles jeunes : modélisation hydrodynamique radiative

par Lionel De Sa

Thèse de doctorat en Astronomie et Astrophysique

Sous la direction de Chantal Stehlé et de Jean-Pierre Chièze.

Soutenue le 19-12-2014

à Paris 6 , dans le cadre de École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine) , en partenariat avec Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (laboratoire) .

Le jury était composé de Frédéric Daigne, Philippe Stee, Bruno Dubroca, Thierry Lanz.


  • Résumé

    Des colonnes d'accrétion relient les étoiles jeunes au disque de gaz et de poussière qui les entoure. De nombreuses études numériques ont montré l'existence d'une structure oscillante de plasma choqué au sein de ces colonnes. Cependant, aucune observation n'est en mesure de confirmer l'existence d'un tel phénomène. Ces simulations s'appuient toutes sur le postulat selon lequel le gaz accrété, suit une fonction de refroidissement optiquement mince. L'objectif principal de mon travail a été de m'affranchir de ce postulat. Après avoir amélioré la description de processus microscopiques importants dans le code 1D RHD ALE AstroLabE, j'ai travaillé sur les tables d'opacités, grandeurs clés dans l'interaction entre le champ de rayonnement et la matière. Les résultats obtenus montrent que l'absorption d'une faible fraction du rayonnement est capable d'affecter significativement la dynamique de la structure de gaz choqué, jusqu'à supprimer le comportement oscillatoire prédit. Je me suis également attaché à modéliser de manière cohérente la structure sur laquelle s'effectue l'accrétion: la chromosphère. J'ai pour cela utilisé un modèle simple d'atmosphère chauffée par des ondes acoustiques dégénérant en chocs. Si la dynamique de l'écoulement reste périodique, moyennant quelques perturbations, la luminosité X présente des modulations d'amplitude relativement modestes. Ce travail illustre l'importance du transfert radiatif dans le processus d'accrétion et d'une description réaliste de ce transfert radiatif. Les méthodes qualitatives que j'ai développées, adaptées à une modélisation 1D, ouvrent la voie à d'autres développements, notamment dans le cadre de simulations à plusieurs dimensions.

  • Titre traduit

    Accretion onto young stars : a radiation hydrodynamics model


  • Résumé

    Accretion columns connect young stars to the surrounding disk of gas and dust. Numerous numerical studies have predicted quasi-periodic oscillations of the shocked structure at the base of these columns. There is, however, no observational evidence of such feature. These simulations rely on the assumption that accreted gas can be described with an optically thin line cooling function. The main goal of my work has been to go beyond this assumption. I started with the improvement of the description of important microscopic processes included in the 1D ALE RHD code AstroLabE. I worked then on the building of adapted opacity tables, to take into account the coupling between radiation and matter. The results show that even by taking into account the absorption of a small fraction of radiation, the dynamics of the shocked gas structure is significantly affected, and the predicted oscillatory behavior may be suppressed. I have concentrated on the coherent modeling of the stellar chromosphere above which the accretion takes place. For this purpose, I used a model based on acoustic waves heating. Although the chromospheric shock waves perturb the dynamics of accretion (which remains periodic), the computed luminosity presents modulations of relative small amplitude. The work highlights the importance of the radiative transfer in the accretion process on young stars and the necessity of an adequate, physically based, description of the radiative transfer. The methods I have developed in this work will foster developments of multi-dimensional simulations.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.