Functional investigation of the efflux pump MexA–MexB-OprM of Pseudomonas aeruginosa

par Alice Verchère

Thèse de doctorat en Biochimie et biologie moléculaire

Sous la direction de Isabelle Broutin et de Martin Picard.

Soutenue le 27-11-2014

à Paris 5 , dans le cadre de École doctorale Médicament, toxicologie, chimie, imageries (Paris) , en partenariat avec Laboratoire de cristallographie et RMN biologiques (laboratoire) .

  • Titre traduit

    Etude fonctionnelle de la pompe d’efflux MexA-MexB-OprM de Pseudomonas aeruginosa


  • Résumé

    L’efflux actif, qui permet aux bactéries d’exporter les antibiotiques vers le milieu extérieur est l’un des mécanismes majeurs de résistance aux antibiotiques. L’une des pompes d’efflux de Pseudomonas aeruginosa, MexA-MexB-OprM, est constituée de trois protéines : i) MexA, une protéine membranaire de fusion qui se trouve dans le périplasme ; ii) MexB qui se trouve dans la membrane interne et qui reconnaît l’antibiotique et initie son transport grâce à la force protomotrice et iii) OprM un canal qui se trouve dans la membrane externe. Durant ma thèse, j’ai mis au point un test fonctionnel pour MexA et MexB. Ce test est basé sur la coreconstitution de ces protéines avec la bactériorhodopsine, une protéine membranaire qui génère un gradient de proton après activation par la lumière. L’activité de MexB est suivie de manière indirecte via la mesure du pH. En mesurant le pH à l’intérieur des liposomes, on peut connaître l’activité de MexB puisque ce dernier utilise la force protomotrice pour transporter ses substrats. Une mesure fiable du pH peut être obtenue grâce à la pyranine dont la fluorescence varie avec le pH. Grâce à ce test, j’ai prouvé que MexB possède une activité basale qui ne dépend pas de la présence de substrat et que l’activité de MexB devient optimale quand cette dernière est reconstituée en présence de MexA. Dans un deuxième temps, j’ai mis au point un test fonctionnel pour la pompe d’efflux entière. Pour cela, je prépare deux types distincts de protéoliposomes. Dans le premier type de liposome, j’encapsule de la pyranine, (pour suivre l’activité de MexB) et un substrat de MexB qui est un agent intercalant de l’ARN. Ce substrat est faiblement fluorescent dans un environnement aqueux et fortement fluorescent lorsqu’il est intercalé dans l'ARN. MexB et MexA sont reconstitués dans ces liposomes. Dans le deuxième type de liposomes, je reconstitue OprM et j’encapsule de l’ARN. Ces deux types de liposomes sont alors mélangés. Lorsque la pompe s’assemble et qu’il y a un transport actif à travers cette dernière, deux phénomènes sont observés: la diminution de la fluorescence de la pyranine (car MexB fait entrer des protons dans le premier type de liposome pour transporter le substrat) et l’augmentation de la fluorescence du substrat car ce dernier s’intercale dans l’ARN se trouvant dans le deuxième type de liposome. En mélangeant les deux types de liposomes, j’obtiens une preuve de la reconstitution in vitro de la pompe entière et j’ai mis en évidence qu’OprM s’ouvre en présence de MexA et MexB et que sa présence augmente l’activité de MexB.


  • Résumé

    Among the various mechanisms developed by the bacteria to counter to the effect of antibiotics, active efflux is on the front line. In Pseudomonas aeruginosa, a Gram negative bacteria, efflux transporters are organized as multicomponent systems where MexB, the pump located in the inner membrane, works in conjunction with MexA, a periplasmic protein, and OprM, an outer membrane protein. MexB is a proton motive force-dependent pump with broad substrate specificity. During my PhD, I have designed an original activity assay for MexB and MexA. The pump is coreconstituted into proteoliposomes together with bacteriorhodopsin (BR), a light-activated proton pump. In this system, upon illumination with visible light, the photo-induced proton gradient created by the BR is shown to be coupled to the active transport of substrates through the pump. The activity of MexB is monitored indirectly. Since MexB uses the protomotive force to transport antibiotics, one can determine substrate transport though MexB by monitoring the pH inside the liposomes. For that purpose, pyranine, a fluorescent probe whose fluorescence yield increases with increasing pH, is encapsulated inside the liposomes. This test makes the investigation of the pump possible. In the absence of MexA, MexB has a basal activity which is not substrate-dependent. Once MexB is reconstituted together with MexA, its activity is specific and substrate-dependent. Then I worked on the reconstitution of the whole efflux pump. For this, I prepare two different kinds of liposomes: i) Liposomes with reconstituted MexA and MexB in which pyranine and a nucleic acid intercalating agent are encapsulated, ii) Liposomes with reconstituted OprM and encapsulated RNA. The activity of MexB is monitored thanks to the addition of EthB, a substrate of MexB, that is poorly fluorescent in aqueous medium and highly fluorescent when intercalated into RNA. Upon generation of a pH gradient, I observe two concomitant phenomena: the decrease of pyranine fluorescence, as MexB is using protons to transport the substrate, and the increase of the fluorescence of the RNA intercalating agent as a result of its interaction with RNA. I have successfully assembled the efflux pump and monitored transport through it from one liposome to the other. I have demonstrated that OprM needs to interact with MexA and MexB in order to open and that MexB activity is accelerated when the pump is assembled.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Descartes-Bibliothèque électronique. Service commun de la documentation. Bibliothèque électronique.
  • Bibliothèque : Bibliothèque interuniversitaire de santé (Paris). Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.