Network mechanisms of memory storage in the balanced cortex

par Alessandro Barri

Thèse de doctorat en Neurosciences

Sous la direction de David Hansel.

Soutenue le 08-12-2014

à Paris 5 , dans le cadre de École doctorale Cerveau, cognition, comportement (Paris) , en partenariat avec Centre de neurophysique, physiologie, pathologie (laboratoire) .

Le président du jury était David Di Gregorio.

Le jury était composé de David Hansel, David Di Gregorio, German Mato, Gianluigi Mongillo, Israel Nelken, Robert Gütig.

Les rapporteurs étaient David Di Gregorio, German Mato.

  • Titre traduit

    Mécanismes de réseau de stockage de mémoire dans le cortex équilibré

  • Résumé

    Pas de résumé en français

  • Résumé

    It is generally maintained that one of cortex’ functions is the storage of a large number of memories. In this picture, the physical substrate of memories is thought to be realised in pattern and strengths of synaptic connections among cortical neurons. Memory recall is associated with neuronal activity that is shaped by this connectivity. In this framework, active memories are represented by attractors in the space of neural activity. Electrical activity in cortical neurones in vivo exhibits prominent temporal irregularity. A standard way to account for this phenomenon is to postulate that recurrent synaptic excitation and inhibition as well as external inputs are balanced. In the common view, however, these balanced networks do not easily support the coexistence of multiple attractors. This is problematic in view of memory function. Recently, theoretical studies showed that balanced networks with synapses that exhibit short-term plasticity (STP) are able to maintain multiple stable states. In order to investigate whether experimentally obtained synaptic parameters are consistent with model predictions, we developed a new methodology that is capable to quantify both response variability and STP at the same synapse in an integrated and statistically-principled way. This approach yields higher parameter precision than standard procedures and allows for the use of more efficient stimulation protocols. However, the findings with respect to STP parameters do not allow to make conclusive statements about the validity of synaptic theories of balanced working memory. In the second part of this thesis an alternative theory of cortical memory storage is developed. The theory is based on the assumptions that memories are stored in attractor networks, and that memories are not represented by network states differing in their average activity levels, but by micro-states sharing the same global statistics. Different memories differ with respect to their spatial distributions of firing rates. From this the main result is derived: the balanced state is a necessary condition for extensive memory storage. Furthermore, we analytically calculate memory storage capacities of rate neurone networks. Remarkably, it can be shown that crucial properties of neuronal activity and physiology that are consistent with experimental observations are directly predicted by the theory if optimal memory storage capacity is required.

Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris Cité - Bibliothèque électronique. Direction générale déléguée aux bibliothèques et musées. Bibliothèque électronique (Descartes).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.