Le contrôle des émissions de protoxyde d'azote par le fonctionnement hydrique des sols

par Eva Rabot

Thèse de doctorat en Science du sol

Sous la direction de Catherine Hénault et de Isabelle Cousin.

Soutenue le 30-10-2014

à Orléans , dans le cadre de École doctorale Énergie, Matériaux, Sciences de la Terre et de l'Univers (Centre-Val de Loire) , en partenariat avec Institut National de Recherche Agronomique (laboratoire) .

Le président du jury était Ary Bruand.

Le jury était composé de Catherine Hénault, Isabelle Cousin, Ary Bruand, François Lafolie, Philippe Baveye, Matthieu Vale, Patricia Laville, Frédéric Ott.

Les rapporteurs étaient François Lafolie, Philippe Baveye.


  • Résumé

    Les sols et les activités agricoles qu’ils supportent, contribueraient à environ 2/3 des émissions globales de protoxyde d’azote (N2O), un puissant gaz à effet de serre. L’objectif de la thèse était la compréhension des déterminismes des émissions de N2O liés aux propriétés hydriques des sols. Des expérimentations de laboratoire permettant le contrôle hydrique fin d’échantillons de sol, en saturation et en désaturation, et la mesure des flux de N₂O ont été menées. Un couplage avec la tomographie par rayons-X a par ailleurs permis de caractériser la connectivité gazeuse. Enfin, une démarche de modélisation a permis de tester les hypothèses de fonctionnement émises, et de poursuivre la démarche de réflexion sur le lien entre les propriétés hydriques des sols et les émissions de N₂O. On a mis en évidence le rôle des propriétés hydriques des sols dans la variabilité des émissions de N₂O couramment observées, et la nécessité de distinguer des périodes de production/consommation de N₂O et de transport. On retiendra ainsi le fort caractère dynamique des émissions de N₂O, en lien avec la phase hydrique (saturation ou désaturation), le fonctionnement hydrodynamique des sols, le transport gazeux et la configuration spatiale de l’air et de l’eau dans le réseau de pores. Afin de décrire l’intensité et le timing des pics de N₂O, il est apparu pertinent d’observer les paramètres potentiel matriciel, coefficient de diffusion gazeuse et connectivité gazeuse, en plus de la teneur en eau. Ces observations ont des implications sur la modélisation des flux de N₂O. On recommande ainsi l’utilisation couplée de modules de transport hydrique, de transport gazeux et en solution de N₂O, en plus de modules de production microbiologique, pour prédire efficacement les émissions de N₂O.

  • Titre traduit

    The control of nitrous oxide emissions by the hydric functioning of soils


  • Résumé

    Soils and associated agricultural activities are estimated to account for about 2/3 of the global emissions of nitrous oxide (N₂O), a potent greenhouse gas. The aim of the thesis was to understand the controls linked to soil hydric properties on N₂O emissions. Laboratory experiments were designed to control the hydric status of soil samples during wetting and drying, and to measure N₂O fluxes. Moreover, a coupling with X-ray computed tomography allowed characterizing the gaseous connectivity. Finally, a modeling approach allowed testing the hypotheses of functioning, and to further discuss the links between hydric properties and N₂O emissions. We highlighted the role of soil hydric properties on the variability of N₂O emissions which is often measured, and the need to distinguish N₂O production/consumption and transport phases. The highly dynamic nature of N₂O emissions was linked to the hydric phase (wetting or drying), soil hydrodynamic functioning, gas transport, and spatial configuration of water and air in the pore network, in addition to the water-filled pore space parameter. These observations have implications for N₂O emission modeling. We recommend thus the coupled use of hydric transport, and modules of gas and liquid transport of N₂O, in addition to microbial production modules to efficiently predict N₂O emissions.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?