Microfluidique à l'échelle micrometrique et sub-micrometrique : NanoPTV, formation des gouttes, et modèle sub-micrometrique

par Zhenzhen Li

Thèse de doctorat en Physique des Liquides

Sous la direction de Patrick Tabeling.

Le jury était composé de Philippe Renaud, Anne-Marie Gue, Valérie Cabuil, Pierre Joseph.


  • Résumé

    Dans cette thèse, nous adressons trois projets avec l’application de microfluidique Avec le Vélocimétrie de Réflexion Totale Interne, nous avons réalisés le nanoPTV des fluides à 800 nm près de parois du solide. Nous arrivons à une précision sans précédent, par la détermination précise de la position du parois, et par la simulation de Langevin, en tenant compte des nombreux sources de biais physique, comme le mouvement Brownien, effet du cisaillement, la répulsion électrostatique entres les particules et le parois, et la défocalisation de la lentille. Nous obtenons ±5 nm and ± 10 nm de précision sur la longueur de glissement pour la solution de sucrose et de l’eau. La condition de non-glissement sur la surface hydrophile est confirmée, et un glissement sur la surface hydrophobe est observé. Nous collaborons avec A. Leshansky pour étudier la formation des gouttes sur une intersection entre un canal confiné et un réservoir profond. Cette phénomène est appelé le «step emulsificaiton». La dynamique de la formation des gouttes est étudiée expérimentalement de façon approfondie. La théorie est basée sur la dynamique des fluides dans un canal Hele-Shaw, avec les effets de forces capillaires. Nous arrivons à expliquer le mécanique du fluides derrière la formation des gouttes, inclus les taille des gouttes. Nous collaborons avec un groupe des entreprises pétrolières (AEC), pour étudier le mouvement des nano particules dans un micro model de milieux poreux. Ces particules sont supposé de faire transition une fois en contact avec l’huile ou expériencer un changement de la température. L’injection des particules dans les réservoirs de l’huile et de gaz permet de collecter l’information sur la distribution et la quantité de l’huile et de gaz. Avant l’application en mass dans l’industrie, c’est favorable de les tester dans un micro model, qui possèdes une structures similaire aux pores des roches. Nous avons testé les nano particules synthétisés par les autres membres de l’AEC, et confirmé que l’idée du micro model est une méthode efficace de prédire la performance des particules sous sol.

  • Titre traduit

    Microfluidics at micrometric and sub-micrometric scale : NanoPTV, droplets formation, and sub-micrometric model


  • Résumé

    In this work, we have addressed three projects with the application of Microfluidics: With the technology of Total Internal Reflection Velocimetry, we realised the nano-PTV of fluid flow within 800 nm close to solid surface. We achieved unprecedented accuracy of measurement compared with the state of art, by determining precisely the wall position, and by Langevin simulation, which takes into account of the sources of biases, such as Brownian motion, shear stress, electrostatic repulsion between particles and the wall, effect of out of focus, etc. We achieved ±5 nm and ± 10 nm accuracy on the slip length determination for sucrose solution and for water. The no-slip condition on hydrophilic surface is confirmed, and a positive slip length on hydrophobic surface is clearly illustrated. This result demonstrated that the nano-PTV by TIRF is a quantitative methodology for the study of fluid flow near solid surface. We collaborated with A. Leshansky to study quantitatively the mechanism of step emulsification. The dispersed fluid and continuous fluid are co-flowing in a confined Hele-Shaw channel, before going into an unconfined pool. Drops are formed at the intersection between shallow channel and the pool. Two phases - step emulsification and large drops - are distinguished based on a well defined capillary number. We found good agreement between experiments and theory, on the step emulsification droplet size, dispersed fluid pinching dynamics, and on the shape of free interface between dispersed fluid and continuous fluid prior to pinching. We collaborated with a group of petroleum companies (AEC), to develop a technology which has potential application to the Enhanced Oil Recovery. Nano particles synthesized by the AEC is supposed to perform phase transition or deliver signals once in touch with oil. The principal idea consists in sending these nano particles into the porous media underground along with the injection fluids, and recollect them on the production well side. According to the information they deliver, the distribution of oil may be mapped. We constructed a micro model based on microfluidic technology, which mimics the complex structure of porous media of rocks. The AEC synthesized nano particles are injected into the micro model, their motion and retention can be observed in real time. This work provides important information on the particle motion in porous media, which cannot be realised in conventional core experiments.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.