Dynamique des populations : contrôle stochastique et modélisation hybride du cancer

par Julien Claisse

Thèse de doctorat en Mathématiques

Sous la direction de Denis Talay et de Nicolas Champagnat.

Le président du jury était Sylvie Méléard.

Le jury était composé de Denis Talay, Nicolas Champagnat, Sylvie Méléard, Nizar Touzi, Jacques Pouysségur, François Delarue.

Les rapporteurs étaient Huyên Pham, Nizar Touzi.


  • Résumé

    L'objectif de cette thèse est de développer la théorie du contrôle stochastique et ses applications en dynamique des populations. D'un point de vue théorique, nous présentons l'étude de problèmes de contrôle stochastique à horizon fini sur des processus de diffusion, de branchement non linéaire et de branchement-diffusion. Dans chacun des cas, nous raisonnons par la méthode de la programmation dynamique en veillant à démontrer soigneusement un argument de conditionnement analogue à la propriété de Markov forte pour les processus contrôlés. Le principe de la programmation dynamique nous permet alors de prouver que la fonction valeur est solution (régulière ou de viscosité) de l'équation de Hamilton-Jacobi-Bellman correspondante. Dans le cas régulier, nous identifions également un contrôle optimal markovien par un théorème de vérification. Du point de vue des applications, nous nous intéressons à la modélisation mathématique du cancer et de ses stratégies thérapeutiques. Plus précisément, nous construisons un modèle hybride de croissance de tumeur qui rend compte du rôle fondamental de l'acidité dans l'évolution de la maladie. Les cibles de la thérapie apparaissent explicitement comme paramètres du modèle afin de pouvoir l'utiliser comme support d'évaluation de stratégies thérapeutiques.

  • Titre traduit

    Population dynamics : stochastic control and hybrid modelling of cancer


  • Résumé

    The main objective of this thesis is to develop stochastic control theory and applications to population dynamics. From a theoritical point of view, we study finite horizon stochastic control problems on diffusion processes, nonlinear branching processes and branching diffusion processes. In each case we establish a dynamic programmic principle by carefully proving a conditioning argument similar to the strong Markov property for controlled processes. Then we deduce that the value function is a (viscosity or regular) solution of the associated Hamilton-Jacobi-Bellman equation. In the regular case, we further identify an optimal control in the class of markovian strategies thanks to a verification theorem. From a pratical point of view, we are interested in mathematical modelling of cancer growth and treatment. More precisely, we build a hybrid model of tumor growth taking into account the essential role of acidity. Therapeutic targets appear explicitly as model parameters in order to be able to evaluate treatment strategies.

Accéder en ligne

Par respect de la propriété intellectuelle des ayants droit, certains éléments de cette thèse ont été retirés.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Nice Sophia Antipolis. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.