Développement d'outils bioanalytiques miniaturisés : greffage de biomolécules sur monolithes en capillaire couplés à la nanochromatographie pour l'analyse d'échantillons complexes

par Fabien Brothier

Thèse de doctorat en Chimie Analytique

Sous la direction de Valérie Pichon-Comparot.

Le jury était composé de Claire Demesmay, Eric Peyrin, Gaud Dervilly-Pinel, Claire Elfakir, Claire-Marie Pradier.


  • Résumé

    L’analyse de traces dans des matrices complexes (environnementales, alimentaires ou biologiques) requiert très souvent une étape de purification et de préconcentration avant une analyse via des méthodes chromatographiques. Dans cette optique, des supports d’extraction basés sur des mécanismes de reconnaissance moléculaire ont été développés et appliqués à l’extraction de composés cibles rendant ainsi l’analyse plus sensible et plus fiable. Ces supports sélectifs peuvent entre autres résulter de l’immobilisation de biomolécules tels que les anticorps ou les aptamères (i.e. des oligonucléotides présentant une séquence capable de se lier spécifiquement à une molécule). Cette étape de traitement de l’échantillon est particulièrement nécessaire lorsqu’il s’agit de développer des systèmes séparatifs miniaturisés, tels que les microsystèmes séparatifs sur puce, du fait de la diminution de la résolution qui résulte de l’utilisation d’un canal de séparation de faible longueur. Dans ce contexte, ce projet de recherche a consisté à développer des systèmes bioanalytiques miniaturisés pour l’analyse de petites molécules ou protéines dans des échantillons complexes. Pour développer ces systèmes, la synthèse d’un monolithe hybride organique-inorganique in situ dans des capillaires de 100 µm d.i. a, dans un premier temps, été optimisée via une approche sol-gel puis caractérisée en termes de répétabilité. Dans une deuxième partie, deux toxines modèles de faible poids moléculaire ont été choisies : la microcystine-LR (MC-LR) et l’ochratoxine A (OTA). Des anticorps monoclonaux et des aptamères, spécifiques de l’une et l’autre des toxines ont ensuite été greffés sur des monolithes en capillaire. Les immuno- et oligoadsorbants miniaturisés obtenus (respectivement mIS et mOS) ont été couplés en ligne avec la nanoLC. La rétention spécifique des toxines cibles sur les mIS et mOS a été démontrée dans l’eau pure. La répétabilité de la synthèse et du greffage a été évaluée et la capacité de chacun des supports miniaturisés a été déterminée. Enfin, mIS et mOS ont été appliqués avec succès à l’extraction sélective de la MC-LR et de l’OTA à partir d’extraits de cultures de cyanobactéries, d’eaux environnementales ainsi que d’échantillons de bière dopés. Dans un troisième temps, de façon à transposer les outils sélectifs développés à l’analyse de protéines, des microréacteurs enzymatiques (IMER) ont été préparés par greffage de deux enzymes protéolytiques (pepsine et trypsine) sur des monolithes. Ces outils ont ensuite été couplés avec la nanoLC-MS² pour l’analyse d’une protéine modèle, le cytochrome C. Les rendements de digestion sur IMER se sont avérés présenter une bonne répétabilité. Toutefois, l’efficacité de la digestion sur les IMER à base de pepsine reste à ce jour insuffisante et nécessite de réadapter la procédure de greffage et/ou de digestion.

  • Titre traduit

    Development of miniaturized bioanalytical tools : grafting of biomolecules on monolithic capillaries coupled on-line to nanochromatography for the analysis of complex samples


  • Résumé

    The analysis of ultra-traces from complex matrices (environmental, foodstuff or biological) often requires a step of purification and preconcentration before their analysis by chromatographic separation methods. Therefore, extraction sorbents based on a molecular recognition mechanism can be developed and used for the selective extraction of target molecules thus rendering their quantitative analysis in complex samples more reliable and sensitive. These extraction sorbents may result, among others, from the immobilization of biomolecules such as antibodies and aptamers (i.e. oligonucleotides whose sequence is specific for a target molecule). This selective sample pretreatment step is particularly necessary when developing miniaturized devices such as separative microsystems on chip because of the decrease of the resolution that results from the use of a shorter length separation channel. In this context, the aim of our study was to develop miniaturized bioanalytical devices for the analysis of small molecules or proteins in complex samples. For the development of these devices, in-situ synthesis of a porous hybrid organic-inorganic monolith in capillaries (100 µm i.d.) by sol-gel approach was firstly optimized and characterized in terms of repeatability. Secondly, two model toxins of low molecular weight were chosen: microcystin-LR (MC-LR) and ochratoxin A (OTA). Monoclonal antibodies and aptamers specific to one and the other target molecules were then grafted on the monolithic capillaries. The resulting miniaturized immunosorbent (mIS) and oligosorbent (mOS) were then coupled on-line to nanoLC. Specific retention of MC-LR and OTA on the mIS and the mOS, respectively, was demonstrated in pure water. Synthesis repeatability and capacity of the miniaturized sorbents were evaluated. Finally, these miniaturized tools were applied to the selective extraction of MC-LR or OTA from complex samples, i.e. blue-green algae extracts, environmental waters or beer. In a third part, immobilized enzyme reactors (IMERs) were prepared by grafting two proteolytic enzymes (pepsin and trypsin) on monoliths in order to transpose the developed selective tools to the analysis of proteins. These IMERs were then coupled on-line to nanoLC-MS² for the analysis of a model protein, cytochrome C. Digestion yields on IMERs presented a good repeatability. However, digestion efficiency on the pepsin-based IMERs remains so far insufficient and grafting or digestion procedure needs to be readjusted.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.