
Université de Nice Sophia Antipolis – UFR Sciences
École Doctorale Sciences & Technologies de l’Information et de la Communication

EDSTIC

THÈSE

Présentée pour obtenir le titre de :

Docteur (Dr.) en Sciences de l’ Université de Nice Sophia Antipolis

Philosophiæ Doctor (Ph.D.) of Sciences of University Nice Sophia Antipolis

Spécialité: INFORMATIQUE – Computer Science

par – by

Nicaise Eric CHOUNGMO FOFACK

Affiliations : Université de Nice Sophia Antipolis – Inria Sophia Antipolis (MAESTRO)

ON MODELS FOR

PERFORMANCE ANALYSIS OF A CORE CACHE NETWORK
AND POWER SAVE OF A WIRELESS ACCESS NETWORK.

Soutenue à Inria le 21/ 02/ 2014, à 14 heures devant le jury composé de :

Président : Ernst BIERSACK Eurecom, Sophia Antipolis, France
Directeurs : Philippe NAIN Inria, Sophia Antipolis, France

Sara ALOUF Inria, Sophia Antipolis, France
Rapporteurs : Don TOWSLEY University of Massachusetts, Amherst, USA

Emilio LEONARDI Politecnico di Torino, Torino, Italy
Examinateurs : Alain SIMONIAN Orange Labs, Issy-les-Moulineaux, France

Giovanni NEGLIA Inria, Sophia Antipolis, France

THÈSE DE DOCTORAT – PH.D. THESIS

SUR DES MODÈLES POUR
L’ÉVALUATION DE PERFORMANCE DES CACHES DANS UN

RÉSEAU CŒUR ET DE LA CONSOMMATION D’ÉNERGIE DANS
UN RÉSEAU D’ACCÈS SANS-FIL.

ON MODELS FOR

PERFORMANCE ANALYSIS OF A CORE CACHE NETWORK
AND POWER SAVE OF A WIRELESS ACCESS NETWORK.

Par – By

NICAISE ERIC CHOUNGMO FOFACK
Février – February 2014

ON MODELS FOR

PERFORMANCE ANALYSIS OF A CORE CACHE NETWORK

AND POWER SAVE OF A WIRELESS ACCESS NETWORK.

Ph.D. Candidate: Nicaise Eric CHOUNGMO FOFACK

Thesis Advisors: Philippe NAIN and Sara ALOUF

Team-Project MAESTRO, Inria Sophia Antipolis, France

ABSTRACT

Internet is a real ecosystem. It grows, evolves and adapts to the needs of users in terms of com-
munication, connectivity and ubiquity of users. In the last decade, the communication paradigm has
shifted from traditional host-to-host interactions to the recent host-to-content model; while various wire-
less and networking technologies (such as 3/4G smartphones and networks, online media streaming,
social networks, clouds, Big-Data, information-centric networks) emerged to enhance content distribu-
tion. This development shed light on scalability and energy efficiency issues which can be formulated as
follows. How can we design or optimize such large scale distributed systems in order to achieve and main-

tain high-speed access to contents while (i) reducing congestion and energy consumption in the network and

(ii) adapting to the temporal locality of users demand in a continuous connectivity paradigm?

In this thesis we focus on two solutions proposed to answer this question: In-network caching and
Power save protocols for scalability and energy efficiency issues respectively. Precisely, we propose an-
alytic models for designing core cache networks and modeling energy consumption in wireless access
networks. Our studies show that the prediction of the performance of general core cache networks in
real application cases can be done with absolute relative errors of order of 1%–5%; meanwhile, dramatic
energy save can be achieved by mobile devices and base stations, e.g., as much as 70%–90% of the en-
ergy cost in cells with realistic traffic load and the considered parameter settings.

RÉSUMÉ

Internet est un véritable écosystème. Il se développe, évolue et s’adapte aux besoins des utilisateurs
en termes de communication, de connectivité et d’ubiquité. Dans la dernière décennie, les modèles
de communication ont changé passant des interactions machine-à-machine à un modèle machine-à-
contenu. Cependant, différentes technologies sans-fil et de réseaux (tels que les smartphones et les
réseaux 3/4G, streaming en ligne des médias, les réseaux sociaux, réseaux-orientés contenus) sont ap-
parues pour améliorer la distribution de l’information. Ce développement a mis en lumière les problèmes
liés au passage à l’échelle et à l’efficacité énergétique; d’où la question: Comment concevoir ou optimiser
de tels systèmes distribués qui garantissent un accès haut débit aux contenus tout en (i) réduisant la con-

gestion et la consommation d’énergie dans le réseau et (ii) s’adaptant à la demande des utilisateurs dans un

contexte connectivité quasi-permanente?

Dans cette thèse, nous nous intéressons à deux solutions proposées pour répondre à cette question:
le déploiement des réseaux de caches et l’implantation des protocoles économes en énergie. Précisément,
nous proposons des modèles analytiques pour la conception de ces réseaux de stockage et la modélisation
de la consommation d’énergie dans les réseaux d’accès sans fil. Nos études montrent que la prédiction de
la performance des réseaux de caches réels peut être faite avec des erreurs relatives absolues de l’ordre
de 1% à 5% et qu’une proportion importante soit 70% à 90% du coût de l’énergie dans les cellules peut
être économisée au niveau des stations de base et des mobiles sous des conditions réelles de trafic.

ACKNOWLEDGMENTS

Oh God, You are wonderful. Thanks my Lord for all these people you’ve put the way you prescribe to me. Amen!

I am deeply grateful Sara ALOUF, Philippe NAIN, Giovanni NEGLIA, Laurie VERMEERSCH and
each Maestri for their support both personal and professional, and also the knowledge they
have kindly shared with me. They helped me to master advanced modeling techniques, to
shape my research methodology, and find my own way in the scientific networking community.

Part of this research, namely Section 4.2 of Chapter 4, was done in collaboration with Orange
Labs in the framework of the contract “Performance models for CCN architecture”. I thank in
particular Orange Labs researchers Bruno KAUFFMANN, Luca MUSCARIELLO and Alain SIMO-
NIAN for the stimulating discussions and for the valuable feedback.

Thanks to Francis MONTAGNAC and Fabrice HUET; indeed, experiments in Section 4.3 of Chap-

ter 4 were possible to thank Francis (IT staff at Inria, Sophia Antipolis) who kindly collected
the DNS traces and Fabrice for his help in processing the large amount of data.

The material presented in Chapter 5 is based upon work supported by the National Science
Foundation under Grant No. CNS-1040781, while I was visiting the Computer Networks Re-
search Group (CNRG) of the School of Computer Science at the University of Massachusetts,
Amherst, MA, USA. I would like to thanks Don TOWSLEY and Philippe NAIN for having made
this research opportunity possible.

Nicaise Eric CHOUNGMO FOFACK
Nicaise.Choungmo_Fofack@inria.fr, NicaiseEric@gmail.com
Sophia Antipolis, France

v

vi

DEDICATIONS

To my wife Stassia, my son Joy-Nathan,
my mother Suzanne and my father Jean,

my brothers and sisters Aziz Borel, Line Juvette, Rhode Lucie, Alex, Reine Olivia,
for their unquestionable love.

My friends La Famille Bisso for their presence and support.

viii

CONTENTS

Abstract iii

Résumé iii

Acknowledgements v

Figures xvii

Tables 1

1 Introduction 3

1.1 From host-to-host to host-to-content interactions 4

1.1.1 General context: content-oriented networking 4

1.1.2 On-demand caching against content placement 4

1.1.3 Energy sustainability in wireless access networks 4

1.2 In-network caching and power save models: state of the art 5

1.2.1 Isolated repository models . 5

1.2.2 Cache network models: interconnection of caches 8

1.2.3 Power save models . 9

1.3 Contributions of this thesis . 10

1.3.1 Performance evaluation of general and heterogeneous cache networks . . 10

1.3.2 Power save analysis and its impact under continuous connectivity paradigm 10

1.4 Mathematical frameworks . 11

1.5 Organization of dissertation . 11

1.6 Publications of dissertation . 13

2 From popular cache replacement policies to Time-To-Live (TTL)-based policies 15

2.1 Summary . 15

2.2 Introduction . 16

2.3 Related work . 17

ix

x CONTENTS

2.4 Problem statement . 19

2.4.1 Workload model . 19

2.4.2 Cache model and other processes at hand 19

2.5 Single cache: TTL-based models . 20

2.5.1 Least Recently Used policy . 20

2.5.2 Random Replacement policy . 24

2.5.3 First-In First-Out policy . 26

2.6 TTL-based caches and performance metrics . 28

2.6.1 Properties of TTL-based models . 28

2.6.2 Single TTL-based cache analysis . 29

2.6.3 Accounting for finite cache capacity . 35

2.7 Applications and existing experiments revisited 38

2.7.1 LRU caches under IRM assumption: general results 38

2.7.2 LRU caches under Poisson request processes: special popularity laws . . . 41

2.7.3 LRU caches under renewal request processes 44

2.8 Conclusions . 46

3 A unified framework for performance analysis of TTL-based cache networks 49

3.1 Summary . 49

3.2 Introduction . 50

3.3 Single TTL-based cache under Markov-correlated requests 51

3.4 Heterogeneous TTL-based cache networks . 55

3.4.1 Model description . 55

3.4.2 Aggregating request streams . 56

3.4.3 Splitting a request stream . 57

3.4.4 Exact procedures for cache networks . 57

3.5 Conclusions . 62

4 Application cases: Content-Centric Networks and Domain Name System 65

4.1 Summary . 65

4.2 Content-Centric Networks . 65

4.2.1 Introduction . 66

4.2.2 Definitions and assumptions . 68

4.2.3 Analysis of a single cache . 69

4.2.4 Exact analysis on hierarchical TTL-based cache networks 74

4.2.5 Approximated methodology for general tree networks 77

4.2.6 Validation and numerical results . 86

4.2.7 Computational cost and time . 93

CONTENTS xi

4.2.8 TTL-based caches: implementation and other policies 97

4.2.9 Perspectives on CCN work . 99

4.3 Modern DNS hierarchy . 100

4.3.1 Introduction . 100

4.3.2 Related work . 102

4.3.3 Definitions and assumptions . 102

4.3.4 Analysis of a single cache . 105

4.3.5 Analysis of polytree cache networks . 114

4.3.6 Validation and numerical results . 118

4.4 Perspectives on DNS work . 123

4.5 Conclusions . 124

5 Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches 127

5.1 Summary . 127

5.2 Introduction . 128

5.3 Related works . 129

5.4 Model and assumptions . 131

5.4.1 Problem statement and network model . 131

5.4.2 Processes at hand . 131

5.4.3 Solution schema and contributions . 133

5.4.4 General results on single cache under Assumption 5.1 135

5.5 Single cache approximation . 137

5.5.1 FIFO cache . 137

5.5.2 Random cache . 139

5.5.3 LRU cache . 140

5.5.4 Preliminary results and remarks . 140

5.6 Network approximation . 143

5.6.1 Cache network with polytree topology . 146

5.6.2 Cache network with arbitrary topology . 146

5.6.3 General cache networks under correlated requests 149

5.7 Evaluation of the approximation under independent requests 151

5.7.1 Accuracy of the Whitt approximations . 151

5.7.2 Accuracy of the Poisson approximation . 156

5.7.3 Accuracy of the Hybrid approximation . 158

5.7.4 Discussion on the weighting function w 165

5.8 Conclusion . 171

xii CONTENTS

6 Modeling Energy Consumption on Wireless Access Networks 173

6.1 Summary . 173

6.2 Introduction . 173

6.3 Continuous connectivity . 175

6.4 Power save model . 176

6.5 Model derivation . 179

6.6 Performance and cost metrics . 183

6.6.1 Performance metrics and power save opportunities 183

6.6.2 Cost analysis . 184

6.7 Validation through simulations . 186

6.7.1 Impact of parallel user’s browsing sessions 188

6.8 Sensitivity analysis . 190

6.8.1 SA results with three input parameters: M, m and Nu 191

6.8.2 SA results with six input parameters: M,m,Nu, λr, λp and E[Np] 192

6.9 Performance analysis and optimization . 193

6.10 Conclusions . 197

7 Open problems 201

7.1 Summary . 201

7.2 Optimization and control of cache networks . 201

7.2.1 General optimization problem on TTL-based cache networks 202

7.2.2 Cache selection problem: case of minimum quality of service guaranteed . 204

7.2.3 Perspectives on optimization and control 206

7.3 Modeling the geographical locality in cache networks 206

7.3.1 Geographical locality problem statement 206

7.3.2 Geographical locality model . 207

7.3.3 Caches are deployed with same rate: single cache provider 208

7.3.4 Caches are deployed with modulated rates: multiple cache providers . . . 208

7.3.5 Perspectives on geographical locality aware caches 209

7.4 Accounting for temporal locality in cache networks 209

7.4.1 Non-stationary workload and cache models 209

7.4.2 Limit behavior of LRU caches under Cox request processes 210

7.4.3 Perspectives on temporal locality aware caches 214

7.5 Delayed cache networks . 214

7.5.1 Delay as a Bernoulli random variable . 214

7.5.2 Delay as a continuous random variable . 214

7.5.3 Perspectives on delayed cache networks 215

CONTENTS xiii

7.6 On design of cache networks . 216

7.6.1 q-LRU, LFU and mixed TTL-based policies 216

7.6.2 Cooperative caching strategies . 216

7.6.3 Sensitivity analysis of performance metrics 216

7.7 Conclusion . 217

8 Conclusions 219

Bibliography 222

xiv CONTENTS

FIGURES

2.1 Infinite cache capacity and TTL decoupling effect. 28

2.2 TTL-based model of a single file in a single LRU cache, request instants {tni },

timers {T
(i)
B,n} and miss instants {mni }. 29

2.3 TTL-based model of a single file in a single FIFO cache, request instants {tni },

timers {T
(i)

B,n} and miss instants {mni }. 29

2.4 CDFs of per-file characteristic time (or TTL) of three cache replacement policies. . 37

2.5 Zipf popularity, α = 1.1 . 42

2.6 Geometric popularity, ρ = 0.9 . 43

3.1 Behaviors of a single file in a TTL-based cache (if r = 1 TTL is renewed otherwise

r = 0 TTL is not renewed), request instants {ti}, timers {T (i)} and miss instants

{mi}. 52

3.2 Five nodes general cache network with two files: network topology (in black),

requests for blue file are routed as a tree (in blue) and that of the green file are

routed as a polytree (in green). 56

3.3 Polytree cache network. 58

3.4 Tandem of two caches and two files: one is green and the other is blue. 60

4.1 TTL-based model of content-router in CCN . 71

4.2 Five caches network with planar graph topology. 75

4.3 Linear cache network. 76

4.4 Star cache network. 77

4.5 Linear-star cache network. 78

4.6 Caterpillar tree networks . 81

4.7 Linear network with exogenous request arrivals 87

4.8 CCDFs of EHP,9, EMR,9, EOP,9 for network in Fig. 4.7 88

4.9 EHP,9, EMR,9, EOP,9 for homogeneous network in Fig. 4.7 (λn = λ = ρµ = ρµn) . . 88

4.10 Caterpillar network . 89

4.11 CCDFs of EHP,3, EMR,3, EOP,3 for network in Fig. 4.10 89

xv

xvi FIGURES

4.12 Balanced tree network . 90

4.13 CCDFs of EHP,9, EMR,9, EOP,9 for network in Fig.4.12 90

4.14 Tree network . 91

4.15 Binary tree network . 92

4.16 Relative error EHP,1 and EOP,1 under IPP traffic. 92

4.17 Optimality of the Deterministic TTL at leaves fed by IPP arrivals 93

4.18 Computation time comparison on linear networks 96

4.19 Pra-TTL against TTL-Model, hit probability HP,n,f of file f at each cache n. 98

4.20 TTL-based model of modern DNS cache. 103

4.21 Correlated requests . 119

4.22 Arrival process fitting at second and millisecond time scales. 119

4.23 Miss process prediction. 120

4.24 A binary tree with 7 caches. 121

5.1 TTL-model of LRU caches . 134

5.2 TTL-model of FIFO caches . 135

5.3 Approximation of the Characteristic times of FIFO, RND and LRU caches. 142

5.4 Request flows merge, split, move in opposite directions at some nodes. 143

5.5 Requests are merged at cache 1: miss and exogenous processes 144

5.6 Two files requested on a Tandem of two caches 144

5.7 Bernoulli splitting of requests for green file at cache 1 145

5.8 Two files exogenously requested on a Tandem of two caches 148

5.9 Whitt approximations on a linear network of five RND caches, N = 103, C = 102. 154

5.10 Whitt approximations on linear network of five LRU caches, N = 103, C = 102. . . 155

5.11 Whitt approximations on a binary tree of RND caches, Depth 3, N = 103, C = 102. 156

5.12 Whitt approximations on a binary tree of LRU caches, Depth 3, N = 103, C = 102. 157

5.13 Poisson approximation on a linear network of five LRU caches, N = 103, C = 102. 157

5.14 Poisson approximation on a binary tree network of LRU caches, Depth 3, N =

103, C = 102. 158

5.15 Comparison of all approximations on linear network with five FIFO caches, N =

103, C = 102. 160

5.16 Comparison of all approximations on ternary tree of depth five with 121 FIFO

caches, N = 103, C = 102. 161

5.17 Comparison of all approximations on linear network with five RND caches, N =

103, C = 102. 162

5.18 Comparison of approximations on ternary tree of depth five with 121 RND caches,

N = 103, C = 102. 163

FIGURES xvii

5.19 Comparison of all approximations on linear network with five LRU caches, N =

103, C = 102. 164

5.20 Comparison of all approximations on ternary tree of depth five with 121 LRU

caches, N = 103, C = 102. 165

5.21 Comparison of all approximations on a ternary tree of 1093 LRU caches, Depth

7, N = 103, C = 102. 166

5.22 Comparison of all approximations on a heterogeneous ternary tree of 121 caches,

Depth 5, N = 103, C = 102. 167

5.23 Comparison of all approximations on a heterogeneous ternary tree of 121 caches,

Depth 5, N = 103, C = 10. 168

5.24 Comparison of all approximations on a heterogeneous ternary tree of 341 caches,

Depth 5, N = 104, C ∈ [50; 150]. 169

5.25 Comparison of approximations on general network with five LRU caches, N =

103, C = 102. 170

6.1 Downlink queue activity with power save and normal operation. 177

6.2 System cycle with web traffic as defined in [2]. 178

6.3 E[σ] grows with Nu and is almost not affected by the timeout and the DRX power

save cycle durations. 187

6.4 Comparison of analytic and simulation results: (a) E[Tc], and (b) R. 187

6.5 Impact of the number p of parallel user’s browsing sessions on R, for Tln = Tsub
3

. . 188

6.6 Sensitivity indices of M, m and Nu for the defined metrics. 191

6.7 Sensitivity indices of M,m,Nu, λr, λp and E[Np] for the defined metrics. 192

6.8 Access delay (independent of Nu). 193

6.9 The expected page download time is insensible to DRX cycle lengthm and time-

out M; it is roughly E[σ]E[Np] (tight lower bound). 194

6.10 Power save time ratio vs. m and Nu (a) and eNB gain vs. m and M (b). 194

6.11 GBS vs. the number of cell users Nu, the reading time 1
λr

and eNB’s fixed cost. . . 196

6.12 Analytical evaluation of the relative power save gain at UE. 196

6.13 Relative gain for different number of users, optimized over bounded download

time and access delay. 197

7.1 A delayed TTL-based cache, delay on file n as Bernoulli rv of parameter dn. . . . 215

7.2 A delayed TTL-based cache, delay Dn on file n as continuous random variable. . 215

xviii FIGURES

TABLES

2.1 Notation for a single-cache network . 32

4.1 Glossary of main notation for cache n in a Content-Centric Network 69

4.2 Relative Errors on Performance metrics for large trees 93

4.3 Comparison of computation time on large trees 96

4.4 Aggregated Hit probability at cache n, HP,n,∗ . 98

4.5 Glossary of main notation of modern DNS cache 106

4.6 Performance metrics and relative errors (Rank 6) 120

4.7 Analytic performance metrics and their relative errors (in percentage) at rep-

resentative caches (λ1 = 1.57 requests/s, λ2 = 0.87 requests/s, λ3 = 1.37 re-

quests/s, λ4 = 0.68 requests/s) . 121

5.1 Main notations for single cache and file fi . 136

5.2 Values of the weighting function w for the k-ary trees of depth h = 3 from our

training set with settings N = 103, C = 102, LRU caches 159

6.1 Parameters suggested by 3GPP2 for the evaluation of web traffic 179

1

2 TABLES

1

INTRODUCTION

Networks are “ubiquitous”: almost all human interactions occur within networks. From

tiny ant colonies to gigantic planets, Everything is connected. Networks rapidly grow and

continuously adapt to new solicitations or requirements; thereby, they become very complex

such that their current behaviors are most of the time unexpected from their initial design.

Fortunately, people have shown a particular interest for such stochastic systems. Today an

entire discipline–called Networking–and a huge research community are actively devoted to

better describe the interactions and predict the behaviors of communication networks as real

and dynamic ecosystems. If networks appear so challenging, another difficulty is to find the

“best” or appropriate (easy to understand) formalism to study them.

Probabilistic methods have emerged many years ago as unquestionable and flexible model-

ing tools; they have demonstrated their power in various situations. They have been success-

fully applied in several domains such finance, economy, bioinformatics, computer science and

networking. The interest for these approaches and their versatility can be attributed to their

ability (1) to describe and explain “realistic” phenomenons where uncertainty is intrinsically

present, (2) to predict and analyze the behavior of complex systems, and more important (3) to

provide elegant and implementable results.

Within the applied probability framework, this thesis focuses on two problems related to

content distribution and Power save issues encountered in the core and access networks respec-

tively of recent and real communication networks. Specifically we propose models for perfor-

mance evaluation of two solutions on-demand cache networks and energy efficient protocols that

are deployed in content-oriented architectures and 3/4G mobile cellular networks respectively

to tackle issues we previously mentioned.

3

4 Introduction

1.1 From host-to-host to host-to-content interactions

1.1.1 General context: content-oriented networking

The main principle design which is probably the one that made the success of Internet was

to place the intelligence at the edges of the network. This choice leads to very simple host-to-

host interactions such that the information is accessed by locating the location/host where it is

stored. Nowadays, this communication model has shown its limitations in terms of scalability

(e.g. congestion at end-hosts, at end-servers and in core-routers of the network, scarcity of

bandwidth, ...). Several technologies such as resource virtualization (e.g. clouds, data centers,

etc.), online media streaming, social networks, have recently emerged to enforce and improve

information spreading or sharing among end-users. The rationale behind these solutions is that

users have more interest about the what i.e. their contents and how fast they can access to

them; rather than the where i.e. the location of contents.

This new communication paradigm—called host-to-content—and networks where this model

of interactions is the common case—also known as content-oriented networks—are the general

subject of this dissertation. More precisely, we will analyze cache networks which arise when

contents are opportunistically stored at nodes of content-oriented architectures, and we will

study the energy consumption of mobile and base stations when users are continuously con-

nected.

1.1.2 On-demand caching against content placement

On-demand caches and cache/content placement are two caching solutions to provide fast

access to popular contents. The former solution stores a content only when a cache miss occurs;

while the latter solution consists of loading into caches contents that have shown to be pop-

ular among users. The main difference between these caching approaches is that on-demand

caching is a self-organized and auto-adapting mechanism; while cache/content placement re-

quires external actions such as monitoring requests and populating caches every time traffic

patterns change.

Our choice to study on-demand cache networks is that on-demand caches are self-organized

systems and are simpler to deploy in a distributed manner in large scale networks. Moreover,

one can also preload contents into on-demand caches as done by content placements.

1.1.3 Energy sustainability in wireless access networks

Energy consumption in cellular networks represents a significant proportion of the opera-

tional expenditure of mobile operators. This energy cost is even more important because users

would like to be always connected to the Internet using their mobile devices.

1.2 In-network caching and power save models: state of the art 5

Modeling the energy consumption is economically and environmentally interesting since

power save protocols can be used to address the scarcity of bandwidth, to increase the lifetimes

of batteries both at mobile and base stations, and to clearly take advantage of contents moved

close to users by mean of to on-demand caches for example.

1.2 In-network caching and power save models: state of the art

1.2.1 Isolated repository models

Consider a collection of distinct items and a single cache which can accommodate a subset

of these items. Several algorithms have been proposed to manage the cache contents and

abundant literature exists on performance of these replacement policies.

Move-To-Front (MTF). The Move-To-Front policy maintains a list of items sequentially or-

dered from first to last. Each time a requested item is found in the list, it is brought to the

first position and items are moved one position down. Mc Cabe [18] and Bitner [15] provide

respectively the closed-form expressions of the stationary and transient probability of finding a

specific item at each position in the list respectively given that each initial list is equally likely.

King [62] established the stationary distribution of the list. In the literature Hendricks [47]

is credited for this result; however, this result follows from [62, Lemma 6] by setting the size

of the list equal to the number of items in which case the Least Recently Used policy under

consideration is the MTF policy. Burville and Kingman [17] provide an alternative formula by

computing the stationary probability of find an item at a given position of the list. Flajolet et

al. [40] derived the Laplace-Stieltjes Transform (LST) of the search cost in the list to cope with

the combinatorial explosion involved in computing using formulas in [17].

Jelenkovic [54] derived an asymptotic formula for the stationary search cost of an item in a

given position of the list as the number of items and the position go to infinity. He considered

the cases where the request distribution is heavy-tail and light-tail. Jelenkovic’s result [54, The-

orem 3] builds up on Fill’s finding [37]. Fill [37, Proposition 4.4] showed that, as the number of

items goes to infinity, the stationary search cost converges in distribution to a fluid limit which

is a proper random variable with a simple LST. By using Karamata’s Tauberian theorem on the

latter LST, Jelenkovic [54, Theorem 3] showed that the distribution of the limiting search cost

inherits the heavy-tail of the request distribution.

In many applications, consecutive requests are correlated and it is therefore interesting to

investigate the performance of the MTF policy in such a framework. Existing work consider the

case where requests are correlated by a Markov chain process. More precisely, they assume that

6 Introduction

the request that occurs at a given instant depends on the current and last states of an underlying

Markov chain. They also consider that the item requested and the state of the Markov chain at

a given instant are independent given the last state of the Markov chain. The request process is

said to be Markov-modulated

Introducing the reversed Markov chain of the modulating process and the corresponding

modulation process Coffman and Jelenkovic [27, Theorem 1 (resp. Theorem 3)] obtained

closed-form expressions of the transient and stationary expected search costs respectively of the

MTF list when requests are Markov-modulated. However, the formulas derived are in general

computationally untractable and give very little insight on the impact of correlated requests on

the search cost.

A connection was made by Jelenkovic and Radanovic [55] who first showed that if the

request process is stationary and ergodic, then for any initial configuration of the content of the

list, the search cost converges in distribution to a proper random variable. Then, they showed if

file access rates are modulated by a Zipf distribution with parameter larger than one, asymptotic

formulas of the stationary search cost [54] still hold. This result actually holds if requests are

modulated by a more general semi-Markov process and not only a Markov chain [55, Theorem

3]. In other words, as the number of items and the position of an item in the list become large,

the distribution of the limit stationary search cost is asymptotically insensitive to the correlation

in the request process.

Least Recently Used (LRU). Under the Least-Recently Used (LRU) policy the cache maintains

an ordered list of finite number of items (as many items as the size of the cache) from the most

recently requested item to the least recently requested item among those in the cache. This

policy inserts a request items at the first position, and evicts the item at the last position when

cache miss occurs.

We first note that the MTF cache could be seen as an infinite cache capacity which can

accommodate any number of files; and LRU caches are MTF caches with a finite capacity con-

straint. Hence, most of results on performance metrics on LRU caches are directly derived from

results established on the MTF policy by observing that the fault probability of a LRU cache is

the search cost of an item in a position larger than the LRU cache capacity.

The problem with either formulas in [62, 17] of the stationary hit probability is their expo-

nential complexity (in the size of the cache and in the number of items) which rules out any

numerical computation even for moderate cache sizes. In [40, Eq. (29)] Flajolet et al obtain

yet another formula with a lower complexity of the same order as the product of the number of

items and the cache size.

Dan and Towsley [31, Eqs. (1–2)] have derived a simple recursive algorithm of identical

complexity that outputs an approximation for the stationary hit probability. This approximation

1.2 In-network caching and power save models: state of the art 7

works well as long as the number of items and the cache size are not “too small”. When

compared to simulations the relative error is found to be less than 0.1% in most cases that have

been investigated, with a maximum relative error of 3% observed for small buffer sizes (less

than 5). The basic idea is to approximate the stationary probability that an item is found in a

given position by the conditional probability that this item moves into its current location given

that an item has been shifted in the same way.

It has been shown by Jelenkovic and Radanovic [55] that in the presence of semi-Markov

modulated requests and Zipf-distributed access probabilities with parameter larger than one,

the distribution of the limiting stationary search cost of MTF cache is asymptotically identical

to the search cost distribution in presence of independent and identically distributed (i.i.d.)

requests i.e. under the Independent Reference Model (IRM) or Poisson request processes [37].

This result implies that, asymptotically, for large cache sizes, the cache fault probability in a LRU

buffer is the same under semi-Markov modulated and i.i.d. requests. An interesting question is

how small can a LRU cache be while still retaining this insensitivity property? An answer to this

question was given by Jelenkovic et al. in [56]. In words, the answer is that the critical cache

size is sub-linear with respect to the sojourn times of the modulating process that determines

the dependency structure. More precisely, the transition in the cache performance occurs when

the cache size is of the order of the expected sojourn time that the modulated process spends

in a particular state [56].

Che et al. [23] introduce the notion of characteristic time defined as the maximum inter-

request time that leads to a cache hit and they accurately approximate the hit probability of

LRU caches by calculating the probability that any inter-request time is smaller or equal than

the characteristic time. Under their approach, LRU caches can be seen as low-pass filters.

Martina et al. [72] and Ahmed et al. [4] showed that the approach based on the characteristic

time is still accurate when requests are described by renewal processes and non-homogeneous

Poisson processes respectively.

Random replacement (RND) and First-In First-Out (FIFO). The Random policy inserts

missing item in the cache and removes any item uniformly chosen at random from the cache

when room is needed. The First-In First-Out policy maintains a list where missing items are

added in the head and the file at the tail of the list is evicted when room is needed.

Gelenbe [43] established that the stationary distribution of caches running these replace-

ment algorithms. He also showed that the fault probability under these policies is identical

when requests are described by the Independent Reference Model (IRM).

Fagin and Price [34], Dan and Towsley [31] provide algorithms to approximate the hit

probability of RND and FIFO caches. These algorithms have a low complexity of order of the

cache capacity which is significant smaller than the combinatorial solution of [43]. Gallo et

8 Introduction

al. [42], Olivier and Simonian [79] provide exact formulas of miss probabilities of the RND and

FIFO caches using a technique based on probability generating functions. They also provide

closed-form asymptotic expressions when request rates are modulated by a Zipf distribution.

Following a similar approach based on the characteristic time of [23], Fricker et al. [41]

proposed an approximate model to calculate the per-content hit probabilities on caches running

RND or FIFO policy under the IRM assumption.

1.2.2 Cache network models: interconnection of caches

Compared to the single cache scenario little work has been done on architectures with sev-

eral interconnected caches. In fact, few single cache models extend easily to cache networks.

One reason for that is that the output process of a cache (stream of requests which have not

been satisfied at this cache) no longer obeys the IRM (i.e. it is not a Poisson process) even if

the requests submitted to this cache are i.i.d. In other words, if one wants to develop an exact

analysis of a network composed of several LRU caches one needs to consider the network in

its entirety and derive a Markov chain analysis, clearly a highly difficult task due to the strong

statistical correlations between the cache states. Thus, existing results are approximations de-

rived under the Independent Reference Model i.e. when all processes involved in the network

are approximated by Poisson processes.

Rosensweig et al. [82] derive an approximate model for general LRU cache networks which

consists to analyze each LRU cache as in isolation, then assume that both arrival and miss

streams obey to the IRM, finally apply in an iterative procedure the single LRU cache approx-

imation of [31]. More specifically, they considered a network of caches (nodes) modeled by a

graph. A file can be attached to one or more servers that are in turn connected to the network.

A shortest path routing is used to locate a file. It is assumed that when a cache miss occurs,

the file is instantaneously downloaded into the cache. The convergence of their algorithm is

not established in [82] but the authors indicate that it converged in all cases that were tested.

They calculated all metrics of interest (hit probability per file, hit probability at a cache, etc.)

and they reported relative errors of order of 16%. Moreover, the authors investigate the source

of errors and identify system parameters that determine the accuracy of their model.

In [23], Che et al. extend their single cache analysis—based on cache characteristic time—

to two-level tree network of LRU caches. They assume that leaves are fed by independent

Poisson request processes. It is also assumed that the time required to download a document

whether or not this document is cached is zero. Miss streams at leaves are approximated by

a renewal process where inter-miss times are drawn from a shifted-exponential distribution;

meanwhile aggregate processes at the root is approximated by a renewal process having the

inter-request times characterized by the exact formula of [69] for the superposition of indepen-

dent renewal processes. Hence, the streams of requests submitted to root cache are no longer

1.2 In-network caching and power save models: state of the art 9

Poisson processes. Simulations reported in [23] showed that this approach is highly accurate,

but still limited to two-level tree cache networks. Martina et al. [72] extend the model of [23]

to arbitrary hierarchical cache networks where requests are described by renewal processes and

flow in the same direction (i.e. from leaves to the root).

[42] is probably the only modeling attempt that addresses tree network of RND caches.

Gallo et al. [42] extend their single cache analysis based on probability generating functions to

tree network by assuming that the IRM assumption holds on the cache miss processes.

We note that none of these existing models is general enough to provide insights on per-

formance of general and heterogeneous cache networks where caches are running different re-

placement algorithms such LRU, RND, FIFO, etc. The interest for such a general network model

is that such heterogeneous networks have been shown to provide better performance [42];

moreover it is more likely that is the case for large scale content-oriented networks where

cache providers select their own caching strategy independently of others.

1.2.3 Power save models

Power save and sleep mode in cellular networks have been analytically and experimentally

investigated in the literature, mainly from the user equipment (UE) viewpoint. [97, 45] study

the UE by the means of a semi-Markov chain model. The authors of [87] and [7] propose an

embedded Markov chain of a M/GI/1/N queue and an M/G/1 queue with repeated vacations

to model the sleep mode of base stations in IEEE 802.16e. Using Laplace-Stieltjes Transform

and Probability Generating Functions, [58] derives closed form expressions for the average

power consumption and the average packet delay for an UE.

Analytical models, supported by simulations, were proposed by Xiao for evaluating the

performance of the UE in terms of energy consumption and access delay in both downlink and

uplink [96]. Almhana et al. provide an adaptive algorithm that minimizes energy subject to

QoS requirements for delay [6].

The works [11, 12] are closely related to our proposal and they mainly focus on the analysis

of the discontinuous reception mode in 3GPP LTE and IEEE 802.16m respectively. The authors

consider both the uplink and downlink packets for the UE and show that uplink packets in-

crease the power consumption and decrease the delay.

We note that none of these existing models include both user equipment and base stations

(i.e. they are restricted to UE uplink and downlink analysis, while no attention is given to the

total consumption of eNB) under real traffic patterns and/or 3GPP power save protocols.

10 Introduction

1.3 Contributions of this thesis

In this dissertation we address problems in modeling cache networks and in modeling power

saving algorithms in cellular networks.

1.3.1 Performance evaluation of general and heterogeneous cache networks

Our contributions on cache network modeling are the following.

1. We propose Time-To-Live (TTL)-based models to describe the asymptotic behaviors of

LRU, RND and FIFO caches in isolation when requests are described by general stationary

processes.

2. We provide a unified framework for performance analysis of general TTL-based caches

networks.

3. We show how our framework applies by studying three valid application cases of our TTL-

based cache network model in the context of Content-Centric networks, Domain Name

System, general and heterogeneous cache networks made of LRU, RND and FIFO caches.

4. Finally, we formulate a non-exhaustive list of open problems that we found of particular

interest both for the networking research community and industry.

1.3.2 Power save analysis and its impact under continuous connectivity paradigm

Our contributions on this topic are as follows.

1. We provide a complete model for the behavior of users (UEs) and base stations (eNBs) in

continuous connectivity and with realistic web traffic.

2. We provide a cost model that incorporates the different causes of operational costs.

3. We perform simulations in which each user has p parallel browsing sessions. The aim is

to evaluate whether our study can be used when each user’s traffic consists of superposed

arrival processes.

4. We study the importance of a variety of model parameters by means of a sensitivity anal-

ysis, and we show how to use the model to minimize operational costs under QoS con-

straints.

5. We provide lessons learned from our study, summarizing our recommendations and sug-

gesting a setup which achieves a good tradeoff between energy savings and QoS perfor-

mance.

1.4 Mathematical frameworks 11

1.4 Mathematical frameworks

The models proposed in this thesis are built on top of several existing frameworks:

� Theory of stationary point processes. This modeling tool is used to describe requests gen-

erated by users in the system under analysis. It assumes that requests are correlated and

their statistical properties remained unchanged with time shifting. Our main reference on

this tool is the book by Bacceli and Brémaud [10].

� Markov Renewal Theory. This framework introduces a sub-class of stationary processes

where requests are correlated by a Markov process. This tool provides a simple, versa-

tile and analytically tractable model of correlation structure. We refer to the notes of

Çinlar [22].

� Renewal Theory. This framework is of particular interest since it provides a class of pro-

cesses that describes independent, identically and generally distributed events. It as been

shown in several works [95, 5, 59] that traces and general processes may be approxi-

mated by renewal processes. Our main references on renewal theory are the books by

Cox [28] and Kulkarni [65].

� Queueing Theory. This modeling tool is widely used in computer science. We apply it here

to describe data packets buffered at mobile and base stations of next generation cellular

networks.

1.5 Organization of dissertation

Jack and Harry were lost over a vast farmland while on their balloon ride. When they spotted

a bicyclist on trail going through the farmland below, they lowered their balloon and yelled, “Good

day, sir! Could you tell us where we are?”

The bicyclist looked up and said, “Sure! You are in a balloon!”

Jack turned to Harry and said, “This guy must be a mathematician!”

“What makes you think so?” asked Harry.

“Well, his answer is correct, but totally useless!”

The author sincerely hopes that a student, a researcher, or an industrial mastering this

thesis will be able to use our models to obtain correct as well as useful answers. Kulkarni [65]

12 Introduction

The four first chapters present our cache network model and three application cases. The

fifth chapter shows our energy cost model of wireless access networks. The last chapter pro-

poses a set of problems yet to be addressed.

Chapter 2 introduces the concept of time-to-live of popular replacement policies as LRU,

RND, or FIFO and defines TTL-based models as their asymptotic behaviors. We also identify two

classes of TTL-based caches which appear to be equivalent to Geiger counters. Other outcomes

of this chapter are the proof of the characteristic time approximation on LRU caches [23, 72]

and RND/FIFO caches [72]. This chapter describes the steps that might be followed if one want

to derive new TTL-models for other caches. It has a particular research interest.

Chapter 3 provides a complete description of our unified framework for performance analy-

sis of general and heterogeneous TTL-based cache networks where requests are correlated and

described by Markov-renewal processes. We introduce the notion of routing as a polytree and we

translate main network primitives into well-known operations on point processes. This chapter

has theoretical contribution in the theory of counters since it extend the study of counters in

isolation to network of counters.

Chapter 4 presents two application cases of our framework. The first application is in the

context of content-centric networks where TTL-based policy appears as alternative to more

popular replacement algorithms. The second application relies on TTL-based models to describe

a recent behavior observed on DNS caches over Internet. This chapter has an applied research

purpose.

Chapter 5 provides very accurate models of general and heterogeneous cache networks

where caches may run either LRU, RND, or FIFO policies. This chapter tackles several limita-

tions in terms of complexity of the exact solution we described in our framework. Its practical

concern are to build an simple tool for engineers and cache network developers who want to

large cache network.

Chapter 6 presents existing power save protocols and it derives their energy cost model. This

chapter evaluates also the performance of the wireless access network under these protocols,

reports optimal configurations of these protocols, and summarizes lessons learned from our

energy cost model.

Chapter 7 poses a set of open problems on TTL-based cache networks partially or not solved

by the time of the redaction of this manuscript.

Finally, Chapter 8 concludes this thesis.

Chapters of this dissertation are self-contained and the reader may decide to go through the

chapters in any order.

1.6 Publications of dissertation 13

1.6 Publications of dissertation

Part of results obtained in this thesis were also published as conference and journal papers.

Here is the list of our scientific contributions.

1. Conference papers:

(a) Results obtained in Chapter 4, Section 4.3 are published in the proceedings of the 7th

International Conference of Performance Evaluation Methodologies and Tools [73].

N. Choungmo Fofack and Sara Alouf, “Modeling Modern DNS cache", in Proc. Value-

Tools 2013, Torino, Italy, Dec. 10-12, 2013.

(b) Results derived in Chapter 4, Section 4.2 are published in the proceedings of the 6th

International Conference of Performance Evaluation Methodologies and Tools [25].

N. Choungmo Fofack, Philippe Nain, Giovanni Neglia and Don Towsley, “Analysis of

TTL-based Cache Networks", in Proc. ValueTools 2012, Cargese, France, Oct. 9-12,

2012. Best Student Paper Award.

2. Journal papers:

(a) Materials presented in Chapter 6 are published in the Pervasive and Mobile Comput-

ing journal of Elsevier [8]. It is an extended version of the earlier paper [70].

Sara Alouf, Vincenzo Mancuso and N. Choungmo Fofack, “Analysis of Power Save

and its Impact on Web Traffic in Cellular Networks with Continuous Connectivity",

Pervasive and Mobile Computing, Vol. 8, No. 5, pp. 646-661, Oct. 2012.

(b) An extended version of [25] is currently under the reviewing process of the Com-

puter Networks journal.

N. Choungmo Fofack, Philippe Nain, Giovanni Neglia and Don Towsley, “Perfor-

mance Evaluation of Hierarchical TTL-based Cache Networks", submitted to Com-

puter Networks.

14 Introduction

2

FROM POPULAR CACHE REPLACEMENT

POLICIES TO TIME-TO-LIVE

(TTL)-BASED POLICIES

2.1 Summary

In this chapter we analytically study asymptotic models—that we refer to as Time-To-Live(TTL)-

based models—for the performance analysis of classical cache management algorithms such as

Least Recently Used (LRU), First-In First-Out (FIFO) and Random replacement (RND). These

models are based on the characterization of the “maximum inter-request time of each file that

leads to a cache hit” also known as the characteristic time [23]. These TTL-based models are

categorized into two classes which appear to be equivalent to the general Geiger counters of

Type I and Type II [22]. We present the most interesting properties of TTL-based models and

we extend the concept of “expiration-based caches” by defining more general TTL-based caches.

Unlike classical caches, a TTL-based cache is easy to analyze, fully configurable (e.g. it can

mimic the behavior of existing replacement schemes), controllable (e.g. for cache optimiza-

tion such as quality of service or service differentiation), and generic (e.g. for deployment in

Software-Defined Network or Information-Centric Network).

Keyword 2.1 Asymptotic analysis, Least Recently Used, First-In First-Out, Random replacement,

characteristic time, Time-To-Live cache, stationary request processes.

15

16 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

2.2 Introduction

Many systems such as computer memories employ caches to improve their access speed or

to reduce the load on back-end components. These desired features are highly correlated with

the availability of the information in the cache at memory reading instants. Hence, several

cache management algorithms such as Least Recently Used (LRU), First-In First-Out (FIFO),

Random replacement (RND), and Time-To-Live (TTL, see the 5-Minute Rule by [44]) have been

proposed to manage contents and maximize the efficiency of the cache under various use cases.

Meanwhile the design, configuration, and analysis of these cache systems pose significant

challenges. It is therefore not surprising to note that first exact analytic results on the per-

formance of LRU, FIFO and RND caching systems were established during the seventies by

system researchers—namely King [62] and Gelenbe [43], after the invention of microproces-

sors in 1969 and before the industrial commercialization of the personal computer Altair 8800

in 1975. An abundant literature exists on the performance (e.g. hit probability, search cost) of

a single cache under the Independent Reference Model (IRM) or equivalently when requests

are independent and identically distributed (i.i.d.) with exponentially distributed inter-request

times. These requests are also said to be described by Poisson processes [38]. Under this latter

assumption exact results based on the Markov chain analysis of the state of FIFO and RND

caches can be found in [43]; the LRU or, its companion, the Move-to-Front (MTF) policy are

studied in [15, 17, 18, 38, 40, 47, 62].

Recent Internet technologies for content distribution such as Content Distribution Networks,

Peer-to-Peer networks, and Information-centric architectures have renewed the interest of the

networking research community for modeling single caches with the goal of analyzing cache

networks. With few exceptions, exact models of even a single cache are computationally in-

tractable and too complex to be extended to cache networks. This situation yields the devel-

opment of approximate methodologies based on Markov chain analysis [31], large deviation

analysis [42], or characteristic time approximation [23, 72] for caches fed by i.i.d. requests,

fluid analysis [27, 54, 55, 56, 57] when requests are described by semi-Markov processes, and

again the characteristic time approximation [4] for non-stationary requests.

This latter method, the characteristic time approximation (CTA), has boosted the cache per-

formance analysis and greatly simplified the evaluation of cache networks. The technique was

introduced by Che et al. [23] and it consists of viewing the cache as a low-pass filter having

a cut-off frequency whose inverse—called the characteristic time—is defined as the maximum

inter-request time of any file that leads to a cache hit. The expiration-based caching policies

introduced in [25] and [59] are concepts similar to the cache characteristic time. Many ex-

periments have shown that the CTA leads to highly accurate results. However, only the 2012

paper by Fricker et al. [41] attempts to provide a theoretic explanation of experimental results

2.3 Related work 17

observed on LRU and RND caches in isolation fed by Poisson request processes.

In this chapter, we address this lack of theoretic framework that can explain why the CTA

works, especially when the Poisson assumption does not hold (e.g. in a tandem of two LRU

caches where the second cache is fed by the miss streams of the first cache which is known to

be a non-Poisson process [57]). More precisely, we first provide other formulations (mathemat-

ically tractable) of the cache characteristic time of each of LRU, RND and FIFO replacement

policies and we called them the TTL to remind the reader that the TTL of a cache is specific

to the cache policy in contrast with the cache characteristic time (which is a general concept).

Then we derive asymptotic models—called TTL-based models—for LRU, RND and FIFO caches

when requests are described by stationary and ergodic processes and the size of the file catalog

is large. Indeed, we characterize the cumbersome distribution of the TTL random variable for

each of these caches and we show that this distribution converges under additional conditions

to simple ones: a degenerate distribution (i.e. a deterministic TTL) for LRU and FIFO caches,

or an exponential distribution for RND caches as already observed in [23, 66, 72]. Our con-

vergence conditions appear to be assumed or satisfied in several (synthetic and trace-driven)

experiments on caches that are available in the current literature [23, 41, 72] and also revisited

in this chapter. We finally introduce TTL-based caches as a more general and generic class of

caches that contains LRU, FIFO and RND replacement policies as special instances.

The chapter is organized as follows. In Section 2.3, we present relevant work close to our

TTL-based modeling approach of the LRU, RND and FIFO caches. Section 2.4 introduces the

notation, the statement of the problem and the general scope that will be covered in the chap-

ter. In Section 2.5 we derive the TTL distribution of LRU, FIFO and RND caches in isolation fed

by independent stationary request processes. Section 2.6 addresses the calculation of the per-

formance metrics and sketches the differences between the LRU and FIFO/RND caches through

their conceptual TTL-based models. We also show the benefits of the TTL-based approach in the

sense that it greatly simplifies the description of the miss streams of a cache and later the analy-

sis of heterogeneous cache networks. We revisit in Section 2.7 several existing work where our

theoretic framework provides a mathematical foundation of the validity of their experimental

results. Conclusions are found in Section 2.8.

2.3 Related work

The existing results related to our TTL approach are mainly obtained on LRU caches on very

specific applications revisited in Section 2.7. Initially, the problem is stated as follows: files

(labeled n ∈ {1, 2, . . . ,N}) of a catalog of size N are requested according to Poisson processes

(or under IRM assumption [38]) on a LRU cache of capacity B, B < N. The file access rates

18 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

{λn}n are modulated by a popularity distribution.

In earlier work [54], Jelenkoviç proposed a fluid model (when N and B are large) for

the fault/miss probability on LRU cache when the content-popularity distribution is either a

generic light-tailed law i.e. λn = ce−δnβ where c, δ, β > 0 or a generalized Zipf law i.e.

λn = 1/nα where α > 1. For the latter Zipf popularity distribution, Jelenkoviç showed in [57]

that performance metrics (i.e. the search cost) of the LRU cache are functions of a parameter

defined as the root of a certain equation.

This parameter was defined a few years later by Che et al. [23] as the cache characteristic

time. Assuming also Zipf-like distribution of content-popularity, [23] experimentally found that

as N and B increase, the characteristic times (which are per-file defined random variables) in

the LRU cache can be approximated by a deterministic value root of a certain equation; this

is how the CTA is defined. The latter equation is obtained by equalizing the sum of stationary

probabilities that each file is in the LRU cache at any time and the cache size B. Relying on

the CTA, Laoutaris [66] proposed a closed-form method to compute the performance of a LRU

cache by assuming a generalized Power law demand.

The paper mathematically closest to our work is a 2012 paper by Fricker et al. [41] which

provided for the first time an explanation of the validity of the CTA on a LRU cache fed by Pois-

son requests processes with rates modulated by a Zipf-like distribution. Applying the Central

Limit Theorem (CLT), the authors separate the validity of the CTA from the Zipfian popular-

ity of requests and provide a use case with a Geometric law not covered in [23]. They also

established sufficient conditions that do not require the cache size B being large. Finally they

proposed a CTA for a RND cache where the characteristic time is approximated by a unique

deterministic value. However, we prove in Section 2.5.2 that their last result is only true in

expectation. We shall see that the characteristic times of files in a RND cache converge in dis-

tribution to an exponentially distributed random variable as already shown in experiments by

Martina et al. [72].

The case of LRU caches under non-stationary traffic conditions such as in-homogeneous

Poisson request processes was studied in [4]. Ahmed et al. [4] experimentally showed that the

CTA can be derived to accurately approximate performance metrics of LRU caches in isolation.

This non-stationary traffic model is also known as the Shot Noise Model (SNM, [94]) and it is

addressed latter in Chapter 7.

Many results derived in this work significantly extend those of [41] on LRU, FIFO and

RND caches. Here, requests are described by general stationary point processes. One of the

motivations is that the IRM (or the Poisson process) assumption does not hold for the sequence

of requests not served by a cache. If simulating a single cache in order to check the accuracy

of approximations is affordable, it becomes critical when we think about large, general and

heterogeneous cache networks. It is now the case and theoretic results are indeed needed.

2.4 Problem statement 19

2.4 Problem statement

2.4.1 Workload model

We consider a catalog of N different files labeled n ∈ 1, . . . ,N. Successive requests for file n

follow an orderly stationary point process Rn := {tni }i∈Z such that · · · < tn−1 < tn0 ≤ 0 < tn1 <
tn2 < · · · by convention. In other words, tni (i ≥ 1) is the occurrence time of the i-th request of

file n after time t = 0. In this setting the successive inter-request time sequence {τni }i∈Z for file

n is stationary with τni := tni − tni−1. Throughout we will assume that the expected inter-request

time E[τn1] is finite for each file n, so that the cumulative distribution function (CDF) of the first

request for file n after time t = 0 is given by [10, Formula (4.2.4b)]

P(tn1 < t) =
1

E[τn1]

∫ t

0

P(τn1 > u)du, n = 1, . . . ,N. (2.1)

In the literature the random variable (rv) tn1 is referred to as the forward recurrence time of the

stationary process Rn.

Pick one n ∈ {1, . . . ,N} and assume without loss of generality (wlog) that tn0 = 0, i.e. a request

for file n is made at time t = 0. Alternatively stated, we consider the Palm probability, denoted

by P0, of the stationary point process {tni }i∈Z, which has the property that P0(tn0 = 0) = 1,

see [10, Formula (3.1.1)]. When E0[tn1] <∞ (or equivalently when E[τn1] <∞) then

P(tn1 < t) = (E0[tn1])
−1

∫t

0

P0(tn1 > u)du, (2.2)

with E0 the expectation operator associated with P0 [10, Formula (4.4.4)] and we retrieve (2.1).

We further assume that the stationary point processes R1, . . . ,RN are independent.

2.4.2 Cache model and other processes at hand

We consider a cache which can accommodate at most B different files of a catalog of size

N > B. Files are accessed according to the workload model described above. Our aim objective

is to characterize the TTL denoted TN,n of a file n in the cache. The random variable TN,n is

the maximum residency time in the cache of file n if this file was requested only once (time-to-live

definition) or the maximum inter-request time of file n that leads to cache hit (characteristic time

definition). A mathematical definition of TN,n will be given next. In the following, the terms

TTL and characteristic time will be interchangeably used to refer to the rv TN,n of file n.

We denote by Mn := {mni }i≥1 the point process formed by the sequence of time instants

where a request of file n yields a cache miss and M := {mi}i≥1 the aggregated miss process of

the cache. Regarding the process M, the sequence of successive inter-miss times is defined as

{ϑi}i≥1 where ϑi = mi −mi−1. Similarly, we introduce the aggregated process Mn̄ resulting

20 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

from the superposition of the N− 1 miss point processes {Mj, j = 1, . . . ,N : j 6= n} and {ϑn̄i }i≥1
its sequence of inter-miss times.

Note that the miss process Mn is a stationary marked point process with the marks cor-

responding to the total sojourn time of file n in the cache (see Remark 2.8, for more

details); and thus, M and Mn̄ are also a stationary point processes [10, Sect. 1.4.2].

2.5 Single cache: TTL-based models

2.5.1 Least Recently Used policy

The Least Recently Used (LRU) policy manages a cache as a list of capacity B where re-

quested files are added in the head of the list and the file to be evicted when room is needed is

the one at the tail. This policy has the advantage of keeping the most popular files in the cache.

Let us define the indicator functions Xn(t) := 1(tn1 < t) for n = 1, . . . ,N. In other words,

Xn(t) = 1 if there has been at least one request for file n in [0, t) and Xn(t) = 0 otherwise.

Since tn0 = 0 i.e. file n entered in the cache at time t = 0, we have Xn(t) = 1; and because

we consider first that there is no other requests for file n after the one that occurs at

tn0 , we define MN,n(t) as the number of different files in the catalog {1, . . . ,N}\{n} which are

requested in [0, t). We have

MN,n(t) =

N∑

j=1,j6=n
Xj(t). (2.3)

We may now define TB,n as

TB,n = inf{t > 0 :MN,n(t) = B}. (2.4)

The latter equation states that file n will leave the cache as soon as B different files in the

catalog {1, . . . ,N}\{n} will have been requested. We recall that file n in the cache at tn0 = 0 and

no further requests for file n occur (i.e. tn1 =∞ up to now). From (2.4) we note that

P(TB,n < t) = P(MN,n(t) ≥ B)

= 1−

B∑

k=0

P(MN,n(t) = k). (2.5)

The last equation states that the CDF of the TTL TB,n is characterized once the probability mass

function (PMF) of the discrete rv MN,n(t) is found.

For finite cache size B and bounded catalog sizeN, the exact PMF ofMN,n(t) is given as follows.

2.5 Single cache: TTL-based models 21

Proposition 2.1 (PMF of MN,n(t)) The rv MN,n(t) has a Poisson Binomial distribution with

parameters {pj(t), j = 1, . . . ,N : j 6= n} under the enforced assumptions that the request processes

{Rn}n are stationary and independent.

This proposition results from the very basic definition of bothMN,n(t) (see (2)) and of a Poisson

Binomial distribution (sum of independent non-identical Bernoulli trials). In the caching con-

text the result in Proposition 2.1 has a limited interest since calculating the PMF of MN,n(t)—

and therefore the CDF of TB,n thanks to (2.5)—will be impossible for typical values of N as

a catalog may contain a prohibitively large number of files. Recently, a numerical algorithm

proposed in [48] to efficiently calculate the Poisson Binomial distribution for values of N up to

(approx.) 15000. If N does not exceed this threshold we may therefore use this algorithm to

compute the CDF of TB,n in closed-form. This result is in contrast with the simulations carried

out in [66], [41] and [23] (for N = 1000, N = 10000 and N = 20000, respectively) to validate

the approximate models developed therein.

Next, we investigate the case when N goes to infinity. It is of particular interest to study the

convergence of the sum MN,n(t) in order to calculate its PMF; and thus, find the CDF of TB,n.

Proposition 2.2 (Convergence result) Fix t > 0. Under the enforced assumptions that the re-

quest processes {Rn}n are stationary and independent, the rv MN,n(t) converges almost surely

(a.s.) to a finite rv Mn(t) as N → ∞ if and only if limN→∞ µN,n(t) < ∞, where µN,n(t) is the

mean of MN,n(t) given in (2.6).

Proof Let µN,n(t) := E [MN,n(t)], σ2N,n(t) := Var(MN,n(t)), c2N,n(t) :=
σ2N,n(t)

µ2N,n(t)
and γN,n(t) :=

E

[

(

MN,n(t) − µN,n(t)

σN,n(t)

)3
]

be the expectation, the variance, the squared coefficient of varia-

tion (scv) and the skewness of MN,n(t), respectively.

Moments ofMN,n(t) Having pn(t) = P(tn1 < t) given in (2.1), routine algebra for a finite sum

of independent Bernoulli random variables shows that for fixed t > 0 the mean, the variance,

the scv and the skewness of MN,n(t) are respectively given by:

µN,n(t) =

N∑

j=1,j6=n
pj(t) (2.6)

σ2N,n(t) =

N∑

j=1,j6=n
pj(t)(1 − pj(t))

c2N,n(t) = (σN,n(t)/µN,n(t))
2

γN,n(t) = σ−3
N,n(t)

N∑

j=1,j6=n
pj(t)(1 − pj(t))(1 − 2pj(t))

22 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

Inequalities on the moments Also the following inequalities trivially hold (t > 0):

0 ≤ σ2N,n(t) ≤ µN,n(t) (2.7)

0 ≤ c2N,n(t) ≤ µ−1
N,n(t) (2.8)

0 ≤ |γN,n(t)| ≤ σ−1
N,n(t) (2.9)

Convergence criteria Using the latter inequalities, one can easily establish that

N∑

j=1,j6=n
P(|Xj(t)| > 1) = 0 <∞

N∑

j=1,j6=n
E(Xj(t) 1{|Xj(t)|≤1}) = µN,n(t)

N∑

j=1,j6=n
Var(Xj(t) 1{|Xj(t)|≤1}) = σ2N,n(t) ≤ µN,n(t)

where the latter inequality comes from (2.7). Letting N → ∞ in the above shows that these

three sums are finite if and only if limN→∞ µN,n(t) < ∞ (note that the limit exists as µN,n(t)

is a non-decreasing sequence in the variable N). From the Kolmogorov’s three-series Theorem

(see e.g. [32, p.70]) we may conclude that MN,n(t) converges almost surely if and only if

limN→∞ µN,n(t) <∞. This concludes the proof.

Proposition 2.2 is an existence result that does not characterize Mn(t), the (a.s.) limit

of MN,n(t) when limN→∞ µN,n(t) < ∞. The following results are based on two classical

asymptotic approximations of the Poisson-Binomial distribution: a Poisson approximation [91,

Corollary 1.3] and a Gaussian approximation [88, Theorem 1].

Proposition 2.3 (Poisson CDF) Under the enforced assumptions that the request processes {Rn}n
are stationary and independent,MN,n(t) may be approximated by a Poisson random variable with

mean ρ if ρ = µN,n(t) ∈ (0, 3]. More precisely, for k ∈ {1, . . . ,N− 1},

∣

∣

∣P(MN,n(t) ≤ k) −

k∑

l=1

ρle−ρ

l!

∣

∣

∣ ≤ ∆P(ρ, k)

(2.10)

where ρ = µN,n(t) and ∆P(ρ, k) is given by

∆P(ρ, k) = (1− e−ρ) min
(

1,
eρ

k+ 1

)

. (2.11)

2.5 Single cache: TTL-based models 23

The bound in (2.11) is obtained by combining the inequality
∑
j=1,j6=np

2
j (t) ≤ ρ and the result

in [91, Formula (1.10)]. The range of application of the result in Proposition 2.3 is limited since

µN,n(t) cannot exceed three for the bounds in (2.10) to hold. The next proposition provides

another approximation of the (a.s.) limit of the rvMN,n(t) for a wide range of values of µN,n(t).

Proposition 2.4 (“Refined” Normal CDF) Under the enforced assumptions that the request pro-

cesses {Rn}n are stationary and independent,MN,n(t) may be approximated by a “refined” Gaus-

sian rv with mean µN,n(t) and variance σ2N,n(t) if σ2N,n(t) ≥ 25.
More precisely, for k ∈ {1, . . . ,N− 1},

∣

∣

∣
P(MN,n(t) ≤ k) − R

(

k+ 0.5−m

s

)

∣

∣

∣
≤ ∆N (s)

(2.12)

where m = µN,n(t), s = σN,n(t), the error bound ∆N (s) and the CDF R(x) are respectively given

in [76, Formula (1.16)] and [76, Formula (1.3)] by

∆N (s) =
0.3056

s2
(2.13)

and

R(x) = Φ(x) +
1

6
γN,n(t) × (1− x2)φ(x) (2.14)

with Φ(x) and φ(x) denoting the CDF and PDF of the standard Normal rv.

Although, it is claimed in [76, Remark 1.2] that the bound ∆N (s) is valid for σ2N,n(t) > 0,

we provide a simple comparison of ∆N (s) and ∆P(ρ, k) in order to choose the most accurate

approximation of MN,n(t).

Comparison of the bounds ∆P(ρ, k) and ∆N (s) We have ∆P(ρ, k) = (1 − e−ρ) min
(

1, e
ρ

k+1

)

and ∆P(s) = 0.3056
s2

where ρ = µN,n(t) and s2 = σ2N,n(t) are the mean and the variance of the

rv MN,n(t) respectively. In the following we perform a worst case analysis when MN,n(t) ≤ B

(see (2.5)) with B > 1 is the cache size.

Assuming the mean ρ and the variance s2 are known:

1. if ρ < 1, then s2 < 1 by (2.7) and the bound ∆P(ρ, B) is tighter than ∆N (s) since

sup
ρ

(∆P(ρ, B)) < 1− e−1 = 0.9502 and ∆N (s) > 0.3056

2. otherwise, the bound ∆N (s) is preferable to ∆P(ρ, k).

The result in Proposition 2.4 generalizes that in [41, Proposition 1] which states that the

Gaussian approximation exists if σ2N,n(t) → ∞ as N goes to infinity. The following remarks

explain why the Gaussian approximation [41, Proposition 1] and the CTA [23] work well.

24 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

Remark 2.1 (Gaussian CDF [41]) As σN,n(t) > 5 becomes larger but finite, the factor γN,n(t)

in (2.14) vanishes thanks to (2.9) and the CDF P(MN,n(t) ≤ k) converges to a Gaussian distribu-

tion Φ
(

k+0.5−µN,n(t)

σN,n(t)

)

.

Remark 2.2 (Step Function [41]) According to (2.7) if σN,n(t) is large, so is the mean µN,n(t)

and the scv c2N,n(t) vanishes by (2.8). Therefore the CDF P(MN,n(t) ≤ k) converges also to a de-

generate distribution 1(µN,n(t) = B) and the rv MN,n(t) may be approximated by a deterministic

function equals to its mean µN,n(t). Hence, the rv TB,n may be approximated by a constant tB,n.

Propositions 2.3 and 2.4, Remarks 2.1 and 2.2 characterize the asymptotic behaviors of the

rvMN,n(t) when µN,n(t) is finite or equivalently whenMN,n(t) converges (by Proposition 2.2).

Now we will investigate the case when µN,n(t) diverges.

Proposition 2.5 (Degenerate CDF) AsN goes to infinity, if the series µN,n(t) diverge thenMN,n(t)

does not converge almost surely and it behaves as a deterministic function which is its mean

µN,n(t). Moreover, the TTL TB,n may be approximated by a constant tB,n which is the unique

solution of the following equation

µN,n (tB,n) = B. (2.15)

Proof The proof of this proposition follows by first applying the convergence result in Propo-

sition 2.2. Then thanks to (2.8) the scv c2N,n(t) vanishes as µN,n(t) diverges. The solution

of (2.15) is unique because µN,n(t) is an increasing function (2.6) (sum of positive and increas-

ing CDFs {pj(t), j = 1, . . . ,N : j 6= n}).

Our Proposition 2.5 generalizes [41, Proposition 2] since that our condition µN,n(t) diverges

is weaker and more general than the condition σN,n(t) diverges needed in [41, Proposition 1].

Also, Proposition 2.5 and Remark 2.2 explain whyMN,n(t) and thus TB,nmay be approximated

by deterministic quantities; this was not clear in [41].

Since N is very large but finite in practice, µN,n(t) may be finite and large enough so

that (2.15) holds. Its solution tB,n is the deterministic/constant approximation of the character-

istic time first observed in experiments on LRU caches fed by Poisson request processes [23] and

later with renewal request processes [72]. We also provide later in Section 2.7 approximations

of the limit of µN,n(t) such that TB,n may be approximated by the solution of the equation

µN,n(tB,n) = B under Poisson request processes.

2.5.2 Random Replacement policy

The Random replacement (RND) policy adds files in the cache without any ordering and

removes one file selected uniformly at random from the cache when a cache miss occurs and

room is needed. This policy has the benefit to have a low complexity [79, 42].

2.5 Single cache: TTL-based models 25

Assume wlog that the request of file n which occurs at time instant tn0 = 0 yields a cache

miss (i.e. m0 = tn0). File n enters in the cache and can be only evicted if another cache miss

occurs later at each time instant {mn̄i }i≥1 with probability 1/B.

We denote byMN,n the number of cache misses that yields the eviction of file n from the cache.

It is obvious that:

MN,n
d
= GEO(1/B). (2.16)

Hence, the TTL value TB,n which is the sojourn time of file n in the cache is given as follows

TB,n :=mn̄1 +

MN,n−1∑

i=1

ϑn̄i+1. (2.17)

Since the process Mn̄ is a stationary process, the inter-miss times {ϑn̄i , i ≥ 1} form a stationary

sequence. Therefore, {ϑn̄i , i ≥ 1} are also identically distributed; moreover, they are inde-

pendent realizations of the same random variable ϑn̄ since the minimum of {MN,j, j 6= n} is

geometrically distributed (a cache miss on a file different from n occurs when this minimum

counter fires). For finite cache capacity B and finite catalog size N, the CDF of TB,n is given as

follows.

Proposition 2.6 (CDF of TB,n) The exact distribution of TB,n is given by

P(TB,n < t) =

∞∑

i=1

1/B(1− 1/B)i−1×H ⋆G(i−1)(t) (2.18)

where H(t) = P(mn̄1 < t), G(t) = P(ϑn̄1 < t), ⋆ denotes the convolution and G(i) is the i-th fold

convolution of the function G with itself (by Convention G0 ≡ 1).

The proof of Proposition 2.6 is straightforward since the CDF of TB,n defined as the sum

of i.i.d. random variables (cf. (2.17)) is a convolution. However, the interesting part about

the formulations (2.17) and (2.18) is the following convergence result proved in [89] and also

known as Refined Rényi’s Theorem [75, Theorem 2].

Proposition 2.7 (“Refined” Exponential CDF) As the cache size B ≫ 1, the CDF P(TB,n < t)

may be approximated by a “refined” exponential distribution

P(TB,n < t) = 1− exp
(

−
νn̄

B
t
)

+
1

B
e1

(νn̄

B
t
)

+O

(

1

B2

)

, (2.19)

where νn̄ = 1/E[ϑn̄1] is the aggregated miss rate over all the files but file n and

e1(x) =

[

0.5
E[(ϑn̄1)2]

(E[ϑn̄1])2
−
E[mn̄1]

E[ϑn̄1]
+

(

1− 0.5
E[(ϑn̄1)2]

(E[ϑn̄1])2

)

x

]

e−x

26 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

Remark 2.3 (Exponential limit) When 1/B→ 0 the CDF of the rv TB,n converges to the exponen-

tial distribution P(TB,n < t) ≈ 1− exp (−t/tB,n) where tB,n = B
νn̄

as proven in [75, Theorem 1].

The condition B ≫ 1 of Proposition 2.7 is satisfied in most of experiments as we can see in [72]

and [41] where B ∈ [10, 106] and B ∈ [1, 104] respectively.

2.5.3 First-In First-Out policy

The First-In First-Out (FIFO) policy manages a cache as a list by inserting new files at the

top and removing the file at the tail of the list respectively. This policy has the advantage to be

fair for all files and becomes of a particular interest in the context of quality of service.

Assume wlog that the request of file n which occurs at time instant tn0 = 0 yields a cache

miss (i.e. m0 = tn0). File n enters in the cache at time tn0 and will be evicted when the B-th

cache miss will occur. If MN,n denotes the number of cache misses that yields the eviction of

file n from the cache, then it is obvious that:

MN,n
d
= B. (2.20)

Hence, the TTL value TB,n which is the sojourn time of file n in the cache is given as follows

TB,n :=mn̄1 +

B−1∑

i=1

ϑn̄i+1. (2.21)

Defining B̃K =
∑K
k=1ξk where ξk is an exponentially distributed rv with mean B/K, we have

B = lim
K→∞

B̃K and BK = ⌊B̃K⌋ ≤ B̃K < ⌊B̃K⌋ + 1.

Since B (= limK↑∞ B̃K) is an integer which is bounded by two consecutive integers B∞ and

B∞ + 1, it follows that

B = lim
K→∞

B̃K = lim
K→∞

BK where BK =

⌊

K∑

k=1

ξk

⌋

=

{
K∑

k=1

⌊ξk⌋ or
K∑

k=1

⌊ξk⌋ + 1

}
.

Assuming wlog that BK =
∑K
k=1⌊ξk⌋, the random variable TB,n can be written as following

TB,n = lim
K→∞

T
(K)
B,n; T

(K)
B,n = mn̄1 +

BK−1∑

i=1

ϑn̄i+1.

Replacing BK in the latter equation, we obtain

T
(K)

B,n = mn̄1 +

⌊ξ1⌋−1∑

i=1

ϑn̄i+1+ · · · +
⌊ξ1⌋+···+⌊ξK−1⌋+⌊ξK⌋−1∑

i=⌊ξ1⌋+···+⌊ξK−1⌋
ϑn̄i+1.

2.5 Single cache: TTL-based models 27

Hence, (2.21) becomes

TB,n = lim
K→∞

T
(K)
B,n = lim

K→∞

K∑

k=1

TB,n,k (2.22)

where

TB,n,1 = mn̄1 +

⌊ξ1⌋−1∑

i=1

ϑn̄i+1 and TB,n,k =

⌊ξk⌋−1∑

i=1

ϑn̄i+1, 2 ≤ k ≤ K.

Since the rvs {⌊ξk⌋}k≥1 are geometrically distributed with parameter 1 − e−K/B, the rv TB,n,1 is

identically distributed as the TTL of a RND cache of size 1/(1−e−K/B) (See Proposition 2.6) and

the distribution of the rv TB,n,k, k ≥ 2 is obtained by applying Proposition 2.6 with H(t) = 1

(or equivalently [75, Corollary of Theorem 2]).

The exact distribution of TB,n is cumbersome; however, each of the rvs TB,n,k, k ≥ 1 converges

in distribution to an exponentially distributed random variable with rate νn̄(1− e−K/B) ≈ νn̄K
B

when B is large enough i.e. B≫ K for fixed value of K (See Remark 2.3). The next proposition

gives the asymptotic distribution of TB,nwhen the cache size B and the catalog sizeN are large.

Proposition 2.8 (Degenerate CDF) As the cache size B and the catalog size N become large, the

CDF P(TB,n < t) may be approximated by a degenerate distribution

P(TB,n < t) ≈ 1 {t > tB,n} , where tB,n =
B

νn̄
. (2.23)

Proof The proof of this proposition is done as follows. Fix K > 1. As B (and N, since N > B)

becomes large i.e. B ≫ K, the rv T (K)
B,n may be approximated by an Erlang random variable of

K exponential stages each of mean B
νn̄K

. This result follows from the fact that T (K)
B,n is the sum

of K random variables {TB,n,k, k = 1, . . . , K} where each of these variables, say TB,n,k, converges

in distribution to an exponential random variable with mean B
νn̄K

when B ≫ K. Then, letting

K go to infinity, T (K)

B,n converges in distribution to a deterministic value equals to B
νn̄

. Hence,

TB,n = limK→∞ T
(K)
B,n ≈ B

νn̄
. The proof of Proposition 2.8 is then complete.

Remark 2.4 (TTL of RND and FIFO caches) It is interesting to note that the TTLs of RND and

FIFO caches of identical capacity B are approximately equal in expectation under the same traffic

conditions. We verify this claim when {Rn}n are Poisson Processes or Interrupted Poisson Processes

(i.e. a renewal processes with hyper-exponentially distributed inter-request times). This observation

will have a significant impact on the complexity of approximate models introduced in Chapter 5.

28 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

2.6 TTL-based caches and performance metrics

In the previous section, we characterize the Time-To-Live (TTL) of LRU, RND and FIFO

caches. Now we will present the TTL-based model of each of the latter policies. The main

contribution of this section is how we use each of these TTL-based models to calculate the

cache performance metrics and describe the miss processes.

2.6.1 Properties of TTL-based models

Infinite capacity and files decoupling. The characterization of the TTL TB,n obtained in

Section 2.5 provides interesting descriptions of LRU, FIFO or RND caches. They can be seen as

expiration-based caches with infinite capacity where the eviction of file n from the cache occurs

only when its TTL TB,n expires. Hence, the main advantage of this description is that files can

be decoupled and studied separately as shown in Figure 2.1. The analysis carried out for a single

file will apply for others; only the parameters will change with respect to the file.

Server

MissesExo. Requests

Retrieval

1

Cache

TTL

TTL

Cache Server

1

Figure 2.1: Infinite cache capacity and TTL decoupling effect.

Per-file state behavior. Since we can focus on a single file, the description of the miss process

on this file is greatly simplified as we can see in Figures 2.3 and 2.2. The TTL-based model of

FIFO caches initializes the timer of a file only when a cache miss occurs on that file. Meanwhile,

the model of LRU caches draws the TTL of a file at each cache miss instant, but also when a hit

occurs on the file.

Since RND caches may be asymptotically described by exponentially distributed TTL-based

caches, it is interesting to mention that they can be studied using both TTL-based models de-

picted in Figures 2.3 and 2.2. This is a direct consequence of the memory-less property of the

exponential distribution. More precisely, the remaining TTL at cache hit instants has the same

asymptotic exponential distribution as the initial TTL set at the miss instant.

Proposal of taxonomy for TTL-based caches. The TTL-based behaviors shown in Figures 2.3

and 2.2 are not inherent properties of FIFO/RND and LRU caches respectively. They have been

2.6 TTL-based caches and performance metrics 29

hit miss

time

m
n
1

τ
n
i

file n in cache

τ
n
1

m
n
0

inter-miss time ϑ
n
1

tn
0 . . . t

n
it

n
1 t

n
i+1

T
(i)

B,n

T
(1)

B,n
T

(0)

B,n

Figure 2.2: TTL-based model of a single file in a single LRU cache, request instants {tni }, timers

{T
(i)
B,n} and miss instants {mni }.

hit miss

. . .

mn
2

.

timetn0 tn1 tH−1 tH

file n in cache file n in cache

SH+1

mn
0 mn

1

SH

τn
1 τn

H τn
H+1

inter-miss time ϑn
1

caching duration T
(0)
B,n

T
(1)
B,n

S1

H hits

Figure 2.3: TTL-based model of a single file in a single FIFO cache, request instants {tni }, timers

{T
(i)
B,n} and miss instants {mni }.

described also on traditional and modern DNS caches by [59] and [19] respectively. Moreover,

if we allow the rv TB,n to have a general distribution, we define a TTL-based cache.

Until now, we have identified two classes of TTL-based caches: TTL-non-renewing caches (see

Figure 2.3) and TTL-renewing caches (see Figure 2.2).

Remark 2.5 (Geiger Counters) We note that the two classes of TTL-based caches coincide with

the well-known Geiger counters of Type I and Type II [22, Sect. 10.e and Sect. 10.f, pp. 179-183].

2.6.2 Single TTL-based cache analysis

For the sake of readability, we first introduce our main assumptions and our notation for the

simple architecture of a single TTL-based cache and a server connected in tandem, as shown

in Figure 2.1. The terminology and the formalism introduced here will be extended later to

general TTL-based cache networks in Chapter 3. From now on the words “cache” and “node”

will be used interchangeably. Also, a cache will always be a TTL-based cache unless otherwise

specified. We now introduce a key assumption for our approach:

Assumption 2.1 (Infinite capacity) The TTL-based cache has an infinite capacity.

30 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

A consequence is that content items are evicted from the cache only when their TTL expires and

not because space is needed to allocate other contents. Assumption 2.1 allows us to decouple

the management of the different content items and study each of them separately as illustrated

in Figure 2.1. For this reason, in what follows we will refer to a single content item or file n.

The effect of capacity constraint is considered latter in this section.

In order to keep the model as simple as possible we also assume that file n processing and

transfer times are negligible:

Assumption 2.2 (Zero delay) There is a zero processing time at each node and a zero transmis-

sion delay between nodes including the server.

In fact, the model presented in this section can be easily extended to consider non-zero process-

ing time and/or delay. This latter case will be investigated in Chapter 7.

For the time being we assume the following minimal assumptions:

Assumption 2.3 (Stationary arrivals and TTLs) The point process Rn = {tni , i ∈ Z} is simple

(i.e. there are no simultaneous requests), stationary (i.e. {τni , i ∈ Z} is a stationary sequence),

and independent of the sequence of TTLs {T
(i)
B,n, i ∈ Z} which is also assumed to be stationary. Fur-

thermore, the intensity λn := 1/E[τn1] of the point process Rn is non-zero and finite, its associated

counting process {N (t), t ≥ 0} is stationary, and 0 < 1/µn := E[T
(1)
B,n] <∞.

Under Assumption 2.3 the cache is in steady-state (in particular) at time t = 0 and from now

on we will only observe its behavior at times t ≥ 0. We denote by Fn(t) = P(τni < t) and

Tn(t) = P(T
(i)
B,n < t) the CDFs of τni and T (i)

B,n, respectively.

From now on we assume that each cache satisfies Assumptions 2.1, 2.2 and 2.3.

Requests for a specific file n are generated at times {tni , i ∈ Z} such that . . . < tn−1 < t
n
0 ≤ 0 <

tn1 < . . . by convention, where Z denotes the set of all integers. We recall that τni = tni+1− tni

is the inter-arrival time between i-th and i + 1-st requests. Also, let T (i)
B,n (i ∈ Z) being the TTL

duration generated for the content after the arrival of the request at time tni .

Remark 2.6 (Multiple sources of requests) A cache may be fed by independent stationary streams

of requests. The resulting process is also a stationary process and the CDF Fn(t) = P0(τn1 < t) of

the first inter-arrival times is given under its Palm probability by [10, Sect. 1.4.2, Eq. 1.4.6].

We will study single cache in its steady-state regime, and we will calculate the following per-

formance metrics:

2.6 TTL-based caches and performance metrics 31

1. The hit probability. Denoted here by HP,n for a file n, it is the stationary probability

that the file is in the cache at request instants {tni }i>1. The miss probability MP,n is the

complementary probability 1−HP,n.

2. The occupancy. Denoted here by OP,n for a file n, it is the stationary probability that the

file is in the cache at any random instant t.

3. The miss rate. MR,n is the rate at which the cache forwards requests to the server.

4. The sojourn time. It is defined as the total time that a file stayed in the cache. Let Qn
denote the sojourn time of file n in the cache.

The hit probability is clearly a fundamental performance metric for a caching system. The

occupancy probability is equal to the fraction of time that a content spends in the cache and

then it can be used to characterize the stationary buffer distribution. For a single cache network

the miss rate quantifies the load on the server, but for a hierarchical cache network a miss at one

cache causes the request to be forwarded to higher-level caches. Hence, we need to characterize

the miss process to be able to evaluate the hit probability at higher-level caches. Finally, the

sojourn times of a file in RND, FIFO and LRU caches are expressed as follows:

Remark 2.7 (Sojourn times)

For RND caches, Qn = TB,n ;

For FIFO caches, Qn = TB,n ;

For LRU caches, Qn = TB,n 1(TB,n > τ
n
1) + (τn1 +Qn) 1(TB,n < τ

n
1).

The quantities (occupancy, hit probability and sojourn time) of a file n are related by a classical

result of Queueing Theory (see Proposition 2.9).

We recall that the miss process is the sequence of successive time instants 0 ≤ mn0 < m
n
1 < · · ·

at which misses occur in [0,∞), which are also the times at which the server forwards a copy

of file n to the cache. We denote by ϑni = mni+1 −mni the time interval between the i-th and

the (i + 1)-st misses for i ≥ 0 and Gn(t) = P(ϑni < t) the CDF of ϑni . Stronger statistical

assumptions on the sequences {τni , k ∈ Z} and {T
(i)
B,n, k ∈ Z} will quickly become necessary only

for the purpose of characterizing the miss process of the cache—cf. Chapter 3 and Chapter 4.

Remark 2.8 (On the miss process) Under Assumption 2.3 the sequence {tni ,Qn,i}i≥0, where the

random variables {Qn,i, i ≥ 0} are successive realizations of the sojourn time Qn, defines a station-

ary marked point process [10, Sect. 1.1.3] which corresponds to the miss process Mn. Note also

that miss instants are regenerative points for the cache; hence, the analysis of the cache can be

carried out within an inter-miss time interval (or between two consecutive regenerative points).

32 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

Table 2.1: Notation for a single-cache network

λn Request arrival rate of file n (single cache)

1/µn Expected TTL of file n (single cache)

Fn(t) CDF exogenous arrivals of file n (single cache)

Gn(t) CDF inter-miss times of file n(single cache)

Tn(t) CDF TTL duration of file n (single cache)

Z∗(s) LST of CDF Z(t)

HP,n,MP,n Hit, miss probability resp. of file n (single cache)

HR,n,MR,n Hit, miss rate resp. of file n(single cache)

OP,n Occupancy probability of file n (single cache)

The next proposition relates the hit probability, the occupancy and the sojourn time of a file n

in any cache running a replacement algorithm.

Proposition 2.9 (Mean-Value Formula or Generalized Little’s Law for Caches)

OP,n = λn× (1−HP,n) × Q̄n (2.24)

where λn = 1
E[τn1]

is the intensity of the stationary request process Rn, HP,n and Q̄n = E0[Qn] are

functions of parameters of the TTL distribution.

Proof The proof of this proposition is done by applying the Mean-Value Formulas in [10, For-

mula (1.3.2)] in two steps: (i) substitute Z(t) = 1(T
(0)
B,n > t), T1 = ϑn1 , g(z) = 1(z > 0) and the

integral in the expectation by Qn, and (ii) replace the intensity (E0[ϑn1])
−1 of the miss process

Mn i.e. the miss rate by (1−HP,n) × (E0[τn1])
−1.

Regardless the caching policy, the hit probability HP,n and the occupancy probability OP,n differ

in general. They are equal if the arrival process Rn = {tni , i ∈ Z} is a Poisson process thanks to

the PASTA property. This result was first used in [41, Sect. 6] for RND caches fed by Poisson

request processes. Our Proposition 2.9 is valid for all cache policies where request traffic is

modeled by stationary point processes.

Performance metrics of TTL-renewing caches. Consider the request submitted at time tn0
(the process for requests submitted at times tni with i 6= 0 is the same). There is a cache hit (resp.

cache miss) at time tn0 if file n is present (resp. is not present) in the cache at this time, which

corresponds to the situation where tn0 ≤ tn−1+ T
(−1)
B,n (resp. tn0 > t

n
−1+ T

(−1)
B,n). In the case of a

cache miss the request is instantaneously (because of Assumption 2.2) forwarded to the server at

timemn0 = tn0 and file n is retrieved from the server. By convention, file n is permanently stored

2.6 TTL-based caches and performance metrics 33

in the server. Once file n is fetched from the server, a copy of it is instantaneously transmitted

to the cache and the request is resolved at time tn0 , while a copy is kept at the cache. At time

tn0 the TTL of file n is set to T (0)
B,n both for a cache hit and for a cache miss. The next cache

miss after time mn0 will occur at time mn1 = tnj with j = min{l > 0 : tnl > t
n
l−1 + T

(l−1)
B,n }—see

Figure 2.2 where j = i+ 1.

Resetting the TTL tends to increase the total time spent in cache and the hit probability on

the cache especially for the most popular contents. This corresponds to the general objective to

move popular documents as close as possible to the users.

Before moving to the analysis of the single cache, we need to introduce more notation. For

any non-negative random variable (rv) ξ with a CDF F(t) = P(ξ < t) (∀ t ≥ 0), we denote by

F∗(s) = E[e−sξ] =

∫∞

0

e−stF(dt) =

∫∞

0

e−stdF(t), s ≥ 0

the Laplace-Stieltjes Transform (LST) of ξ. The notation F(dt) is used because the Probability

Density Function (PDF) f(t) of the rv ξ may not exist; otherwise, F(dt) is replaced by f(t)dt as

commonly seen. For any number a ∈ [0, 1], ā := 1− a by definition.

Define Ln(t) := P(τni < t, τni < T
(i)
B,n) the stationary probability that the inter-arrival time

between two successive requests is smaller than t and smaller than the TTL associated with the

former request. Because arrivals and TTLs are independent we have

Ln(t) =

∫t

0

(1− Tn(x))dFn(x), t ≥ 0. (2.25)

Using the notation in Table 2.1, the following proposition provides exact formulas for two of

the performance metrics of interest.

Proposition 2.10 (Hit probability and miss rate of TTL-renewing caches) Under Assumption

2.3 the (stationary) hit probabilityHP,n and the (stationary) miss rateMR,n, are respectively given

by

HP,n =

∫∞

0

(1− Tn(x))dFn(x) = Ln(∞), (2.26)

MR,n = λn(1−HP,n) (2.27)

where λn = 1/E[τn1] is the request arrival rate of file n.

Proof The stationary hit probability HP,n is defined as the probability that an arriving request

finds file n in the cache, i.e. the TTL has not expired yet, namely,

HP,n = P(τni ≤ T (i)

B,n) =

∫∞

0

P(x ≤ T (i)

B,n)dFn(x) =

∫∞

0

(1− Tn(x))dFn(x).

The stationary miss probability is MP,n = 1−HP,n so that the miss rate is given by (2.27).

The next result provides a closed-form formula for the cache occupancy OP,n.

34 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

Proposition 2.11 (Occupancy probability of TTL-renewing caches) Under Assumption 2.3 the

stationary cache occupancy OP,n is given by

OP,n = λn

∫∞

0

(1− Tn(t))(1 − Fn(t))dt. (2.28)

Proof Let χ(t) ∈ {0, 1} be the cache occupancy at time t with χ(t) = 1 if file n is in the cache at

time t and χ(t) = 0 otherwise. Since the cache is in steady-state at time t = 0 under Assumption

2.3, we have OP,n = E[χ(0)] = P(χ(0) = 1).

Letting Z(t) = χ(t), T1 = τn1 and g(z) = 1(z > 0) in [10, Formula (1.3.2), p. 21] yields

OP,n = λnE
0

[∫τn1
0

χ(t)dt
]

with E0 the expectation operator under the Palm probability P0 of the stationary point process

{tn, n ∈ Z} with associated marks {T
(i)

B,n, k ∈ Z}. P0 has the property that P0(t0 = 0) = 1 (see

[10, Definition (1.2.1), p. 14]) which implies χ(t) = 1(t < T
(0)
B,n) for t ∈ [0, τn1] under P0.

Hence,

OP,n = λnE
0

[∫τn1
0

1(T
(0)
B,n > t)dt

]

= λn

∫∞

0

E0
[∫x

0

1(T
(0)
B,n > t)dt

]

dFn(x) (2.29)

= λn

∫∞

0

(∫x

0

(1− Tn(t))dt
)

dFn(x)

= λn

∫∞

0

(1− Tn(t))

(∫∞

t

dFn(x)
)

dt

= λn

∫∞

0

(1− Tn(t))(1 − Fn(t))dt

where (2.29) is obtained by conditioning on the rv τn1 with CDF Fn(t) and by using the inde-

pendence of the rvs τn1 and T (0)
B,n. This completes the proof.

Performance metrics of TTL-non-renewing caches We consider the request submitted at

time tn0 and we assume that file n is not in the cache. There is a cache hit (resp. cache miss) at

time tni if file n is present (resp. is not present) in the cache at this time, which corresponds to

the situation where tni −tn0 ≤ T (0)
B,n (resp. tni −tn0 > T

(0)
B,n). In the case of a cache miss the request

is instantaneously (because of Assumption 2.2) forwarded to the server at time mn0 = tn0 and

file n is retrieved from the server. By convention, file n is permanently store in the server. Once

file n is fetched from the server, a copy of it is instantaneously transmitted to the cache and the

request is resolved at time tn0 , while a copy is kept at the cache. At time tn0 the TTL of file n is

set to T (0)

B,n for a cache miss. The next cache miss after timemn0 will occur at time mn1 = tnj with

2.6 TTL-based caches and performance metrics 35

j = min{l > 0 : tnl − tn0 > T
(0)
B,n ≥ tnl−1− tn0 }—see Figure 2.3 where j = H + 1 and H d

= N (T
(0)
B,n)

is the number of hits on file n.

Proposition 2.12 (Hit and occupancy probabilities of TTL-non-renewing caches) Under As-

sumption 2.3, the stationary hit probability HP,n and the stationary occupancy probability OP,n

are given by:

HP,n = 1−
(

1+ E0
[

N (T
(0)
B,n)

])−1

(2.30)

OP,n = λn× µ−1
n (1−HP,n) (2.31)

Proof Under Assumption 2.3 the miss process is also a stationary process; hence, we can com-

pute the hit probability within a stationary inter-miss time. The expected number of requests

with an inter-miss time is E0
[

N (T
(0)

B,n)
]

+ 1. Therefore, the fraction of requests that hit on the

cache is E0
[

N (T
(0)

B,n)
]

/
(

E0
[

N (T
(0)

B,n)
]

+ 1
)

. And (2.30) follows. The proof of (2.31) follows

from Proposition 2.9 and Remark 2.7 where Q̄n = E0[T
(0)
B,n] = µ−1

n .

2.6.3 Accounting for finite cache capacity

Case of LRU, RND and FIFO caches: Characteristic Time Approximation (CTA) The CTA

was initially obtained on LRU caches fed by Poisson request processes as follows. First, Che

et al. [23] approximate TB,n by a constant tB,n (See Remark 2.2). Then, they consider that

tB,n = tB,∀ n i.e. the TTL is identical for all files. Their experiments and the ones conducted

in [41, 66] confirmed the accuracy of these approximations on LRU caches.

Fricker et al. [41] extended the CTA to RND caches by noting that the expected sojourn time

(or equivalently the TTL) of a file in RND cache is independent to the file selected i.e. E[TB,n] ≈
tB, ∀n. They intuitively explained that the approximation “E[TB,n] ≈ tB, ∀n” is correct if

the intensity λn of the request process Rn of file n is negligible in comparison to the overall

intensity λ =
∑
nλn of the aggregated request process R =

⊗N
n=1Rn.

Martina et al. [72] also generalized the CTA to other replacement policies when {Rn}n are

renewal processes. They experimentally showed that the CTA should be stated as E[TB,n] =

tB,n ≈ tB, ∀n when N is large and they observed that the TTL of a RND cache may be approx-

imated by an exponentially distributed random variable. This observation is very important

especially when we describe the miss processes.

In order to provide new insights to the validity of the CTA, we will keep the dependency

of the rv TB,n for each file n. Thanks to our definition of the TTL of a given cache, we ex-

perimentally show that the rvs {TB,n, n = 1, . . . ,N} can be approximated by a single random

variable TB (See Figure 2.4). {Rn}n are assumed to be Poisson processes with rates modulated

36 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

by a Zipf law of parameter α = 0.65 and the total request rate equals 1. Requests are generated

from a catalog of size N = 104 and the cache capacity is set to B = 100. Figure 2.4 shows the

CDFs of the characteristic time of files of popularity rank n = 1, 10, 100, 1000. As already proved

by our asymptotic analysis in Section 2.5, we observed that TB,nmay be safely approximated by

a deterministic value for LRU or FIFO caches, and an exponentially distributed random variable

for RND caches.

Having this extension of the CTA in hand, we derived new results on the bound of the expected

value of the characteristic time E[TB,n]. These bounds hold for all cache policies when applying

the CTA (i.e. when we approximate E[TB,n] = tB,n by the same constant tB).

Proposition 2.13 (General inequalities) When tB,n ≈ tB, ∀n, the following inequalities hold

tB ≤ Q̄n , ∀ n (2.32)

λn(1−HP,n)tB ≤ OP,n ≤ λntB, ∀ n (2.33)

tB,min =
B

λ
≤ tB ≤ tB,max =

B

λ× M̄P

(2.34)

where M̄P =
∑N
n=1

λi

λ
(1 − HP,n) denotes the average miss probability of the cache and λ =

∑N
n=1λn is the aggregate request rate on the cache.

Proof The inequality (2.32) follows directly from the definition of the sojourn time Qn and the

TTL TB,n of file n. If a file sojourns in the cache, it must stay at least for a duration equal to the

characteristic time of the cache.

The left part of (2.33) follows from Proposition 2.9 and (2.32). Meanwhile, the right part is

easily obtained by noting that OP,n is the expected number of file n in the cache (OP,n ∈ [0; 1])

and λntB is the expected number of requests for file n within the time tB (λntB ≥ 1). The upper

and lower bounds in (2.34) are obtained by summing (2.33) over all files.

Proposition 2.13 will be of a particular utility, especially the lower bound tB,min charac-

terized in (2.34), as we will see in Chapter 5 where we derive very efficient algorithms to

approximate performance metrics on cache networks.

Case of TTL-based caches Proposition 2.9 can be applied with the CTA to define a more

general procedure that can accurately approximate the expected TTL value of a cache under

finite capacity constraints.

� First, we take the sum of OP,n over all the files n which is equal to the cache size B

N∑

n=1

OP,n = B (2.35)

2.6 TTL-based caches and performance metrics 37

0 50 100 150
0

0.5

1

Time to request B distinct files, t

C
D
F
,
P
(T

B
,n
<

t)

n= 1
n= 10
n= 100
n= 1000

(a) LRU

0 200 400 600 800 1000 1200
0

0.5

1

Time to remove file n from cache, t

C
D
F
,
P
(T

B
,n
<

t)

n= 1
n= 10
n= 100
n= 1000

(b) RND

0 50 100 150 200
0

0.5

1

Time to count B cache misses, t

C
D
F
,
P
(T

B
,n
<

t)

n = 1
n = 10
n = 100
n = 1000

(c) FIFO

Figure 2.4: CDFs of per-file characteristic time (or TTL) of three cache replacement policies.

38 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

� Thanks to the CTA, we approximate TB,n by a file-independent random variable i.e.

TB,n ≈ TB, ∀n.

� Finally, we solve the general fixed-point equation:

B =

N∑

n=1

λn× (1− h (n, E[TB])) × q (n, E[TB])

where HP,n ≈ h (n, E[TB]) and Q̄n ≈ q (n, E[TB]) are functions which depend on E[TB] and

the characteristics of the request processes {Rn}n.

Since (2.35) holds in average, it does not guarantee that no more than B files might have a

positive TTL at a given time instant t > 0. One should use instead the formulation:

P

(∣

∣

∣

∣

∣

N∑

n=1

1(τnt < TB,n) − B

∣

∣

∣

∣

∣

> η

)

< ε , ∀ε, η > 0, (2.36)

where τnt = t − tnj with j = max {l : tnl < t}. τ
n
t is also known as the age of the last request for

file n at time t. Assuming that TB,n
d
= TB, ∀n, (2.36) reduces to

P

(∣

∣

∣

∣

∣

N∑

n=1

1(τnt < TB) − B

∣

∣

∣

∣

∣

> η

)

< ε , ∀ε, η > 0.

2.7 Applications and existing experiments revisited

In this section we revisit some experiments on caches. First we recall the main assumptions

used for these simulations and then we show that our theoretic result justifies their accuracy.

In most of studies on RND and FIFO caches [41, 72] the cache capacity B is large, say B ∈
[102, 106]. This setting is enough to justify the accuracy of the CTA on RND and FIFO caches

thanks to Remark 2.3 and Proposition 2.8 respectively. Therefore, we focus on experiments

conducted on LRU caches.

2.7.1 LRU caches under IRM assumption: general results

We consider that Rn is a Poisson process with rate λn. Since the deterministic limit is

accurate when µN(t) diverges (see Proposition 2.5), we shall restrict our analysis to the case

where µN(t) converges. We give sufficient conditions under which µN(t) converges and we

shall provide approximations of the sum µ∞(t) needed to apply the CTA.

2.7 Applications and existing experiments revisited 39

Proposition 2.14 (Convergence and Approximation for Poisson processes) If the aggregated

rate
∑
nλn converges to a value λ, then the mean µN(t) and the variance σ2N(t) converge as N

goes to infinity and for any finite t > 0. Moreover, µN(t) is upper bounded by λ× t.
Assuming also that λn = φ(n) where φ(x) is a positive and decreasing function in x ∈ [0,+∞),

the mean µN(t) can be approximated by µ(t) with an error bound 0 ≤ µ∞(t)−µ(t) ≤ ε1(t) given

as following

µ(t) =

∫∞

1

(1− e−φ(x)t)dx =

∫φ(1)t

0

g(x, t)dx , ε1(t) =

∫φ(0)t

φ(1)t

g(x, t)dx (2.37)

where the function g(x, t) = (1− e−x) (−t−1)(φ−1) ′(xt−1) for any finite t > 0.

Proof This proposition is proved using the inequality 1− e−xt ≤ tx for t, x ≥ 0 as following

0 ≤ σ2N(t) ≤ µN(t) ≤ t
N∑

n=1

λn −→N λt.

The second part of this proposition follows from classical results on series-integrals convergence

since µN(t) =
∑N
n=1(1−e

−φ(n)t) where the inner function φ(x) is a positive decreasing function

in [0,∞). The function (φ−1) ′(x) is the first derivative of the inverse function of φ(x).

The condition “λ =
∑
nλn converges” of Proposition 2.14 is sufficient to have the convergence

of the mean µN(t). This condition simply states that the rate of the aggregated request process

R is strictly positive and finite; this implies that there is no explosion i.e. a finite number

of requests within any finite duration and the aggregated request process R is ergodic. This

condition always holds in practice. Under the conditions of Proposition 2.14, the next corollary

gives the approximate values of the total rate λ and the variance σ2N(t).

Corollary 2.1 (Total rate and variance) The total rate λ =
∑
nλn is approximated by λ̂ with

an error bound 0 ≤ λ− λ̂ ≤ ε0 given as following

λ̂ =

∫∞

1

φ(x)dx =

∫φ(1)

0

(−x)(φ−1) ′(x)dx , ε0 =

∫1

0

φ(x)dx (2.38)

The variance σ2N(t) can be approximated by σ2(t) with an error bound 0 ≤ σ2∞(t) −σ2(t) ≤ ε2(t)
given as following

σ2(t) = µ(2t) − µ(t) , ε2(t) = ε1(2t) − ε1(t) (2.39)

where µ(t) and ε1(t) are given in proposition 2.14.

Proof The first part of this corollary follows from classical results on series-integrals conver-

gence. The second part of the corollary is proved using the inequality (2.7) and the equality

σ2N(t) = µN(2t) − µN(t) from [41, Lemma 1].

40 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

The CTA on LRU caches consists in approximating TB,n ≈ tB as a constant which is the root

of the equation µ∞(tB) = B. We will instead solve the approximate equation µ(tB) = B which

is accurate if the cache capacity B is large. This claim is justified by the following corollary.

Corollary 2.2 (Coefficient of variation) The coefficient of variation c2N(t) may be approximated

by c2(t) and bounded by ε3(t) given as following

c2(t) =
µ(2t) − µ(t)

µ2(t)
≤ ε3(t) = (µ(t))−1 ≈ (λ̂t)−1, ∀t ≥ 1 (2.40)

where µ(t) is obtained in Proposition 2.14 and λ̂ is given in Corollary 2.1.

Proof The approximation c2(t) of the coefficient of variation c2N(t) follows directly from Propo-

sition 2.14, Corollary 2.1 and Equation (2.8); or more precisely, we have

c2N(t) =
σ2N(t)

µ2N(t)
=
µN(2t) − µN(t)

µ2N(t)
≈ c2(t) =

µ(2t) − µ(t)

µ2(t)
≤ 1

µ(t)

since

µ(2t) =

∫∞

1

(1− e−2tφ(x))dx =

∫∞

1

(1− e−φ(x)t)(1+ e−φ(x)t)dx ≤ 2µ(t).

The bound ε3(t) is a positive and decreasing function given that µ(t) is an unbounded and

strictly increasing function of t > 0. Since φ(x) is positive and decreasing, we have for ∀t ≥ 1

φ(x)(1 + φ(1)t)−1 ≤ φ(x)(1 + φ(x)t)−1

and it follows from the inequality x(1+ x)−1 ≤ 1− e−x ≤ x, x > 0 that

(1+ φ(1)t) × t
∫∞

1

φ(x)dx ≤ m(t) =

∫∞

1

(1− e−φ(x)t)dx ≤ t
∫∞

1

φ(x)dx.

Then,

0 ≤ ε3(t) − (λ̂t)−1 ≤ φ(1)

λ̂
= o(1) , λ̂ =

∫∞

1

φ(x)dx ≈ λ =
∑

n≥1
φ(n).

Clearly, the CTA on LRU caches i.e. TB,n ≈ tB using µ(tB) = B instead of µ∞(tB) = B will be

more accurate when the expected number of requests (of the aggregated process R) within tB
is large i.e. λtB ≫ 1. A sufficient condition for the latter to hold is to assume a large cache

capacity B ≫ 1. To see this, we rely on (2.34) where λtB ≥ λtB,min = B. We recall that the

equation µ(tB) = B has to be solved numerically. However, a closed-form expression of the

constant tB can be found in very few cases especially under the conditions of Proposition 2.14.

2.7 Applications and existing experiments revisited 41

Corollary 2.3 (Approximation of the characteristic time) If the request rate of process Rn
can be decomposed as λn = φ(n) = θ(N)ψ(n/N) where θ(.) and ψ(.) are respectively defined

in [1,+∞) and [0, 1], then

tB = Ψ−1(B/N)/θ(N) + o (1/θ(N)) (2.41)

where the function Ψ(t) = 1−
∫1
0
e−ψ(x)tdx and Ψ−1(.) is its inverse function.

Proof Note that if the decreasing rate function λn = φ(n) = θ(N)ψ(n/N), then

µN(t/θ(N)) =

N∑

n=1

1− e−λnt/θ(N) = N×
N∑

n=1

1− e−ψ(n/N)t

N
= N×

∫1

0

(1− e−ψ(x)t)dx + o(N).

By substitution, we obtain µN(t) = N Ψ(t× θ(N)) + o(N).

Taking tB = Ψ−1(B/N)/θ(N) + o (1/θ(N)) in this latter equation, we find µN(tB) = B.

This corollary generalizes the results in [41, Proposition 3] established for Poisson processes

modulated by a Zipf popularity law. We can easily check that when modulated by Zipf popular-

ity law, request rates λn satisfy λn = θ(N)ψ(n/N).

2.7.2 LRU caches under Poisson request processes: special popularity laws

In this section we apply our convergence results of Sections 2.5 and 2.7.1 to theoretically

explain the validity of the CTA which consists to approximate the expected TTLs of files by a

unique constant. We consider that {Rn}n are Poisson processes with rates λn modulated by a

file-popularity law.

Zipf-like distribution In this case λn = 1/nα, α > 0. By applying the equivalence principle

of series, one can show that the series given by the mean µN(t) and the variance σ2N(t) are the

same nature as the sum
∑
n(−t)/n

α. In fact, pn(t) = 1−e−t/nα →n 0 and pn(t)/(−tn−α)→n 1
justify the following equivalences:

pn(t)(1 − pn(t)) ∼ pn(t) ∼ (−t)/nα.

It is well known that the Riemann series
∑
n1/n

α converges if and only if α > 1. Therefore,

� when α ≤ 1 (this is the case in the experiments done in [23]) the mean µN(t) and variance

σ2N(t) both diverge; thus, the TTL TB may approximated by a constant tB solution of the

equation µN(tB) = B thanks to Proposition 2.5.

� if α > 1 (this is the case of the fluid analysis in [54]) then the total rate λ =
∑
nλn, the

mean µN(t) and the variance σ2N(t) all converge (see Proposition 2.14). Moreover their

42 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

limit are bounded using the series-integral convergence by µ(t) ≤ µ∞(t) ≤ µ(t) + ε1(t)

and σ2(t) ≤ σ2∞(t) ≤ σ2(t) + ε2(t) where

λ = ζ(α)

µ(t) = tα
−1

γ(1− α−1, t) − (1− e−t) (2.42)

σ2(t) = tα
−1
(

2α
−1

γ(1 − α−1, 2t) − γ(1− α−1, t)
)

− e−t(1− e−t), (2.43)

respectively with the error bounds ε0 = 0, ε1(t) = 1 − e−t + tα
−1
Γ(1 − α−1, t) and

ε2(t) = ε1(2t)−ε1(t) where γ(s, x) and Γ(s, x) are the lower and upper incomplete gamma

function and ζ(x) is the zeta Riemann function.

−10 0 10
−4

−2

0

2

Log−Time t

L
o

g
1
0
(C

v(t
))

−10 0 10
0

0.5

1

Log−Time t

A
p

p
ro

x.
 E

rr
o

r:
 ε

1
(t

)

−10 0 10
0

0.1

0.2

Log−Time t

A
p

p
ro

x.
 E

rr
o

r:
 ε

2
(t

)

Figure 2.5: Zipf popularity, α = 1.1

Figure 2.5 shows c(t) = σ(t)/m(t), the errors ε1(t) and ε2(t). As we can see, the instant

t = 1 (or log(t) = 0) has a significant importance. First, we note that c(t = 1) is already

small, ε1(t = 1) ≈ 1 and ε2(t = 1) ≈ 0. Then, the curve of ε1(t) suggests that an accurate

approximation of µ∞(t) is given by µ(t)+1. Finally, for t < 1 and α = 1.1, we know that µ∞(t)

is bounded by λ×t the average total number of requests where λ = ζ(1.1) ≈ 10.5844. Therefore

if the cache capacity B is greater than 10, it will take in average more than tB,min = B
λ
> 1 second

to have B different files requested. Hence, we can expect the average value of TB i.e. tB to be

greater than 1 second. Indeed, cv(tB) becomes negligible. Thus the CTA of TB,n by a constant

tB solution of µ(tB) = B− 1 (instead of µ∞(tB) = B) is still accurate.

Geometric popularity law Fricker et al. [41] proved that the CTA is accurate even for any

content popularity distribution if the condition “the variance σ2N(t) diverges as N, t ↑ ∞” holds.

Moreover, they considered a Geometric popularity law (i.e. λn = ρn) for which they found

that the latter condition is not satisfied and the CTA still works. They found that µ∞(t) grows

unboundedly and σ2∞(t) is asymptotically constant when t ↑ ∞ in order to explain why the CTA

works since c2N(t) −→t,N 0. We shall prove this result using the convergence of series µN(t)

and σ2N(t) for finite t > 0 not necessarily when t ↑ ∞.

2.7 Applications and existing experiments revisited 43

−10 0 10
−2

−1

0

1

Log−Time t

L
o

g
1
0
(C

v(t
))

−10 0 10
0

1

2

Log−Time t

A
p

p
ro

x.
 E

rr
o

r:
 ε

1
(t

)

−10 0 10
−1

0

1

Log−Time t

A
p

p
ro

x.
 E

rr
o

r:
 ε

2
(t

)

Figure 2.6: Geometric popularity, ρ = 0.9

� ρ ≥ 1. In this case pn(t) = 1 − e−ρnt →n 1 and the mean µN(t) diverges. By Proposi-

tion 2.5, the TTL TB may be approximated by a constant tB. Let us see how the variance

σ2N(t) behaves. By the equivalence principle the variance σ2N(t) and the series of func-

tions
∑
n(1−pn(t)) have the same nature and both converge by applying the D’Alembert

criteria to
∑
n(1− pn(t)) as follows.

1− pn+1(t)

1− pn(t)
= (e−t)ρ

n(ρ−1)→n 0 < 1 .

So, the mean µN(t) diverges and the variance σ2N(t) converges for finite t > 0 as N ↑ ∞.

In practice with large (but finite) value of N, approximating TB by a deterministic value

tB solution of µN(tB) = B is indeed accurate.

� ρ < 1. The total rate λ =
∑
nρ
n, the mean µN(t) and the variance σ2N(t) both converge

by applying Proposition 2.14 or D’Alembert criteria to the series
∑
npn(t).

pn+1(t)

pn(t)
=
1− e−ρn+1t

1− e−ρnt
=
1− e−ρn+1t

−ρn+1t
×
(

1− e−ρnt

−ρnt

)−1

× ρ→n ρ < 1.

We have µ(t) ≤ µ∞(t) ≤ µ(t) + ε1(t) and σ2(t) ≤ σ2∞(t) ≤ σ2(t) + ε2(t) where

λ = ρ(1− ρ)−1

µ(t) = (log ρ−1)−1 (γ+ log(ρt) + Γ(0, ρt))

σ2(t) = (log ρ−1)−1 (log(2) − (Γ(0, ρt) − Γ(0, 2ρt))) ,

respectively with error bounds ε0 = 0, ε1(t) = 1 − (log ρ−1)−1 (γ(0, t) − γ(0, ρt)) and

ε2(t) = ε1(2t) − ε1(t) where γ = 0.577 is the Euler’s constant and log(.) is the natural

logarithm.

Figure 2.6 shows c(t) = σ(t)/m(t) and the approximation errors for ρ = 0.9. Since the

average number of different requested files is not greater than λ× t where λ = 9, no more than

44 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

10 different files are requested within [0, t) given that t ≤ 1. Hence, if B is greater than 10which

is usually the case, it will take in average more than tB,min ≥ 1 seconds to request B different

files. This explains why [41] noticed that the CTA works in the case of Geometric popularity

with ρ < 1 (in other words, when the mean and the variance converge) even for small values

of time t. The curve of ε1(t) suggests that µ∞(t) ≈ µ(t) + 1 and TB may be approximated by

the solution of µ(tB) = B− 1.

Light-tailed popularity law Jelenkoviç [54] considered a generic Light-tailed popularity law

(i.e. λn = ce−δnβ where c, δ, β > 0) for which he derived the asymptotic miss probability [54]

using fluid approximation when B and N are infinite. The same author experimentally verifies

that his fluid model is still accurate when B is finite. For this latter use case, we shall provide a

very simple characterization of the TTL TBwhich can be use to easily compute the hit probability

of the cache under this light-tailed modulated request traffic. Since λn = φ(n) is a positive and

decreasing rate function, it follows that the aggregated rate λ =
∑
nλn converges and so the

mean µN(t) by Proposition 2.14. A straightforward calculation shows that

λ ≈ β−1δ−β−1

∫ce−δ

0

(

log(cx−1)
)β−1−1

dx (2.44)

µN(t) ≈ µ(t) = β−1δ−β−1

∫tce−δ

0

1− e−x

x

(

log(tcx−1)
)β−1−1

dx, (2.45)

and σ2N(t) ≈ σ2(t) = µ(2t) − µ(t) with error bounds ε0, ε1(t) and ε2(t) respectively given in

Proposition 2.14 and Corollary 2.1. The constant tB that approximates TB can be numerically

found solving µ(tB) = B.

2.7.3 LRU caches under renewal request processes

Hyper-exponential renewal processes Martina et al. [72] consider caches fed by renewal

request processes with inter-request times drawn from a 2-stage hyper-exponential distribu-

tion. These 2-stage hyper-exponential renewal processes are equivalent to Interrupted Poisson

Processes [39]. They assumed the intensities of renewal processes {Rn}n being modulated by

a Zipf popularity of parameter α = {0.7, 1} i.e. λn = n−α (we recall that typical values for

α found with real traces are within [0.65, 1]). Finally, they defined the rates of exponential

stages as λn,1 = λnz and λn,2 = λnz
−1 that incorporate a temporal locality into Rn through the

parameter z.

Using our convergence results, we will prove that the CTA they assumed and experimentally

verified is indeed true under their settings. The CDF of inter-request times of file n is Fn(t) =

1− pe−λn,1t− (1− p)e−λn,2t where p = 1− (1+ z)−1. A simple calculation of pn(t) the CDF of

2.7 Applications and existing experiments revisited 45

the forward recurrence time (2.1) leads to the following inequality and equivalence.

pn(t) ≥ λn
∫ t

0

pe−λnzxd(x) = pz−1(1− e−λnzt) ∼ pλnt.

Since we know that the Riemann serie
∑
nn

−α diverges for α < 1, it follows from the equiva-

lence principle and the previous inequalities that
∑
npz

−1(1 − e−λnzt) and µN(t) =
∑
npn(t)

diverge as well. By Proposition 2.5, we can approximate the characteristic time TB by a constant

tB as it was assumed in [72] without proof.

Hypo-exponential and shifted-exponential renewal processes We investigate other classes

of renewal request processes whose inter-request times have a coefficient of variation c < 1.

First, we consider that Rn is a hypo-exponential renewal process with rate λn. In this

case, c2 ∈ [1/2, 1[and the CDF of inter-requests times is Fn(t) = 1 − pe−λn,1t − (1 − p)e−λn,2t

where λn,i = 2λn

(

1+ (−1)(i−1)
√
2c2− 1

)−1

, i = 1, 2 and p = λn,2
λn,2−λn,1

. We assume wlog that

λn,2 > λn,1 i.e. p > 0 and 1−p < 0. The CDF of the forward recurrence times pn(t) is given by:

pn(t) = 1−
pλn

λn,1
e−λn,1t+

(p− 1)λn

λn,2
e−λn,2t ≥ 1−

pλn

λn,1
e−λn,1t = 1− c0e

−λnc1t

where c1 = (1+
√
2c2− 1)−1 and c0 =

(1+
√
2c2−1)2

2
√
2c2−1

.

It is obvious that if λn = φ(n) where φ(.) is a non-increasing function (the Zipf-like dis-

tribution is a special case λn = n−α, ∀α > 0), pn(t) does not converge to zero as n → ∞.

Hence, the mean µN(t) =
∑
npn(t) diverges. By Proposition 2.5, we can safely approximate

the characteristic time TB by a constant tB solution of the equation µN(tB) = B since N is large

but finite in practice.

We now consider that Rn is a renewal process with rate λn and inter-request times drawn

from a shifted-exponential distribution with rate parameter λn,0 = λn
c

and shift-parameter

d = 1−c
λn

. Here c2 may take any value less than 1 and the CDF of inter-request times is Fn(t) =

1− e−λn,0(t−d), t ≥ d.

� Consider that t ≥ d, pn(t) = 1 − ce(1−c)c−1 × e−c−1λnt . If λn = φ(n) where φ(.) is a

non-increasing function (the Zipf-like distribution is a special case λn = n−α, ∀α > 0),

pn(t) does not converge to zero unless c = 1 which is not possible since we assumed

that c < 1 in this paragraph. Therefore µN(t) diverges, Propositions 2.5 and 2.13 ensure

that we can safely approximate the characteristic time TB by a constant tB solution of

the equation µN(tB) = B where N is large but finite in practice. The solution tB of the

latter equation always exists within [d,∞[if tB,min = B
λ
> d otherwise µN(t) should be

calculated for t < d.

46 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

� Consider that t < d, pn(t) = λnt, µN(t) and λ =
∑
nλn have the same nature. This

case is interesting only if tB,min < d. Suppose λn follows a Zipf-like distribution, then the

mean µN(t) diverges if α ≤ 1 and converges otherwise. When µN(t) diverges we rely on

Proposition 2.5 to calculate the approximate value of TB as the solution of µN(tB) = B.

However, when α > 1, we find that µ∞(t) = ζ(α)t and σ2∞(t) = ζ(α)t− ζ(2α)t2 for t < d

and tB,min < d. By Corollary 2.2, we can approximate TB by a constant tB solution of

µ∞(t) = B within the interval [0, d[. Note that the solution of µ∞(t) = B may not exist in

[0, d[; in this case, we can find tB using µN(t) = B defined for t ≥ d.

2.8 Conclusions

In this chapter, we derive asymptotic models of classical replacement policies such LRU,

FIFO and RND when requests are generated by stationary and ergodic request processes from a

large catalog of files. We showed that caches running these policies can be studied as instances

of two general classes of TTL-based caches, namely TTL-renewing and TTL-non-renewing caches.

We noted that our classes of TTL-based caches coincide with the Geiger Counters of Type I and

Type II, thus making the “Theory of Counters” a basic block of a unifying framework to the

performance analysis of caching systems.

We revisit the Characteristic Time Approximation (CTA) which consists in approximating the

expected TTL values of files by an identical and constant value. The current definition of the

CTA can be seen as an assumption which states that the TTL of all files are equal in expectation.

Our result suggests that the CTA might be reformulated as follows: the TTL of all files are equal

in distribution. We also investigate why the CTA works well on several existing experiments.

We found that in all these studied cases their basic assumptions are enough to theoretically

justify the reliance on the CTA instead of having the CTA as an additional assumption for their

models. Our theoretic results clarify the conditions under which the CTA is expected to work

well, especially when the Poisson assumption does not hold and more generally with stationary

request traffic. We provide new results regarding the lower bound of the characteristic time

and a general procedure to calculate the TTL of a cache replacement policy under the CTA.

We showed that TTL-based models and TTL-based caches are of particular interest due

to certain properties they exhibit: infinite cache capacity and TTL decoupling effect. These

properties greatly simplify the calculation of performance metrics, the description of the states

of each file in the memory, the characterization of miss processes, and as we shall see in next

chapter, the performance analysis of heterogeneous cache networks.

2.8 Conclusions 47

48 Chapter 2: From popular cache replacement policies to Time-To-Live (TTL)-based policies

3

A UNIFIED FRAMEWORK FOR

PERFORMANCE ANALYSIS OF TTL-BASED

CACHE NETWORKS

3.1 Summary

In this chapter we present a theoretic framework for performance analysis of general and

heterogeneous TTL-based caches networks. We assume that caches may be either TTL-renewing

or TTL-non-renewing. Moreover, we consider that requests are correlated and described by sta-

tionary Markov-renewal processes. On a single cache, miss streams of requests are characterized

and closed-form formulas are derived for the calculation of the metrics of interest. For cache

networks with arbitrary topologies, we first introduce the notion of routing on polytrees consist-

ing of: (i) allowing requests of each file to flow towards one or many servers independently of

other files and (ii) avoiding request forwarding loops by maintaining independence among sev-

eral streams of requests (of a given file) that may feed a cache. Then, we address two network

operations related to the merging and splitting of request streams that feed and leave a cache

respectively. Finally, exact and iterative procedures are presented to calculate the performance

metrics at each cache of our general network.

Keyword 3.1 Exact analysis, TTL-based cache, general cache networks, routing on polytrees,

Markov-renewal theory, theory of counters, superposition and thinning of stationary processes.

49

50 Chapter 3: A unified framework for performance analysis of TTL-based cache networks

3.2 Introduction

The exponential growth of Internet and the tremendous variety of new technologies—such

as online media streaming, social networks, information-centric networks—dedicated to con-

tent distribution shed light on very challenging issues. How can we successfully achieve and

maintain high-speed access to contents while reducing congestion and adapting to the temporal

or geographical locality of the demands on such large scale distributed systems?

While the earlier solution on Internet was to deploy many regional repositories or mirrors of

parts of available contents (a.k.a. cache and content placement problem), other design choices

rely on caches which can communicate by sending queries among them in order to locate

contents in a distributed manner. History shows that the latter choice is very efficient thanks to

the success stories of the Domain Name Service [50, 59], Content Distribution Networks [86],

and Peer-to-Peer networks [90]. Recent proposals for the future Internet architecture such

as Content-Centric Network (CCN) [53] explicitly or implicitly assume that the routers have

storage facilities in order to cache part of the traffic according to the mobility of users.

There is a general agreement that caching is desirable, however network designers lack tools

to model and evaluate the performance of inter-connected caches. The analysis of such cache

networks pose significant challenges due to the various correlations they exhibit on orthogonal

components: (i) requests generated by users are naturally dependent (statistical correlation),

(ii) network topology (structural correlation), and (iii) cache management policies (space cor-

relation). As shown by Rosensweig et al. [83], these three types of correlations can severely

impact the performance of cache networks at equilibrium.

Considerable effort has been recently devoted to the analysis of cache networks [20, 23,

42, 72] (for tree cache networks) and [82] (for general cache networks). However, these

models are restricted to homogeneous network where caches are running the same replacement

policy, namely, Least Recently Used (LRU), Random Replacement (RND), or First-In First-Out

(FIFO), etc.). Moreover, the proposed models assume that request streams at any point of

the network obey the Independence Reference Model (IRM) i.e. they are generated by Poisson

processes [38]. The IRM assumption has been shown to not hold on the miss streams of LRU

caches in isolation [57].

Clearly, there is a lack of analytic tools to study general and heterogeneous network of

caches (made of LRU, FIFO and RND caches for example) under correlated requests. In this

chapter, we develop a unified framework to tackle this problem. We present a versatile cache

modeling approach called TTL-based model and we study general TTL-based cache networks

where requests are correlated. TTL-based caches were shown to be more general than LRU,

RND or FIFO caches in Chapter 2. However, Chapter 2 is not a prerequisite to understand the

current chapter.

3.3 Single TTL-based cache under Markov-correlated requests 51

Our framework is based on the following building blocks:

� Markov-renewal theory: to describe exogenous and correlated requests;

� Theory of counters: to characterize the states and miss processes of TTL-based caches;

� Thinning of processes: to describe the splitting of request streams;

� Superposition of processes: to characterize a process resulting from the merging of two or

more independent request streams.

This chapter is organized as follows. Section 3.3 introduces the notation, our main assumptions,

and preliminary results regarding the calculation of performance metrics and the characteriza-

tion of the miss process of a single TTL-based cache. In Section 3.4 we present our model of

a general cache network and our concept of “routing as polytrees”. Then we recall several ex-

isting results from the theory of processes and we apply them to derive an exact and recursive

procedure for the performance analysis of cache networks. Section 3.5 concludes this chapter.

3.3 Single TTL-based cache under Markov-correlated requests

Throughout this chapter we mainly focus on particular instances of TTL cache tree networks

with infinite buffer sizes. This key hypothesis allows us to decouple the management of the

different contents and study each of them separately. For this reason, in what follows we will

simply refer to a single file, content, or data chunk (simply called the file). From now on

the words “node” and “cache” will be used interchangeably. Also, a cache will always be a

TTL-based cache unless otherwise specified

New requests for a file can be generated at any node of the network according to a point

process R; these requests are referred to as exogenous requests or arrivals and the sequence

of these exogenous request instants {ti, i ≥ 1} is called the exogenous request process. If upon

the arrival of a new request the file is not present in the cache, the request is instantaneously

forwarded (i.e. zero processing time) to the server. Once the data is found at a server, a copy

of it is instantaneously transmitted (i.e. zero delay) to the cache. A new TTL is independently

set for the new copy of the data. If the cache parameter r is set to one (case: r = 1), requests

occurring before the TTL expires will reset the timer of the file; otherwise (case: r = 0) the

TTL is not renewed when a cache hit occurs as shown in Figure 3.1. By convention, the file is

permanently stored at the server.

Without loss of generality, we assume that the file is requested and enters in the cache at

time t0 = 0. We denote by τi = ti− ti−1 the inter-arrival time between the (i − 1)-th and i-th

request (i ≥ 1) of the file. We also define the miss process at a cache as the successive instants

52 Chapter 3: A unified framework for performance analysis of TTL-based cache networks

hit miss

τi

file in cache; r = 1

τ1

m0

inter-miss time ϑ1

t0 . . . tit1 ti+1

T (i)

T (0)

. . .

m2

inter-miss time ϑ2

time

file in cache; r = 0

T (0)

m1

Case: r = 1 Case: r = 0

Figure 3.1: Behaviors of a single file in a TTL-based cache (if r = 1 TTL is renewed otherwise

r = 0 TTL is not renewed), request instants {ti}, timers {T (i)} and miss instants {mi}.

at which misses occur at this cache, namely, the times {mi, i ≥ 0} at which the file is requested

and not found in the cache.

Let us denote by {ξi, i ≥ 0} a homogeneous, irreducible, discrete-time Markov chain on a

finite state-space S = {1, 2, . . . , J}. The Markov chain {ξi, i ≥ 0} will be referred to as the em-

bedded Markov chain (EMC) and the subscript i refers to the discrete time counter. We denote

by π(j) the stationary probability that the chain is in state j ∈ S and let π := (π(1), . . . , π(J)) be

the stationary vector. Throughout we assume that the system is in steady-state at time t = 0.

This implies, in particular, that πi(j) = π(j) for all i ≥ 0, j ∈ S. Since the TTL values are set

independently, we denote by T(t) = P(T (i) < t) their cumulative distribution function (CDF).

Assumption 3.1 (Markov renewal requests) The request process R = {ti, i ≥ 0} is a stationary

Markov renewal process; ∀i ≥ 0, t > 0, and (j, k) ∈ S2

P(τi+1 < t, ξi+1 = j | t1, . . . , ti, ξ1, . . . , ξi = k) = P(τi+1 < t, ξi+1 = j |ξi = k).

In other words, the sequence (ti, ξi)i≥0 defines a stationary Markov renewal process (MRP). Let

F(t) := [Fj,k(t)]j,k denote the kernel of this MRP; F(t) is the J×Jmatrix with (j, k)-entry given by

Fj,k(t) in (3.1). We also define the following matrices L(t) := [Lj,k(t)]j,k and R(t) := [Rj,k(t)]j,k

with coefficients Lj,k(t) and Rj,k(t) respectively given by (3.2) and (3.3)

Fj,k(t) = P(τi < t, ξi+1 = j |ξi = k) (3.1)

Lj,k(t) =

∫t

0

(1− T(x))dFj,k(x) (3.2)

Rj,k(t) =

∫t

0

(1− T(x))dMj,k(x) (3.3)

where M(t) =
∑
l≥0F(l)(t) and F(l)(t) is the l-fold convolution of F(t). We also introduce the

matrix T(t) := T(t) × I where I is the J× J identity matrix. For any non-negative rv X with

3.3 Single TTL-based cache under Markov-correlated requests 53

cdf χ(t) = P(X < t) (t ≥ 0), χ∗(s) = E[e−sX] =
∫∞
0
e−stdχ(t) (s ≥ 0) denotes its Laplace-

Stieltjes Transform (LST). For any number a ∈ [0, 1], ā := 1− a. In particular, if χ(t) is a CDF,

χ̄(t) = 1−χ(t) is the corresponding Complementary Cumulative Distribution Function (CCDF).

The integral and derivative operators are taken element-wise for matrices.

Now we are ready to analyze our TTL-based cache. The next proposition gives a characteriza-

tion of the miss process M of a TTL-based cache fed by the MRP R described above.

Proposition 3.1 (Miss process of TTL-non-renewing cache under MRP—Case r = 0) Under As-

sumption 3.1, the miss process M of a single TTL-non-renewing cache with parameter r = 0 is a

Markov renewal process. Its kernel is given by

G(0)(t) = F(t) −

∫t

0

dR(x)(I − F(t − x)) (3.4)

and the LST G(0)(t) is given by

G(0)∗(s) = I − (I + R∗(s)) (I − F∗(s)). (3.5)

Proposition 3.2 (Miss process of TTL-renewing cache under MRP—Case r = 0) Under Assump-

tion 3.1, the miss process M of a single TTL-renewing cache with parameter r = 1 is a Markov

renewal process. Its kernel is given by

G(1)(t) = F(t) − L(t) +

∫t

0

dL(x)G(1)(t− x), (3.6)

and the LST of G(1)(t) is given by

G(1)∗(s) = I − (I − L∗(s))−1 (I − F∗(s)). (3.7)

These results follow from the analogy between our TTL-based caches and the Geiger coun-

ters of Type I and Type II (See Remark 2.5 in Chapter 2). Classical results of the Theory of

counters [22, Theorem 10.20] and [22, Theorem 10.33] establish that the miss process (anal-

ogously, the sequence of registered particles) of a TTL-based (analogously, a counter) is also

a Markov renewal process under Assumption 3.1. The kernel G(0)(t) and G(1)(t) of the miss

process are given in [22, Formula (10.21)] and [22, Formula (10.34)] when r = 0 and r = 1

respectively. Finally, (3.4) and (3.6) are obtained by simple matrix algebra.

Two cache performance metrics are of particular interest: the hit probability HP(j) defined as

the probability that an arriving request finds the file in the cache, and the occupancy OP(j)

which is the probability that the file is in the cache at any time given that the EMC is in state j.

54 Chapter 3: A unified framework for performance analysis of TTL-based cache networks

Proposition 3.3 (Cache performance) When the environment is in state j ∈ S, the stationary

probability HP(j) that a request finds the file in the cache is obtained as follows

HP(j) = r̄
(

1− (1+ ejR(∞)1)−1
)

+ r ejL(∞)1. (3.8)

Moreover, the stationary probability OP(j) to find the file in the cache at any time is given by

OP(j) = λj

(

r̄ µ−1(1+ ejR(∞)1)−1+ r

[

µ−1−

∫∞

0

ej(I − T(t))F(t)1
]

)

(3.9)

where λ−1
j = E[τ1|ξ1 = j] =

∫∞
0

(1−
∑
kFj,k(t))dt, µ

−1 = E [T], ej is a row vector of zeros but 1 at

the j-th position, and 1 is a column vector of ones.

Proof When the EMC is in state j ∈ S at time t0, the hit probability HP(j) is the probability

that an arriving request finds the data in the cache i.e. the TTL has not expired yet; while the

occupancy OP(j) is the steady-state probability that a data is in the cache at any time.

If r = 0 then HP(j) is the ratio of the number of requests that occur during T by the total number

of requests needed to observe a cache miss. If r = 1 then HP(j) = P(τ1 < T
(1)|ξ0 = j). Hence,

HP(j) = r P(τ1 ≤ T (1)|ξ0 = j) +
r̄ ej R(∞) 1
1+ ej R(∞) 1

The miss probability is MP(j) = 1 − HP(j). Since λj is the arrival rate of requests at cache in

state j, the stationary hit and miss rates at cache is HR(j) = λjHP(j) and MR(j) = λj(1−HP(j))

respectively.

Equation (3.9) follows by applying Proposition 2.9 in Chapter 2 that provides the relation

between HP(j) and OP(j); hence the hit probability and the occupancy are given by

HP = π× (HP(1), . . . , HP(J))
t

OP = π× (OP(1), . . . , OP(J))
t

where (.)t is the vector transpose operator.

The previous results can be easily extended to the case where r is a Bernoulli random

variable such that the cache adopts a TTL-renewing behavior with probability E(r) and a TTL-

non-renewing behavior with the complementary probability. In this case, one can easily prove

the following result:

Corollary 3.1 (Miss process—Case r is a Bernoulli rv) Under Assumption 3.1, the miss pro-

cess M of a single cache with parameter r
d
= Bernoulli(E(r)) is a Markov renewal process. And its

kernel is given by

G(t) = (1− E(r)) G(0)(t) + E(r) G(1)(t), (3.10)

3.4 Heterogeneous TTL-based cache networks 55

where G(0)(t) and G(1)(t) are provided by (3.4) and (3.6) respectively. The LST G∗(s) of the latter

kernel is given by

G∗(s) = I −
[

E(r)(I − L∗(s))−1+ (1− E(r))(I + R∗(s))
]

(I − F∗(s)). (3.11)

Thanks to the characterization of TTL-based caches in isolation, we are now ready to study

cache networks. Propositions 3.1 and 3.3 will be repeatedly used at each cache.

3.4 Heterogeneous TTL-based cache networks

3.4.1 Model description

Network model Let G = (V, E) be the graph representing our cache network, V = {v1, . . . , vN}

the set of caches or nodes, and E ⊂ V × V the set of cache inter-connections. Since each TTL-

based cache in our network has an infinite capacity (and thus files are decoupled), we can focus

on the description of a single file over this network G.

Workload model At some of the nodes {vn ∈ V} in this system, a stream of file access requests

arrives exogenously. We denote by Rn = {tn,i}i≥0 the exogenous request process of the file at

node vnwhere tn,i is the arrival instant of the i-th request. Let λn denotes the rate of exogenous

arrival at cache vn. Rn is assumed to be a Markov renewal process (Assumption 3.1).

Routing model We consider that requests of our file are routed on a polytree that is a directed

graph without any undirected cycles. This polytree, noted P, consists of nodes of the general

graph G and it is built for each file (possibly independently of other files) by a routing protocol

or forwarding rule implemented at each node of our network in order to avoid routing loops.

We also consider that the file is stored permanently at one or more custodians or public servers

that are attached to the network at the root(s) of P. An illustration of this routing model

is shown in Figure 3.2. In this chapter, we will consider a probabilistic routing meaning that

in the case of several paths (e.g. at cache v2 in Figure 3.2), requests are forwarded among

several destinations according to a probability distribution (e.g requests are sent from v2 to v3
with probability p and from v2 to v5 with probability 1 − p in Figure 3.2). This routing model

guarantees that multiple streams of requests at each cache of the network are all independent.

It is interesting to note that if the network topology of G is a tree then requests are all routed

on this tree; and the independence among request streams becomes more obvious.

File and cache network states When a request for the file arrives at a cache, it generates a hit

if the file is located at the cache and a miss if not. In the event of a miss, the request is forwarded

56 Chapter 3: A unified framework for performance analysis of TTL-based cache networks

v4
v5

v2

v3

v1

Disk

Disk

Disk

Disk

Disk

Figure 3.2: Five nodes general cache network with two files: network topology (in black),

requests for blue file are routed as a tree (in blue) and that of the green file are routed as a

polytree (in green).

to other nodes in the network based on the routing model (or routing table) at each cache, until

the file is located in a cache or at the server storing the file. Then the file is forwarded along

the reverse path taken by the request, and stored at each cache along the way. A timer is set

for each new copy of the file at each node where the cache miss occurred during the request

forwarding process. Meanwhile, the TTL is reset (resp. not reset) at the node where the file

was found according to its class of the TTL-based cache i.e. if the cache parameter rn = 1 (resp.

rn = 0) as shown in Figure 3.1. We further assume zero delay and processing time i.e. requests

and copies of the file are instantaneously propagated in the network.

Now we are ready to analyze our general cache network. First, we will present classical

results on theory of processes that enable us to describe network primitives such as merging

and splitting streams of requests. And finally we will describe exact and recursive procedures

to calculate the metrics of interest at each cache of the network.

3.4.2 Aggregating request streams

In our network model, request streams that arrive on a cache may be of one the two kinds:

exogenous (e.g. directly from users) or endogenous (namely, miss processes of other caches). We

denote by C(n) the subset of nodes in V that belong to P and forward their requests to node

vn. Note that if G has a tree topology or if requests of the file are routed as a tree, the set C(n)

is simply the “children” nodes of node vn.

We start the description of aggregate processes at the leaves of the routing polytree P. At

these nodes, the aggregate request process is exactly the exogenous request process. Under As-

sumption 3.1 the miss process at each leaf is also a Markov renewal process by Proposition 3.1.

Then we move to higher level caches of P, say node vn. This cache is fed by the request

process An resulting from the aggregation of the exogenous request process Rn and the miss

3.4 Heterogeneous TTL-based cache networks 57

request processes {Mj, j ∈ C(n)}. By Assumption 3.1 and Proposition 3.1, Rn and {Mj, j ∈
C(n)} are all Markov renewal processes; furthermore, they are all independent due to our

Routing model based on the polytree P. Therefore, the aggregated request process An is a

stationary point process [10, Sect. 1.4.2] and the CDF of its first inter-request time under

the Palm probability of the process An is given by [10, Formula (1.4.6)]. Moreover An is

also a stationary Markov renewal process; this conclusion follows from a classical result by

Korolyuk [64].

3.4.3 Splitting a request stream

In our routing model, missed requests of a cache are probabilistically forwarded in the case

of two or more destinations. Hence, we shall describe each component process resulting from

the splitting of the original process. This operation is also known as thinning a process from

the theory of point processes [52]. We denote by F(n) is the set of cache in the forwarding

table of node vn and we consider that a request is sent from vn to i ∈ F(n) with probability

pn,i such that
∑
i∈F(n)pn,i = 1. This probabilistic routing is also called a Bernoulli routing.

Since all the processes of our network are Markov renewal processes, another classical result

by Manor [71] establishes that a Bernoulli thinned process denoted Tn,i of a Markov renewal

process Mn (or An) with probability pn,i at a node vn in the network is also a stationary

Markov renewal process. More complex routing schemes such as Markov Chain-based routing

can be implemented using the more general results on Markov chain thinning of a stationary

point process by Isham [52].

In light of all these classical results, we note that the main network primitives, namely (cache)

filtering, aggregating, and splitting, transform a Markov renewal process into another (simple

or complex) one. Hence, all the processes involved in our network are exactly described and

all belong to the same class of Markov renewal processes under Assumption 3.1.

3.4.4 Exact procedures for cache networks

We present exact, unified, and iterative procedures to study general and heterogeneous

TTL-based cache networks introduced in Section 3.4.1. We consider that each file is routed as

a polytree P and caches set the timer of a file independently of other files.

Case of infinite cache capacity Our algorithm consists in selecting a file and its routing

polytree P, then calculating the aggregated process, the miss process and the thinned processes,

if any, recursively at each cache of the routing polytree P. We summarize the procedure in the

following algorithm.

58 Chapter 3: A unified framework for performance analysis of TTL-based cache networks

Algorithm 1: Exact and Iterative Procedure for Performance Analysis of General and Het-

erogeneous TTL-based Cache Networks – Case of infinite cache capacity.
input : Graph G = (V, E), Files F = {f, f = 1, . . . , |F|}, Routing tables {P(f), f = 1, . . . , |F|},

Exo. procs & TTLs {(Rn,f, Tn,f, rn,f) , ∀(vn, f) ∈ V × {1, . . . , |F|}}

output: Performance Metrics {(HP,n,f, OP,n,f) , ∀ vn ∈ V, f = 1, . . . , |F|}

1 for f← 1, . . . , |F|

2 P ← P(f)

3 do

4 vn← select a node in P ⊲ Starting from leaves

5 An← aggregate request streams [64] {Mj,Ti,n,Rn, j ∈ C(n), n ∈ F(i)}

6 Mn← characterize miss stream, Proposition 3.1 An
7 (HP,n,f, OP,n,f)← calculate hit & occ. probs, Proposition 3.3 {An,Mn, Tn,f, rn,f}

8 {Tn,i, i ∈ F(n)}← split request streams [71] {Mn, pn,i, i ∈ F(n)}

9 while vn is not a server

10 end

Case of finite cache capacity: Polytree and Tree based network topology In this case, G is

a polytree (or simply a tree) graph as shown in Figure 3.3. The cache capacity constraints Bn
are given at each node. These capacity constraints are translated into the following terms: the

cache occupancy of vn should not exceed Bn in average.

vN disk

v2
vN−1

v1

disk

vN−3

vN−2

...

Figure 3.3: Polytree cache network.

Hence, the expected TTL values E[Tn,f] must satisfy the following equation:

|F|∑

f=1

OP,n,f ≤ Bn, ∀vn ∈ V (3.12)

where OP,n,f is given in (3.9) as a function of the expected TTL µ−1
n,f = E[Tn,f].

Therefore, Algorithm 1 is modified as follows.

Note that requests of all files are flowing in the “same direction” i.e. towards the root(s) of

3.4 Heterogeneous TTL-based cache networks 59

Algorithm 2: Exact and Iterative Procedure for Performance Analysis of Heterogeneous

TTL-based Polytree Cache Networks—Case of finite capacity.
input : Graph G = (V, E), Files F = {f, f = 1, . . . , |F|}, Routing tables {P(f), f = 1, . . . , |F|},

Exo. procs & TTLs {(Rn,f, rn,f) , ∀(vn, f) ∈ V × {1, . . . , |F|}}

output: Performance Metrics {(HP,n,f, OP,n,f, Tn,f) , ∀ vn ∈ V, f = 1, . . . , |F|}

1 do

2 vn← select a node in G ⊲ Starting from leaves

3 for f← 1, . . . , |F|

4 An,j← aggregate request streams [64] {Mj,f,Ti,n,f,Rn,f, j ∈ C(n), n ∈ F(i)}

5 (OP,n,f(E[Tn,f]))← calculate functs, Prop. 3.3 {An,f, rn,f}
6 end

7 {E[Tn,f], f = 1, . . . , |F|}← calculate expected TTLs, Eq. (3.12) {Bn, OP,n,f(E[Tn,f])}

8 for f← 1, . . . , |F|

9 (HP,n,f, OP,n,f)← calculate hit & occ. probs, Proposition 3.3 {E[Tn,f]}

10 Mn,f← characterize miss stream, Proposition 3.1 An,f
11 {Tn,i,f, i ∈ F(n)}← split request streams [71] {Mn,f, pn,i,f, i ∈ F(n)}

12 end

13 while vn is not a server

60 Chapter 3: A unified framework for performance analysis of TTL-based cache networks

the graph G and Algorithm 2 takes advantage of this polytree structure to solve Eq. (3.12) step

by step at each node of the network before characterizing the miss process on each file.

Case of finite cache capacity and arbitrary network topology The main difference with the

previous case is that requests may flow in “opposite direction”. This case has been shown to

possibly lead to situations with very poor network performance since states of caches are de-

pendent [83]. The dependence of the caches states on each other prevents us from calculating

the expected TTL values E[Tn,f] in one step as previously done. In fact all processes arriving

on a cache might have not been characterized. In order to clarify this claim, we illustrate the

situation on a basic network: a tandem of two caches (see Figure 3.4).

miss exo.

1 2 S1S2

Figure 3.4: Tandem of two caches and two files: one is green and the other is blue.

We express the capacity constraints of this simple network as follows

OP,1,g (E[T1,g]) +OP,1,b (E[T2,b], E[T1,b]) ≤ B1; (3.13)

OP,2,g (E[T1,g], E[T2,g]) +OP,2,b (E[T2,b]) ≤ B2. (3.14)

where the occupancy OP,1,b (resp. OP,2,g) of the blue file b (resp. green file g) at cache 1

(resp. cache 2) depends on both expected TTL values E[T1,b] and E[T2,b] (resp. E[T1,g] and

E[T2,g]). Therefore the capacity constraints (3.13) and (3.14) are coupled by the expected TTL

values {E[T1,f], E[T2,f], f = g, b}. Our general network algorithm will initialized the expected

TTL values and increases their values until the equality is met in the capacity constraints (3.13)

and (3.14).

The initialization of E[Tn,f] = Bn∑
fΛn,f

in step 3 of Algorithm 3 is obtained as follows. We

first note that OP,n,f is the expected number of file f in cache n. This implies that OP,n,f ∈
[0, 1]. Meanwhile, OP,n,f is upper bounded by Λn,fE[Tn,f] the expected number of requests

for file f that a Poisson process with same rate as the aggregated request process An,f would

have generated during the period E[Tn,f]. By initializing the expected TTL value to same value
Bn∑
fΛn,f

, the network capacity constraints are not violated. Then, Algorithm 3 will adjust these

expected values at each iteration by actualizing the miss processes of each cache.

3.4 Heterogeneous TTL-based cache networks 61

Algorithm 3: Exact and Iterative Procedure for Performance Analysis of Heterogeneous

TTL-based Polytree Cache Networks
input : Graph G = (V, E), Files F = {f, f = 1, . . . , |F|}, Routing tables {P(f), f = 1, . . . , |F|},

Exo. procs & TTLs {(Rn,f, rn,f) , ∀(vn, f) ∈ V × {1, . . . , |F|}}

output: Performance Metrics {(HP,n,f, OP,n,f, Tn,f) , ∀ vn ∈ V, f = 1, . . . , |F|}

1 Mn,f← Rn,f ⊲ initialize miss stream, as if MP,n,f = 1

2 An,j← initialize request streams [64] {Mj,f,Ti,n,f,Rn,f, j ∈ C(n), n ∈ F(i)}

3 {E[Tn,f], f}← initialize expected TTLs
{
Bn∑
fΛn,f

, OP,n,f(E[Tn,f])
}

⊲ Λn,f is the rate of An,f
4 do

5 vn← select a node in G ⊲ Starting from edges

6 for f← 1, . . . , |F|

7 Mn,f← characterize miss stream, Proposition 3.1 An,f
8 An,j← aggregate request streams [64] {Mj,f,Ti,n,f,Rn,f, j ∈ C(n), n ∈ F(i)}

9 (OP,n,f(E[Tn,f]))← calculate functs, Prop. 3.3 {An,f, rn,f}
10 end

11 {E[Tn,f], f}← update TTLs {Bn, OP,n,f(E[Tn,f])} ⊲ Network cache capacity constraints

12 for f← 1, . . . , |F|

13 (HP,n,f, OP,n,f)← calculate hit & occ. probs, Proposition 3.3 {E[Tn,f]}

14 Mn,f← characterize miss stream, Proposition 3.1 An,f
15 {Tn,i,f, i ∈ F(n)}← split request streams [71] {Mn,f, pn,i,f, i ∈ F(n)}

16 end

17 while
∑
fOP,n,f = Bn, ∀vn ∈ V

62 Chapter 3: A unified framework for performance analysis of TTL-based cache networks

3.5 Conclusions

We summarize the main contributions of this chapter. We presented a unique model for

single TTL-based caches. Then we derived the cache performance metrics and we charac-

terize the cache miss processes under the assumption that requests are correlated by Markov

renewal processes. We presented a unified framework for the performance analysis of general

and heterogeneous TTL-based cache networks. This framework is built on top of existing re-

sults of Theory of counters and Theory of stationary point processes (superposition and thinning

of stationary point processes). We proposed three algorithms to analyze heterogeneous cache

network having general topology, implementing a probabilistic routing based on per-file poly-

trees, and receiving requests correlated by Markov renewal processes. Our analytic findings

and our algorithms lead in theory to exact results at a price of a huge complexity. We will

see in next chapter that our assumption of Markov-correlated requests can be strengthened and

stronger statements such as requests described renewal processes or Markov-Arrival processes can

be assumed in several applications without loosing much in the accuracy of our framework.

3.5 Conclusions 63

64 Chapter 3: A unified framework for performance analysis of TTL-based cache networks

4

APPLICATION CASES: CONTENT-CENTRIC

NETWORKS AND DOMAIN NAME SYSTEM

4.1 Summary

In this chapter, we are interested in TTL-based cache networks where requests may be

described by renewal processes i.e. they are assumed to be independent and identically dis-

tributed. We study TTL-based caches within two contexts: (i) Content-Centric Networks (CCNs)

and (ii) Domain Name System (DNS). In the first case a TTL-based policy is presented as pro-

posal of cache management algorithm of content-routers; while, TTL-based models are used to

describe a recent behavior of DNS caches over Internet in the second case. In both application

cases, our studies show that performance metrics of these cache networks can be predicted with

high accuracy i.e. the relative errors are within 1%–5%.

Keyword 4.1 Performance analysis, Content-Centric Networks, (modern) Domain Name System,

TTL-based cache, renewal theory, optimal TTL distribution.

4.2 Content-Centric Networks

Many researchers have been working on performance analysis of cache networks where

caches may run various replacement policies like Least Recently Used (LRU), First-In First-Out

(FIFO) or Random (RND). However, no exact results are provided, and many approximate

models do not scale even for the simple tandem of two caches. In this section, we study a

65

66 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

Time-To-Live based policy (TTL), that assigns a timer to each content stored in the cache and

redraws the timer each time the content is requested (at each hit/miss). These TTL-based

caches are called TTL-renewing caches in previous chapters. We derive the analysis of networks

of these TTL-based caches under the assumption that requests are independent and identically

distributed i.e. generated by renewal processes. In particular, we determine exact formulas for

the metrics of interest of linear-star networks which generalize tandem and two-level tree of

caches. For more general and hierarchical networks, our approximate solution is very accu-

rate with the relative errors smaller than 10−2 for both Matrix-Exponentially Distributed and

constant TTLs.

4.2.1 Introduction

Caches are widely used in networks and distributed systems for improving performance.

They are integral components of the Web [23], the Domain Name Service (DNS) [60], and

Content Distribution Networks (CDNs) [86]. More recently there has been a growing empha-

sis on content networks (like Content-Centric Networks) where content or data item is centric

and host-to-content interaction is the common case [53]. Many of these systems give rise to

hierarchical (tree) cache topologies and to even more general irregular topologies. The design,

configuration, and analysis of these cache systems pose significant challenges. A few approx-

imations have been proposed, instead, for a simple two-level LRU cache network [23] and

general LRU cache networks [82]. However, their inaccuracies can be significant as reported in

[82] where the relative error reaches 16%.

When an uncached data item is brought back into the cache due to a cache miss, a local

TTL is set. TTL values can be different for different data, but also for the same data item at

different caches1. All requests to that data item before the expiration of the TTL are cache hits;

the first request for that data item to arrive after the TTL expiration will yield a cache miss. In

that case, the cache may forward the request to a higher-level cache, if any, or to the server.

When located, the data item is routed on the reverse-path and a copy is placed in each cache

along the path.

This proposal makes the case that TTL-based policies are interesting alternatives to replace-

ment algorithms such as LRU or RND for two reasons. First, a TTL policy is more configurable

(it can implement service differentiation, quality of service as shown in Chapter 7) and in par-

ticular it can mimic the behavior of other replacement policies thanks to a proper choice of

parameters (i.e. the TTL distributions, see Section 4.2.8). Second, while LRU or RND cache

networks have defied accurate analysis, networks of TTL-based caches appear simpler to study

as we shall show in Sections 4.2.3 and 4.2.4.
1This is then different from the TTLs in DNS system where the TTL for a given data item is in general set to a

common value determined by the authoritative name server (see Section 4.3).

4.2 Content-Centric Networks 67

We develop a set of building blocks for the performance evaluation of hierarchical TTL

cache networks where TTLs are set at each request instant. These blocks allow one to model

exogenous requests at different caches as independent renewal processes and to describe TTL

duration by arbitrary distributions as long as requests and timers are independent of each other.

The building blocks consist of:

� a renewal model of a single content TTL cache when fed by a renewal request stream,

� a renewal process approximation of the superposition of independent renewal processes.

The first block forms the basis to evaluate the performance metrics and to describe the output

sequence of requests (the miss stream) of a cache. Meanwhile, the second block is used to char-

acterize the resulting process of the superposition of several independent streams of requests

consisting of exogenous requests from users and/or missed requests from other caches if any.

These blocks are applied to assess the performance metrics of hierarchical TTL-based cache net-

works. We then show how the computational cost of our approach simplifies when TTLs and

the inter-arrival times of the exogenous request streams at every cache are Matrix-Exponentially

Distributed (MED). We refer to this case in short as a MED cache network. The class of Matrix-

Exponential distributions coincides with the class of distributions having a rational Laplace-

Stieltjes Transform that can be used to fit properties of general processes [35, 46, 61, 77].

We derive exact results for some cases but when they are not, the relative errors are extremely

small. Precisely, event-driven and Monte-Carlo simulations on instances of MED cache networks

reveal that the relative errors between the simulated networks and our model predictions are

less than 10−2 for all metrics of interest. Thus, we believe our approach is promising and

capable of accurately modeling a richer class of network topologies.

The contributions of this section are:

� the proposal of TTL-based replacement policies for content-routers of ICN architectures,

� an analytic tool to assess the performance of hierarchical TTL-based cache networks.

The remainder of this section is organized as follows. In Section 4.2.2, we introduce the

notation and the model assumptions. Section 4.2.3 contains our model of a single TTL-based

cache and provides the exact characterization of the performance metrics and the miss process.

We describe in Section 4.2.4 and Section 4.2.5 general procedures to study any hierarchical

TTL-based cache network. The key points in these sections are how we extend the exact anal-

ysis of single cache to cache network in an exact manner and how we model the combined

exogenous and miss requests streams as a renewal point process thanks to a result from [69,

Eq.(4.1)], [10, Eq.(1.4.6)] regarding the computation of the marginal inter-arrival distribution

for a superposition of independent renewal processes respectively. Simplified procedures are

68 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

also derived for MED cache networks. The accuracy of the general and of the simplified pro-

cedures is evaluated in Section 4.2.6 and a discussion of the computational complexity of our

analytic approach can be found in Section 4.2.7. Section 4.2.8 discusses how our TTL-based

model can be implemented under finite capacity constraints, and how the TTL policy can mimic

different policies like LRU or RND. Our proposal is summarized in Section 4.2.9.

4.2.2 Definitions and assumptions

Throughout this section we mainly focus on particular instances of TTL-based cache tree

networks with infinite buffer sizes. This key hypothesis allow us to decouple the management

of the different contents and study each of them separately. For this reason, in what follows we

will simply refer to a single content or data chunk (simply called the data). The effect of finite

buffer is considered in Section 4.2.8. From now on the words “node” and “cache” will be used

interchangeably. Also, a cache will always be a TTL cache unless otherwise specified.

New requests for a data item can be generated at any node of the network according to

mutually independent processes; these requests are referred to as exogenous requests or arrivals

and the sequence of these exogenous request instants is called the exogenous request process.

If upon the arrival of a new request the data item is not present in the cache, the request is

instantaneously forwarded to the next level of the tree and the process repeats itself until the

data item is found. In case the data item cannot be found along the path toward the root, the

root retrieves it from a server. Once the data item is found, either at a cache or at a server, a

copy of it is instantaneously transmitted to each cache along the path between the cache where

the data item was found and the cache that issued the request2. A new TTL is set for each

new copy of the data item and the TTL is redrawn at the cache, if any, where the data item

was found (by convention, the TTL at the server is infinite). This is in contrast with the model

in [59] where there is no TTL reset upon a cache hit. Resetting the TTL also at each cache

hit increases the occupancy and the hit probability specially for popular contents (high request

rate). This choice is motivated by the host-to-content paradigm of moving popular documents

as close as possible to the users.

We define the miss process at a cache as the successive instants at which misses occur at this

cache, namely, the times at which the data item is requested and is not found in the cache. Let

us denote by C(n) the set of children of cache n. The (overall) request process, also called the

arrival process, at cache n is the superposition of the miss processes of caches in C(n) and of

the exogenous request process at cache n, if any.

If Λn is the arrival rate of requests at cache n, HP,n (resp. MP,n = 1 − HP,n) and HR,n =

ΛnHP,n (resp. MR,n = Λn(1 − HP,n)) denote the stationary hit (resp. miss) probability and

2We observe that our TTL-based policy could be used also in conjunction with other strategies that do not keep

a copy at every cache along a path, like those in [67].

4.2 Content-Centric Networks 69

Table 4.1: Glossary of main notation for cache n in a Content-Centric Network

λn Exogenous arrival rate at cache n

Λn Total arrival rate at cache n

1/µn Expected TTL at cache n

Fn(t) CDF exogenous arrivals at cache n

Hn(t) CDF overall arrivals at cache n

Gn(t) CDF inter-miss times at cache n

Tn(t) CDF TTL duration at cache n

HP,n,MP,n Hit, miss probability resp. at cache n

HR,n,MR,n Hit, miss rate resp. at cache n

OP,n Occupancy of cache n (stationary

probability content is in cache n

C(n) Set of children of cache n

χ∗(s) LST of CDF χ(t)

the stationary hit (resp. miss) rate at cache n, respectively. We denote by OP,n the steady-state

probability that the data item is in cache n and we call it the occupancy of cache n. Hence, we

just have to calculate HP,n and Λn.

For t ≥ 0, s ≥ 0, and a non-negative random variable X with Cumulative Distribution

Function (CDF) χ(t) = P(X < t), χ̄(t) = 1−χ(t) is the Complementary Cumulative Distribution

Function (CCDF), and χ∗(s) = E[e−sX] =
∫∞
0
e−stdχ(t) denotes its Laplace-Stieltjes Transform

(LST).

4.2.3 Analysis of a single cache

We consider a TTL-based cache n in isolation. Requests arrive at the cache according at

instants {tk, k ≥ 0}. Without loss of generality, we assume that the first request arrives at time

t0 = 0 and finds an empty cache. We denote by X(k) the inter-arrival time of the k-th and

(k+ 1)-th requests. We also denote by T (k) the TTL duration set at the request instant tk, k ≥ 0.
To state the next results we need to strengthen the statistical assumptions made on the

sequences {X(k), k ≥ 0} and {T (k), k ≥ 0}.

Assumption 4.1 (Renewal arrivals and TTLs) Both sequences {X(k), k ≥ 0} and {T (k), k ≥ 0}

are independent renewal sequences i.e. successive inter-request times and TTLs at each cache are

independent and identically distributed (i.i.d.) random variables. Morever TTLs are independent

of the exogenous arrivals.

Assumption 4.1 is general enough to cover a broad range of applications. In his earlier

70 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

work, Whitt [95] developed two basic methods to approximate a point process with a renewal

process, and he showed in a joint work with Feldmann [35] that the long-tailed distributions

which are generally observed in network performance analysis can be fitted by a renewal pro-

cess with a hyper-exponential inter-arrival distribution. Also, Jung et al. [59] used renewal

processes with Weibull and Pareto CDFs to fit the traces of DNS servers at the MIT Computer

Science and Artificial Intelligence Laboratory and the Korea Advanced Institute of Science and

Technology. More recently, Nelson and Gerhardt [77] have surveyed different methods used to

fit a general point process to a special Phase-Type renewal process via Moment Matching tech-

niques. In contrast to many existing works where it is assumed that the arrival process obeys

to the Independent Reference Model (IRM) (or equivalently [38] that the arrival process is a

Poisson process), our renewal assumption 4.1 is less restrictive.

We denote by Fn(t) and Tn(t) the CDFs of generic inter-arrival time X(k) and TTL duration

T (k) at cache n. Define Ln(t) := P(X(k) < t,X(k) < T (k)) the stationary probability that the

inter-arrival time between two successive requests is smaller than t and smaller than the TTL

associated with the former request. Because arrivals and TTLs are independent we have

Ln(t) =

∫t

0

(1− Tn(x))dFn(x), t ≥ 0. (4.1)

Using notation in Table 4.1, the performance metrics at cache n are given as follows.

Proposition 4.1 (CCN Cache Performance with Renewal requests) Under Assumption 4.1 the

hit probability, hit rate and miss rate denoted by HP,n, HR,n and MR,n, respectively, are given by

HP,n =

∫∞

0

(1− Tn(t))dFn(t) = Ln(∞), (4.2)

HR,n = ΛnHP,n, MR,n = Λn(1−HP,n). (4.3)

Moreover, the occupancy probability OP,n is derived as follows

OP,n = ΛnE

[∫X(0)

0

(1− Tn(t))dt

]

. (4.4)

Proof The stationary hit probability HP,n is defined as the probability that an arriving request

finds the data item in the cache, i.e. the TTL has not expired yet, namely,

HP,n = P(X(k) ≤ T (k)) =

∫∞

0

P(x ≤ T (k))dFn(x) =

∫∞

0

(1− Tn(x))dFn(x).

The stationary miss probability is MP,n = 1−HP,n so that the miss rate is given by (4.3).

Let V be the time during which the document is in the cache between two consecutive

request arrivals. We have OP,n = E[V]/E[X(0)] = ΛnE[V] by renewal theory. Let us find E[V].

Define the binary random variable U(t) to be one if the document is in the cache at time t and

4.2 Content-Centric Networks 71

zero otherwise. Without loss of generality consider the interval [0, X(0)] corresponding to the

inter-arrival time between the first and the second request. We have

E[V] = E

[∫X(0)

0

U(t)dt

]

= E

[∫X(0)

0

E[U(t)|X(0)]dt

]

= E

[∫X(0)

0

(1− Tn(t))dt

]

where the last equality follows from E[U(t)|X(0)] = E[U(t)] = P(U(t) = 1) = P(T (0) > t).

Remark 4.1 (Stationary arrivals) Proposition 4.1 is still valid even if the arrival process is a

general stationary request process. This result is established in Chapter 2.

We now evaluate the CDF Gn(t) of the miss process which is needed to extend the analysis to

a network of caches since a cache may receive requests due to misses at lower-level caches.

Proposition 4.2 (CCN Cache Miss Stream with Renewal requests) Under Assumption 4.1 the

miss process of at cache n taken in isolation is a renewal process. The CDF Gn(t) of the inter-miss

times is the solution of the integral equation

Gn(t) = Fn(t) − Ln(t) +

∫t

0

Gn(t− x)dLn(x) (4.5)

or, in compact form, Gn = Fn− Ln+ Ln ⋆ Gn with ⋆ denoting the convolution operator. The LST

G∗(s) of the inter-miss times is given by

G∗
n(s) =

F∗n(s) − L∗n(s)
1− L∗n(s)

. (4.6)

Proof Without loss of generality, assume that the first request arrives at time t0 = 0 and finds

an empty cache. Since a miss triggers a new TTL, miss times are regeneration points for the

state of the cache under Assumption 4.1. This implies that miss instants form a renewal process

which is fully characterized by the CDF Gn(t) of the generic inter-miss time denoted by Y .

hit miss

t0
timetk

m1

X
(k)

data in cache

tk+1. . .t1
X

(0)

T
(0) T

(1)

T
(k)

inter-miss time Y
(0)

m0

Figure 4.1: TTL-based model of content-router in CCN

72 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

The rest of the proof is an adaptation of a classical argument in renewal theory (see [22,

Chapter 9]). Recall that X(0) (resp. Y(0), T (0)) denotes the first inter-arrival time (resp. inter-

miss time, TTL value) after t0 = 0 as shown in Figure 4.1. Since Y(0) ≥ X(0) the event {Y(0) < t}

may only occur if X(0) < t. Therefore,

Gn(t) = P(Y(0) < t, T (0) < X(0) < t) + P(Y(0) < t, T (0) > X(0), X(0) < t)

= P(T (0) < X(0) < t) + E
[

Gn(t− X(0))1(T (0) > X(0), X(0) < t)
]

= P(X(0) < t) − P(X(0) < t,X(0) < T (0)) +

∫ t

0

Gn(t − x)P(T (0) > x)dFn(x) (4.7)

where we have used the independence of X(0) and T (0) to establish (4.7). Then it follows from

equation (4.1) that

Gn(t) = Fn(t) − Ln(t) +

∫t

0

Gn(t − x)(1 − Tn(x))dFn(x)

= Fn(t) − Ln(t) +

∫t

0

Gn(t − x)dLn(x) (4.8)

The renewal equation (4.8) may be written Gn = Fn− Ln+ Ln ⋆ Gn. It is well known that its

solution exists and is unique and is given by Gn = R ⋆ (Fn − Ln) [22, Theorem 2.3, p. 294]

where R =
∑
k≥0L

(k)
n and L(k)

n denotes the kth-fold convolution of the function Ln with itself

(by convention L(0)
n ≡ 1).

From the identity Gn = Fn− Ln+ Ln ⋆Gn we readily get (4.6), which concludes the proof.

Approximation for LRU caches

Che et al. [23] have experimentally shown that LRU caches fed with requests described

by Poisson processes can be accurately modeled as deterministic TTL-based cache in isolation.

In a 2013 paper, Martina et al. [72] have extended these experimental results [23] to the

case of renewal request processes. The constant TTL value D is referred to in [23, 72] as the

characteristic time of the LRU cache, and it is obtained by solving a fixed-point equation. Their

results are theoretically established in Chapter 2. A similar fixed-point equation is derived in

the case of finite cache capacity as shown in Section 4.2.8. Given a deterministic TTL value Dn
at cache n, we have Tn(t) = 1(t > Dn) and Equations (4.2), (4.3), (4.4) and (4.5) become

Corollary 4.1 (Deterministic TLLs)

HP,n = Fn(Dn) , MR,n = Λn(1− Fn(Dn)) , OP,n = Λn

∫Dn
0

(1− Fn(x))dx (4.9)

Gn(t) = 1(t > Dn)

(

Fn(t) − Fn(Dn) +

∫Dn
0

G(t− x)dFn(x)
)

(4.10)

4.2 Content-Centric Networks 73

Remark 4.2 (Counters of Particles) A single cache with a deterministic TTL is called a Geiger

counter of Type II in [22, Example (1.34), p. 292].

Approximation for RND caches

It was experimentally shown in [72] that RND caches can be studied as memoryless TTL-

based caches with exponentially distributed TTLs. Also in this case, the expected TTL value

µ−1 is solution of a fixed point equation as derived in Section 4.2.8 and proved in Chapter 2.

In this case if Tn(t) = 1 − e−µnt is the exponential TTL distribution at cache n then L∗n(s) =

F∗n(s + µ), the metrics of interest and the miss process characterization follow directly from

Equations (4.2), (4.3), (4.4) and (4.6).

Corollary 4.2 (Exponential TLLs)

HP,n = F∗n(µn) , MR,n = Λn(1− F∗n(µn)) , OP,n =
Λn(1− F∗n(µn))

µn
(4.11)

G∗
n(s) =

F∗n(s) − F∗n(s+ µn)

1− F∗n(s+ µn)
. (4.12)

Optimality of a deterministic TTL-cache

Applying standard results about convex ordering and the formulas (4.2–4.4), we obtain the

following interesting property for a deterministic TTL cache.

Proposition 4.3 Given the expected TTL value D = E[T] and the CDF Fn(t) of inter-arrival times,

the occupancy OP,n is maximized when the TTL is deterministic and equal to D. Moreover, if Fn(t)

is a concave function then the hit probability HP,n is maximized too.

Proof We will show that the deterministic TTL distribution maximizes/minimizes our metrics

of interest (i.e. the hit probability HP,n and the occupancy probability OP,n) when the mean

TTL value D = E[T] is known. First, we prove the following lemma.

Lemma 4.1 (Convex ordering) If D and T are respectively constant and random TTLs such that

E[T] = D, then the following relation holds

D ≤cx T (4.13)

where ≤cx is the convex ordering.

Proof [Lemma] The definition of convex ordering of random variables T1 and T2 says T1 ≤cx T2

if and only if E[φ(T1)] ≤ E[φ(T2)] where φ(.) is a convex function. We shall show that this

74 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

convex ordering holds for any random TTL T and constant TTL D such that E[T] = D in order

to prove the lemma. For any random TTL T ≥ 0 and any convex function φ(.), we have thank

to Jensen’s inequality :

E[φ(T)] ≥ φ(E[T]) = φ(D) = E[φ(D)]

The last equality follows from the fact that φ(D) is a constant

Now, we resume the proof of our proposition. We assume that the TTLs {T (k)}k≥0 are sam-

pled from a general distribution T(t) such that E[T] = D. Observe that the occupancy OP,n(T)

and hit probability HP,n(T) are functions of the timer T which can be written as following:

OP,n(T) = ΛnE [φ(T)] , HP,n(T) = E[Fn(T)]

where Fn(x) is the CDF of X and φ(t) =
∫t
0
(1 − Fn(x))dx. The second derivative of φ(t) is

φ ′′(t) = −F ′n(t) ≤ 0 because F ′n(t) is a probability density function; hence, φ(t) is a concave

function for any Fn(x). Then by applying Lemma 4.1, it follows that OP,n(T) ≤ OP,n(D) for any

timer T such that E[T] = D. Meanwhile, if Fn(x) is concave, Lemma 4.1 states that HP,n(D) ≥
HP,n(T).

We note that if the request process is a Poisson process, the occupancy OP,n and the hit

probability HP,n are equals and theses metrics are maximized when the TTL is deterministic.

Proposition 4.3 theoretically explains the superiority, in terms of hit and occupancy probabil-

ities, of LRU caches over RND caches (given that D = µ−1) when they are fed by IRM traffic (or

Poisson processes [38]) or traces in [35, 59] fitted by renewal processes. We can easily check

that the CDFs Fn(t) of inter-arrival times in these experiments are concave functions. Since a

cache in isolation is completely analyzed, we can now investigate inter-connected caches.

4.2.4 Exact analysis on hierarchical TTL-based cache networks

In this section we present a class of cache networks for which an exact analysis can be

derived from a simple extension of arguments introduced for single caches. Then we analyze

TTL-based cache networks fed by exogenous renewal request processes. We assume each cache

has an infinite buffer; also processing and transmission delays in the network are negligible.

Hence, files at each cache are decoupled and can be separately studied.

Therefore, we focus on a single file whose requests are propagated along a tree, but it is

easy to generalize to a polytree. In fact, the case where requests are routed on a polytree is

derived from the tree analysis by applying the results on dependent thinning of a point process

by Isham [52] at each position in the network where requests are forwarded between two or

more destinations. We draw the attention of the reader to the fact the cache network topology

does not have to be a tree (or a polytree); in fact, it can be general because files are decoupled

4.2 Content-Centric Networks 75

C4
C5

C2

C3

C1

High

Disk
Speed

High

Disk
Speed

High

Disk
Speed

High

Disk
Speed

High

Disk
Speed

Figure 4.2: Five caches network with planar graph topology.

and requests can be independently routed (see the example in Figure 4.2 where requests for

the green file are routed on as polytree and that of the blue file are routed as tree).

We consider then a tree of caches: the root is connected to the server, each other cache

has a parent cache to which it forwards all the requests which cannot be satisfied locally. Once

located, the data item is routed on the reverse-path and a copy is placed in each cache. Each

cache operates exactly as described in the previous section, by setting a TTL for each new data

item stored and redrawing the TTL at each cache hit. We recall that C(n) is the set of children

of cache n.

The following assumption holds:

Assumption 4.2 (TTL values) TTL values extracted at each cache are i.i.d. values. We recall that

Tn(t) is the CDF of TTL values at cache n. TTL values at different caches are independent and they

are also independent from the request arrival processes.

The ICN content-routers [3] are examples of caches that behave independently of other

caches and of the requests they receive. They also decide locally what content to store or

discard at least as described in the paper of Van Jacobson et al. [53].

Each cache, say cache n, receives two flows of requests: users’ requests arriving directly at a

cache are called exogenous and form the exogenous arrival process, misses at the children caches

in C(n) form the endogenous arrival process. We generalize Assumption 4.1 as follows:

Assumption 4.3 (exogenous request streams are renewal processes) The exogenous arrival

processes are independent renewal processes. We denote by Fn(t) and λn the CDF of the inter-arrival

times and the rate of exogenous requests at cache n respectively.

The superposition of the exogenous and endogenous arrival processes at cache n forms the

aggregated arrival process. We introduce Hn(t) and Λn to denote respectively its inter-arrival

76 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

time CDF and its rate. The notation is summarized in Table 4.1. The exact analysis we carried

out on caches in isolation can be extended immediately to the case of linear-star networks, that

we study below.

Linear network A linear cache network is a tandem of caches and one server/disk, where

exogenous requests arrive only to the cache farthest from the server/disk as illustrated in Fig-

ure 4.3. Since the arrival process at the first cache is a renewal process (Assumption 4.1) the

miss process of the first cache is also a renewal process (Proposition 4.2). Therefore, the second

cache is fed by a renewal process. Reasoning in this way iteratively, we can then show that all

the caches are fed by a renewal process. Moreover, all the metrics of interest can be derived

successively at each cache from the results on a single cache analysis in Section 4.2.3.

2 disk1 renewal
exogenous

request process
N· · ·

Figure 4.3: Linear cache network.

Example: Tandem of exponential TTL-based caches.

Consider the linear cache network in Figure 4.3 composed of N TTL caches labeled n =

1, 2, . . . ,N. Requests arrive only at cache 1 according to a renewal process with arrival rate λ1
and CDF of inter-request times F1(t). We can then apply recursively the results obtained for a

single cache. In particular, if we denote by G∗
n(s) the LST of the inter-miss times at cache n, we

may apply formula (4.12) where the LST of the inter-arrival times is G∗
n−1(s). We obtain

G∗
n(s) =

G∗
n−1(s) −G∗

n−1(s+ µn)

1−G∗
n−1(s+ µn)

(4.14)

for n = 1, . . . ,N, where G∗
0(s) = F∗1(s). At the cache n the hit probability HP,n = G∗

n−1(µn), the

miss rateMR,n = MR,n−1(1−HP,n) and hit rate HR,n = MR,n−1HP,n are derived by using (4.14)

MR,n = λ1

n−1∏

i=0

(1−G∗
i(µi+1)), (4.15)

HR,n = λ1

n−2∏

i=0

(1−G∗
i(µi+1)) G

∗
n−1(µn), (4.16)

with MR,0 := λ1. The occupancy of cache n is given by applying (4.4) with F1(t) = Gn−1(t)

and λ1 = MR,n−1, hence

OP,n = MR,n−1

(

1−G∗
n−1(µn)

µn

)

. (4.17)

4.2 Content-Centric Networks 77

Star network A star cache network is a tree with one internal node i.e. the root and leaves

(see Figure 4.4). For this two-level tree, the metrics of interest and the miss process are easily

found at each leaf from the single cache analysis in Section 4.2.3. The miss processes are also

renewal processes since the request processes at the leaves are renewal processes. Hence, the

root is fed by the aggregated request process resulting from the superposition of the (renewal)

miss processes and its exogenous renewal process. It is possible to calculate exactly the CDF

of the first inter-arrival time in the aggregated arrival process (see Theorem 4.1 and following

remarks), then the metrics of interest are obtained from Proposition 4.1 since the aggregated

process is a stationary process (See Remark 4.1). Our analysis provides exact results on star

networks of caches.

...
N + 1 disk

1

2

N

Figure 4.4: Star cache network.

Example: Two-level tree of exponential TTL-based cache.

Consider the tree network in Figure 4.4 with one root (labeled N + 1) and N children

(leaves) labeled n = 1, 2, . . . ,N. The exogenous requests arrive at the n-th node according

to a Poisson process with rate λn. While the TTL is exponentially distributed with rate µn at

the n-th leave, we assume an arbitrary CDF TN+1(t), with LST T∗N+1(s) for the TTL at the root.

Using the results in Section 4.2.3 to study caches n = 1, 2, . . . N in isolation, and Theorem 4.1

to calculate the CDF of the overall request inter-arrival time at cache N + 1, we can derive all

metrics of interest [26, Sect. 3.3].

Linear-star network We generalize our exact approach on the two previous networks topolo-

gies by defining a class of networks called Linear-star cache network illustrated in Figure 4.5.

We can characterize the exact performance metrics on any network that belongs to this class as

follows: we start from the leaves and apply Propositions 4.1 and 4.2 (as was done for the linear

network), until we reach the root where we apply Theorem 4.1 and Proposition 4.1 (as it was

described for the star network).

4.2.5 Approximated methodology for general tree networks

The approach we described in Section 4.2.4 cannot be extended to arbitrary hierarchical

networks. The problem arises from the fact that the aggregated arrival process is not in general

a renewal process (this is not the case even if the exogenous and endogenous arrival processes

78 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

disk
...

11

1ℓ · · ·

· · ·

+Nℓ + 1
N1 + . . .

N1

Nℓ

Figure 4.5: Linear-star cache network.

are both renewal ones). Hence, we cannot apply Proposition 4.2 that allows us to characterize

the exact miss process. Indeed in the linear-star cache network we cannot extend our analysis

beyond the cache with more than one child. Nevertheless, for our analysis we will suppose that

the aggregated request process is a renewal process and we make the following approximation:

Approximation 4.1 (Overall Process) The overall (aggregated) arrival process at node n is ap-

proximated by a renewal process with inter-arrival time CDF Hn(t).

Note that the statement above has a different status than the other assumptions in this

chapter. While the assumptions can be considered approximations for actual cache networks,

they are internally consistent. On the contrary the statement in Approximation 4.1 is in general

false, even in the framework of our model. Nevertheless, it makes the analysis possible and

leads to excellent approximations as we are going to show later.

We have shown in Section 4.2.3 that the miss process of a TTL cache fed by a renewal

process is itself a renewal process, then a corollary of Approximation 4.1 is that each miss

process can be considered a renewal process. In this case, the aggregated arrival process is the

superposition of independent (due to the tree topology of the network) renewal processes and

the CDF Hn(t) of inter-arrival times has been calculated by Lawrence [69, Formula (4.1)].

Theorem 4.1 The CDF A(t) of the first inter-event time of the point process resulting from the

superposition of K independent renewal processes is given by

A(t) = 1−

K∑

k=1

αk∑K
l=1αl

(1−Ak(t))

K∏

j=1,j6=k
αj

∫∞

t

(1−Aj(u)) du,

where Ak(t) and αk > 0 are respectively the inter-event time CDF and the arrival rate of the kth

process.

Theorem 4.1 actually holds for the superposition of independent stationary point processes

[10, Formula (1.4.6), p. 35]. Note in passing that such a superposition is itself a stationary

process, which allows us to use Proposition 4.1 to compute the hit probability, miss rate and

cache occupancy, respectively, of a cache fed by the superposition of independent stationary

processes (see Remark 4.1), and then in particular of renewal ones.

4.2 Content-Centric Networks 79

Thanks to Approximation 4.1 and Theorem 4.1, we are ready to study any cache tree net-

work. The total request rate Λn at a node n, is

Λn = λn+
∑

i∈C(n)

MR,i (4.18)

where C(n) is the set of children of node n. Since the exogenous process (with CDF Fn(t)) and

the miss process at the i-th child of node n (with CDF Gi(t)) are renewal processes, we invoke

Theorem 4.1 to compute the approximate inter-arrival times CDF Hn(t) of the overall arrival

process. We get

Hn(t) = 1−
λn

Λn
F̄n(t)

∏

i∈C(n)

MR,i

∫∞

t

Ḡi(u)du

−
∑

i∈C(n)

MR,i

Λn
Ḡi(t)λn

∫∞

t

F̄n(u)du ×
∏

j∈C(n)
j 6=i

MR,j

∫∞

t

Ḡj(u)du. (4.19)

The approximate inter-miss times CDF Gn(t) at cache n is obtained from Proposition 4.2 since

we approximate the overall request process by a renewal process with CDF Hn(t)

Gn(t) = Hn(t) − Ln(t) +

∫t

0

Gn(t− x)dLn(x) (4.20)

where Ln(t) =
∫t
0
(1− Tn(x))dHn(x) and Tn(t) is the CDF of the TTL duration at cache n.

Equations (4.18), (4.19) and (4.20) provide a recursive procedure for calculating, at least

numerically, the request rate Λn and the approximate CDFs Gn(t) and Hn(t) at each cache n of

an arbitrary hierarchical network starting from the leaves. The approximate metrics of interest

80 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

are obtained from Proposition 4.1. Our approach is summarized in the following algorithm:

Algorithm 4: General procedure on tree fed by renewal request processes
input : TreeDepth d, CDFs Fn(t), {Gi(t), i ∈ C(n)} and {Tn(t), n ≥ 1}
output: Metrics of interest Λn, HP,n, OP,n and CDF Gn(t)

1 while d 6= 0 do ; // Ca
hes are different from the server

2

3 foreach n in the set of caches at depth d do ; // Start from Leaves

4

5 Λn
Eq(4.18)←−−−−− {λn,MR,i, i ∈ C(n)};

6 if C(n) = ∅ then

7 Hn(t)← Fn(t);

8 else

9 Hn(t)
Eq(4.19)←−−−−− {Fn(t), Gi(t), i ∈ C(n)};

10 end

11 HP,n, MR,n, OP,n
Prop.(4.1)←−−−−−− {Hn(t), Tn(t)};

12 Gn(t)
Eq(4.20)←−−−−− {Hn(t), Tn(t)};

13 end

14 d← d− 1;

15 end

While this algorithm allows us to study any cache tree under any possible exogenous arrival

processes and TTL distributions, its numerical complexity can be very high as it requires to

evaluate some integrals over infinite ranges as in (4.19) and to solve an integral equation as

in (4.20). As we are going to show, simpler algorithms exist for more specific distributions.

Hierarchical networks of with exponential TTL-based caches

In order to show that this complexity can be significantly reduced, we focus on a particular

class of tree networks, class N having a caterpillar tree topology (see Figure 4.6) and we give

explicit results. The TTL at each node n is exponentially distributed with rate µn. A network

belongs to class N if, in addition to A1, the following approximation holds:

Approximation A2: The node n is fed by the superposition of two independent request

arrival processes: one (stream 1) is the miss rate of a child of cache n and is a generic renewal

process and the other one (stream 2) is an exogenous renewal process with CDF of the form

Kn(t) = 1−

Mn∑

m=0

αn,me
−βn,mt (4.21)

where 0 ≤Mn <∞ and {βn,m}m is a set of non negative numbers.

4.2 Content-Centric Networks 81

Figure 4.6: Caterpillar tree networks

In what follows we assume without loss of generality that stream 1 originates from a cache

child labeled n− 1. Then we denote the CDF of the inter-miss times in stream 1 as Gn−1(t) and

the miss rate as MR,n−1. From (4.21) the arrival rate of stream 2 is λn :=
∑Mn

m=0αn,mβn,m, the

total arrival rate at node n is Λn = MR,n−1+ λn. Approximations A1 and A2 together yield the

following procedure for approximating G∗
n(s) and H∗

n(s).

Proposition 4.4 (Approximation for class N) Under Approximations A1 and A2, the LST of

inter-arrival times of the aggregated request process at each node n is given by,

H∗
n(s) = 1− s

λn

Λn

Mn∑

m=0

αn,m

s+ βn,m
− s2

λnMR,n−1

Λn

Mn∑

m=0

αn,m(1−G∗
n−1(s+ βn,m))

(s+ βn,m)2βn,m
(4.22)

and the LST of inter-miss times is

G∗
n(s) =

H∗
n(s) −H∗

n(s+ µn)

1−H∗
n(s+ µn)

. (4.23)

Proof Applying Theorem 4.1 to Gn−1(t) and Kn(t) at cache n, we can approximate the CDF of

the inter-arrival times by (thanks to Approximation 4.1)

Hn(t) = 1−
ηnMR,n−1

Λn

Mn∑

m=0

αn,m×
(

Ḡn−1(t)

∫∞

t

e−βn,mudu+ e−βn,mt

∫∞

t

Ḡn−1(u)du

)

from which we deduce (4.22). (4.23) is obtained from (4.12).

The hit probability is simply HP,n = H∗
n(µn), the total arrival rate Λn = MR,n−1+ λn and

the miss rate MR,n = Λn(1−H∗
n(µn)) are

MR,n =

n∑

i=1

λi

n∏

j=i

(1−H∗
j(µj)), (4.24)

Λn =

n−1∑

i=1

λi

n−1∏

j=i

(1−H∗
j (µj)) + λn, (4.25)

Relations (4.22)-(4.23) and (4.24)-(4.25) provide a recursive procedure for calculating Λn
and H∗

n(µn) for each n, from which we obtain approximations for the hit probability, hit rate,

82 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

miss rate and stationary occupancy at node n:

HP,n = H∗
n(µn), HR,n = ΛnH

∗
n(µn), MR,n = Λn(1−H∗

n(µn)), OP,n = Λn

(

1−H∗
n(µn)

µn

)

.

The latter result follows from (4.11). In [26], we show that Approximation A2 is verified

on the network in Figure 4.6 when TTLs are exponentially distributed and exogenous request

processes are Poisson.

Hierarchical networks with Matrix-Exponential request inter-arrival times and TTL

We consider a hierarchical cache network where the inter-arrival times of exogenous re-

quests and the TTL values are described by Matrix-Exponential (ME) distributions, i.e. whose

CDFs and PDFs are defined by

Ψ(t) = 1− α eSt 1R , ψ(t) = α eSt (−S1) t ≥ 0 (4.26)

respectively [46], where α is a 1-by-R vector, called the starting vector, S is an R-by-R matrix,

called the progress rate matrix, and 1R is an R-by-1 vector whose elements are all equal to 1. In

general different pairs (α, S) can lead to the same CDF Ψ(t).

Here, we consider a representation with minimal order R. In [46, Theorem 3.1], He and

Zhang established under which conditions R is minimal and they showed that in this case the

matrix S is a Jordan matrix and Ψ can be written as follows (Karlin’s representation [61]):

Ψ(t) = 1−

K∑

k=1

Qk(t)e
σkt, t ≥ 0 (4.27)

where {σk}k are the eigenvalues of S, σi 6= σj if i 6= j,Qk(t) =
∑rk−1
j=0 qk,jt

j is a polynomial of de-

gree rk− 1 and
∑K
k=1 rk = R. The relations between α and {qk,j, 1 ≤ k ≤ K, 0 ≤ j ≤ rk− 1} can

be found in [46]. In what follows we will usually consider Karlin’s representation (4.27). The

class of ME distributions is equivalent to the class of distributions having a rational LST [46], it

includes then also all the phase-type distributions.

In what follows we are going to call a request renewal process with ME distributed inter-

arrival times simply an ME renewal process. Similarly, we are going to use the expression ME

TTL to indicate TTLs that are ME distributed. The following result guarantees us that if the

request arrival process at a cache is an ME renewal process and TTL are ME distributed, then

the miss process is also a ME renewal process with a known representation.

Proposition 4.5 (ME miss process) If the TTLs and the inter-arrival times of the request renewal

process at cache n are ME distributed, then the miss inter-arrival times are ME distributed.

4.2 Content-Centric Networks 83

Proof We consider a cache n where the inter-arrival times and the TTLs are characterized by

the ME CDFs Fn(t) and Tn(t). Both Fn(t) and Tn(t) admit a Karlin representation and a rational

LST. From the definition (4.1) also L(t) has a Karlin representation and its LST is rational. Thus,

the solution Gn(t) in (4.5) is a CDF with a rational LST G∗
n(s) given by

G∗
n(s) = 1−

1− F∗n(s)
1− L∗n(s)

= 1−
N(s)

D(s)

where N(s) and D(s) are the numerator and the denominator of the fraction 1 − G∗
n(s) after

factorization and simplification of common terms. The CDF Gn(t) is a ME distribution by the

equivalence between ME distributions and CDFs having rational LST. Moreover, Gn(t) admits

a Karlin representation:

Gn(t) = 1−

K∑

k=1

rk−1∑

j=0

qk,jt
jeσkt, t > 0 (4.28)

where the exponents {σk}k are the zeros of D(s) and the coefficients {rk, qk,j}k,j are given by

the relations

qk,rk−i =
1

i!

{
di

dsi
[(1−G∗(s))(s − σk)

rk]

}

s=σk

. (4.29)

In general the aggregated request arrival process at cache n is the superposition of the miss

processes at the cache in C(n) and the exogenous arrival process. If each of these processes

is a ME renewal process, Approximation 4.1 and Theorem 4.1 allows us to conclude that also

the inter-arrival times of the aggregated request arrival process are ME distributed. Under the

Approximation 4.1 and Proposition 4.5, all the miss processes in the network are ME renewal

processes. We can characterize them iteratively starting from the leaves as for the general case.

Hierarchical networks with Diagonal Matrix-Exponential distributions

The calculations become even simpler when the progress rates matrices (S) of the ME dis-

tributions are diagonal or diagonalizable. In this case, the distribution is said to be Diagonal

Matrix-Exponential and we note diag.ME. Without loss of generality, if Ψ(t) is a diag.ME distri-

bution, then its Karlin representation is:

Ψ(t) = 1−

K∑

j=1

qje
σjt.

If the request arrival process at cache n is a diag.ME renewal process and the TTLs are

diag.ME distributed, respectively with CDFs

Fn(t) = 1−

Kn∑

k=1

an,ke
−σn,kt and Tn(t) = 1−

Jn∑

j=1

bn,je
−µn,jt,

84 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

then the metrics of interests at cache n are obtained from a straightforward calculation by

applying Proposition 4.1.

Corollary 4.3 (Metrics of interests at a diag.ME TTL cache) The request rate λn, the hit prob-

abilityHP,n, the miss rateMR,n and the occupancyOP,n at cache n are calculated with the formulas

λn =

Kn∑

k=1

an,kσn,k, HP,n =
∑Jn
j=1bn,jF

∗
n(µn,j) (4.30)

MR,n = λn



1−

Jn∑

j=1

bn,jF
∗
n(µn,j)



 , OP,n = λn
∑Jn
j=1bn,j

(

1−F∗n(µn,j)

µn,j

)

. (4.31)

Similarly, the miss process is characterized by applying Propositions 4.2 and 4.5.

Corollary 4.4 (Miss process at a diag.ME TTL cache) The LST of inter-miss times CDF is

G∗
n(s) = 1− (1− F∗n(s))



1−

Jn∑

j=1

bn,jF
∗
n(s+ µn,j)





−1

(4.32)

which can be inverted as

Gn(t) = 1−

[

Kn∑

k=1

an,k

(

1+

Kn×Jn∑

i=1

γi

θi− σn,k

)

e−σn,kt+

Kn×Jn∑

i=1

−γi

θi

(

1+

Kn∑

k=1

an,kσn,k

θi− σn,k

)

e−θit

]

(4.33)

where (θi)1≤i≤Kn×Jn are solutions of the algebraic equation in z

0 = 1−

Kn×Jn∑

i=1

δi

ηi− z
, (4.34)

(γi)1≤i≤Kn×Jn is the vector solution of the linear system of algebraic equations:

{
0 = 1+

Kn×Jn∑

i=1

γi

θi− ηl

}Kn×Jn

l=1

, (4.35)

the constants δi and ηi are given by

δi = an,kbn,jσn,k , ηi = σn,k+ µn,j (4.36)

and (k, j) is the ith couple according to some ordering of the product set {1, . . . , Kn} × {1, . . . , Jn}.

Note also that the CDF Gn(t) is a diag.ME distribution.

4.2 Content-Centric Networks 85

When we superpose diag.ME renewal processes, the inter-arrival times of the superposed pro-

cess are still diag.ME distributed. In particular if Gi is the diag.ME miss process at cache

i ∈ C(n), with CDF

Gi(t) = 1−

Ki∑

k=1

ai,ke
−σi,kt.

the overall arrival process is then characterized in the following corollary of Proposition 4.5:

Corollary 4.5 (Overall Request Process at diag.ME TTL cache) Under Assumptions 4.2 and 4.1,

the CDF of inter-arrival times Hn(t) in the overall request process at cache n is given by

Hn(t) = 1−
∑

i∈C(n)∪{n}

Ki∑

k=1

ai,k

Λn



λn×
∏

j∈C(n)

MR,j



 e−σi,kt
∏

j∈C(n)∪{n}
j 6=i





Kj∑

k=1

aj,k

σj,k
e−σj,kt



 (4.37)

where MR,i is the miss rate of the ith child node, λn is the rate of exogenous requests, and Λn is

the total request rate at the cache n.

The Algorithm 4 simplifies when all the TTLs and the exogenous request arrival processes are

diag.ME and becomes:

Algorithm 5: Efficient Procedure on diag.MED cache tree fed by diag.ME renewal pro-

cesses
input : TreeDepth d, CDFs Fn(t), {Gi(t), i ∈ C(n)} and {Tn(t), n ≥ 1}
output: Metrics of interest Λn, HP,n, OP,n and CDF Gn(t)

1 while d 6= 0 do ; // Ca
hes are different from the server

2

3 foreach n in the set of caches at depth d do ; // Start from Leaves

4

5 Λn
Eq.(4.18)←−−−−− {λn,MR,i, i ∈ C(n)};

6 if C(n) = ∅ then

7 Hn(t)← Fn(t);

8 else

9 Hn(t)
Eq.(4.37)←−−−−− {Fn(t), Gi(t), i ∈ C(n)};

10 end

11 HP,n, MR,n, OP,n
Cor.(4.3)←−−−−− {Hn(t), Tn(t)};

12 Gn(t)
Cor.(4.4)←−−−−− {Hn(t), Tn(t)};

13 end

14 d← d− 1;

15 end

86 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

Before concluding our theoretical analysis and moving to the validation of our approxi-

mations, we observe that it is possible to adapt the formulas above for diag.ME exogenous

processes and TTLs to consider a slightly larger class of networks—previously introduced as

class N networks—that extends hierarchical diag.ME cache networks as follows: a single ex-

ogenous request process is allowed to be a renewal process with a general CDF (not necessarily

a diag.ME distribution) for inter-arrival times. We do not develop the general procedure for

class N , but we show how the formulas change for a specific case.

Consider that the miss request process of cache i, a child node of cache n, is a general

renewal process with CDF Gi(t) and rate MR,i, while the exogenous request process at cache n

has diag.ME CDF Fn(t) = 1− ane−Ant1Kn and arrival rate λn = (an(−An)−11Kn)−1. The total

request rate at node n is Λn = MR,i + λn. The following proposition generalizes the CDF of

inter-arrival times of the aggregated request process Hn(t).

Corollary 4.6 (Generalization of class N networks) The performance metrics at cache n of a

class N network are obtained from Corollary 4.3, and the overall request process is characterized

by the CDF Hn(t) in (4.19) whose LST H∗
n(s) is given by Proposition 4.4.

Proof Applying the (4.19) to the CDFs Gi(t) and Fn(t) = 1−
∑Kn
k=1an,ke

−σn,kt, we obtain

Hn(t) = 1−
λnMR,i

Λn

Kn∑

k=1

an,k×
(

Ḡi(t)

∫∞

t

e−σn,kudu+ e−σn,kt

∫∞

t

Ḡi(u)du

)

.

Taking the LST of the latter equation, the metrics of interest and the LST G∗
n(s) are obtained by

replacing the LST F∗n(s) by H∗
n(s) in Corollary 4.3 and Corollary 4.4.

4.2.6 Validation and numerical results

In this section, we investigate the accuracy of Approximation 4.1 and then of the approxi-

mate results obtained through Algorithms 4 and 5. We recall that Approximation 4.1 consists

in considering that all aggregated request processes are renewal processes.

First, we show that in a tandem of two caches the first autocorrelation lag (ACF1) of the

aggregated process at node 2 is quite small. We calculate it using using the formula in [69,

Eq.(6.4)]. This autocorrelation lag ACF1 depends on the arrival rates λ1 and λ2 and the timer µ1.

We find that for any possible choice of these parameters 0 > ACF1 > −0.015. Simulation results

show that the autocorrelation is even less significant at larger lags. Therefore, inter-arrival times

are weakly coupled and Approximation 4.1 is indeed accurate in this small network scenario.

Second, we evaluate the approximation quality by simulations in more complex configu-

rations. We focus on networks of exponentially distributed TTL-based caches fed by requests

generated according to Poisson processes for which it is possible to carry on an exact analysis;

4.2 Content-Centric Networks 87

then we look at a tree of deterministic TTL-based caches also fed by Poisson requests; and finally

we investigate the situation where requests are described by more general renewal processes

and TTL distributions.

Poisson traffic and exponential timers

We start by observing that when the exogenous request processes are Poisson processes,

it is possible to model a tree network of N caches as an irreducible continuous time Markov

process, with state x(t) = (x1(t), . . . , xN(t)) ∈ E = {0, 1}N, where xn(t) = 1 (resp. xn(t) = 0) if

the data item is present (resp. missing) at time t at node n. Once the steady-state probabilities

(π(x), x ∈ E) have been calculated, exact values of the performance metrics of interest are ob-

tained. For example, the stationary occupancy probability of cache n is OM
P,n =

∑
x∈E|xn=1π(x)

(the superscript “M” stands for “Markov”). For a line of caches, the hit probability and the miss

rate at cache 1 are respectively HM
P,1(1) = π(1, ∗) and MM

R,1 = λ1π(0, ∗), while for cache 2 we

have

HM
P,2 =

λ1π(0, 1, ∗) + λ2(π(0, 1, ∗) + π(1, 1, ∗))
λ1(π(0, 0, ∗) + π(0, 1, ∗)) + λ2

, MM
R,2 = λ1π(0, 0, ∗) + λ2(π(0, 0, ∗) + π(1, 0, ∗))

where π(i, ∗) =
∑
x2,...,xN∈{0,1}π(i, x2, . . . , xN) and π(i, j, ∗) :=

∑
x3,...,xN∈{0,1}π(i, j, x3, . . . , xN)

are the stationary probabilities that cache 1 is in state i ∈ {0, 1} and caches (1, 2) are in state

(i, j) ∈ {0, 1}2, respectively. Due to space constraints we omit the general expressions for these

quantities for a generic tree of caches. Throughout Section 4.2.6, we compare the results of our

models against the exact ones obtained by studying the Markov process.

Nine caches linear network This network architecture is chosen for its depth and its small

number of leaves. We aim at evaluating the quality of Approximation 4.1 when the depth of

the network is large. We consider the tandem of N = 9 caches in Figure 4.7.

Figure 4.7: Linear network with exogenous request arrivals

At cache n, exogenous requests arrive according to a Poisson process with rate λn and TTL is

exponentially distributed with mean µ−1
n . We apply Algorithm 5 described in Section 4.2.5 and

compare its prediction to the exact metrics obtained through the analysis of the Markov process

{x(t), t ≥ 0} introduced in the previous paragraph. We calculate the absolute relative errors at

cache n for the hit probability (EHP,n := |HM
P,n − HP,n|/H

M
P,n, where HM

P,n is the hit probability

88 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

obtained from the Markov process analysis), the miss rate (EMR,n), and the occupancy proba-

bility (EOP,n). One thousand different samples for the exogenous request arrival rates and the

TTL ones {(λn, µn), n = 1, . . . , 9} have been selected from the intervals [0.001, 10] and [0.1, 2]

respectively. We use the Fourier Amplitude Sensitivity Test (FAST) method [68] to explore the

space [0.001, 10] × [0.1, 2]. Figure 4.8 shows the CCDFs of the relative errors for cache 9. We

observe that Approximation 4.1 is very accurate; in 90% of the different parameter settings the

relative errors on all metrics of interest are smaller than 10−4.

10
−10

10
−5

10
0

10
−2

10
−1

10
0

EHP,9

C
C
D
F

10
−10

10
−5

10
0

10
−2

10
−1

10
0

EMR,9

C
C
D
F

10
−10

10
−5

10
0

10
−2

10
−1

10
0

EOP,9

C
C
D
F

Figure 4.8: CCDFs of EHP,9, EMR,9, EOP,9 for network in Fig. 4.7

We then considered a homogeneous scenario where all caches have identical TTL and ex-

ogenous arrival rates, i.e. µn = µ and λn = λ, ∀n. The relative errors are shown in Figure 4.9

as a function of the normalized load ρ = λ/µ for µ = 0.2. We observe that the largest error

(about 2× 10−4) is obtained when arrival and timer rates are comparable (i.e. ρ ≈ 1).

0 5 10
0

0.5

1

1.5
x 10

−4

ρ ∈ [10−3, 10], µ = 0.2

E
H
P
,9

0 5 10
0

0.5

1

1.5
x 10

−4

ρ ∈ [10−3, 10], µ = 0.2

E
M

R
,9

0 5 10
0

0.5

1

1.5
x 10

−4

ρ ∈ [10−3, 10], µ = 0.2

E
O
P
,9

Figure 4.9: EHP,9, EMR,9, EOP,9 for homogeneous network in Fig. 4.7 (λn = λ = ρµ = ρµn)

Twelve caches caterpillar tree This network consists of three trees (star networks), each

with 4 caches, whose roots are connected as in Figure 4.10.

We choose this network architecture for its large number of leaves and its relative small

4.2 Content-Centric Networks 89

Figure 4.10: Caterpillar network

depth in comparison to the previous linear network. We consider the leaves of each root are

identical i.e. they have the same average TTL value and they are fed with Poisson request

processes with an identical rate. Again, Algorithm 5 produces exact results for all leaves. As

previously, exact results are obtained by considering the Markov process {x(t), t ≥ 0} associated

to this network. Different request and TTL rates have been selected according to FAST method

respectively in the intervals [0.001, 10] and [0.1, 2]. We used 4921 samples for each rate. The

empirical CCDFs of the relative errors EHP,3, EMR,3, and EOP,3 at the higher level cache are

shown in Figure 4.11.

10
−10

10
−5

10
0

10
−2

10
−1

10
0

EHP,3

C
C
D
F

10
−5

10
0

10
−2

10
−1

10
0

EMR,3

C
C
D
F

10
−5

10
0

10
−2

10
−1

10
0

EOP,3

C
C
D
F

Figure 4.11: CCDFs of EHP,3, EMR,3, EOP,3 for network in Fig. 4.10

The results obtained are analogous to those of the linear cache network in previous para-

graph. The relative errors can be larger in this scenario, but they are probably negligible for

most of the applications (10−2 in 90% of the cases). In this case too, we have also considered the

homogeneous scenario where the TTLs at the leaves have the same expected value as the ones

at the internal nodes. We observed that the relative errors have the same order of magnitude

i.e. less than 10−2.

Nine caches tree network We consider the tree network of nine caches illustrated in Fig-

ure 4.12 that combines the properties of the previous network samples (i.e. with both a relative

large depth and number of leaves).

90 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

Figure 4.12: Balanced tree network

Also in this case, we consider caches are fed by exogenous requests described by Pois-

son processes and TTLs are exponentially distributed. The request and TTL rates are selected

(6649 different samples in total) from the intervals [0.05, 10] and [0.1, 2] respectively using FAST

method. Figure 4.13 shows the CCDFs of the relative errors at the higher level cache and in

90% of cases they are smaller than 10−2. Thus, Approximation 4.1 is still accurate.

10
−20

10
−10

10
0

10
−4

10
−2

10
0

EHP,9

C
C
D
F

10
−10

10
−5

10
0

10
−4

10
−2

10
0

EMR,9

C
C
D
F

10
−10

10
−5

10
0

10
−4

10
−2

10
0

EOP,9

C
C
D
F

Figure 4.13: CCDFs of EHP,9, EMR,9, EOP,9 for network in Fig.4.12

Poisson traffic and deterministic timers

When timers are deterministic, we resort to the general procedure in Algorithm 4 presented

in Section 4.2.5. As term of comparison we consider simulation results, given that the network

is no longer ‘Markovian’.

Figure 4.14 shows the settings (topology, request rates and TTL values) of the network.

Algorithm 4 introduces two sources of errors. First, the aggregated request process at a cache

is not a renewal process; however, we use Approximation 4.1 and apply the renewal equation

(4.20). Second, (4.19) and (4.20) introduce some numerical errors since we need to compute

the integrals therein on a finite support. Two parameters determine the size of the numerical

error: 1) the time interval (τ) from which the CDF samples are taken, and 2) the time interval

between two consecutive samples (∆). Clearly the larger τ and the smaller ∆ are, the smaller

is the numerical error and the larger is the computational cost.

4.2 Content-Centric Networks 91

Figure 4.14: Tree network

We implemented a MATLAB numerical solver that iteratively determines the CDFs of inter-

arrival times at each cache together with the metrics of interest. The integrals appearing in

(4.19) and (4.20) are approximated by simple sums and for simplicity the same values τ and

∆ have been considered for all the CDFs numerical integrations. These parameters are selected

as follows: we set the parameter τ to five times the largest expected inter-arrival time in the

network; while the parameter ∆ is set to one thousandth of the minimum of the TTL values and

the expected inter-arrival times of the exogenous request processes.

The absolute relative error of the hit probability is evaluated as |HP,n−HS
P,n|/H

S
P,n where HP,n

is our estimate and HS
P,n is obtained through simulation. The duration of the simulation is set

so that there is a small incertitude on the performance metrics: the 99% confidence interval

[HS
P,n−ǫ,HS

P,n+ǫ] is such that the ratio (2ǫ/HSP,n) is at most 0.6×10−4. For all the performance

metrics at all caches, the relative error of our approach is less than 10−2.

Renewal/non-Poisson traffic

In this scenario, we consider that requests for each data item are generated according to

Interrupted Poisson Processes (IPP). IPPs are Renewal processes whose inter-arrival times have

a two stage hyper-exponential distribution [39] (then it is a particular diag.ME distribution).

We evaluate the accuracy of our approach on binary tree networks (like the one in Fig-

ure 4.15) where leaves are fed by request traffic described before and TTLs values are deter-

ministic or drawn from the following diag.ME TTL distributions: exponential, hypo-exponential

and hyper-exponential distributions. Also in this case we consider simulation results as term

of comparison. Our model predictions are provided by Algorithms 4 and 5, respectively for

deterministic and (hypo-, hyper-) exponentially distributed TTLs.

Small binary tree. We consider the seven caches binary tree in Figure 4.15. Relative errors at

the higher level cache are displayed in Figure 4.16. For all performance metrics at all caches

92 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

Figure 4.15: Binary tree network

of this tree, the relative errors of our approach are less than 2 × 10−3. This result validates

Assumption 4.1 and thus our model in the context of general networks i.e. with non-Poisson

arrivals and different TTL distributions.

Det Exp Hypo Hyper
1

1.5

2
x 10

−3

TTL Distr.

H
it
E
rr
o
r:

E
H
P
,1

Det Exp Hypo Hyper
0

0.5

1

1.5
x 10

−3

TTL Distr.

H
it
E
rr
o
r:

E
O
P
,1

Figure 4.16: Relative error EHP,1 and EOP,1 under IPP traffic.

As theoretically proved in Proposition 4.3, Figure 4.17 confirms that the deterministic TTL

is the optimal TTL configuration at the leaves (caches 4 − 7) i.e. which maximizes the hit and

occupancy probabilities. This observation is not surprising since IPPs are renewal processes

with hyper-exponentially distributed inter-arrival times; in fact, it can be easily checked that

the hyper-exponential CDF is concave and the observed results follows from Proposition 4.3.

Large binary tree. We also investigate the quality of our approximation on larger tree networks

(up to 40 caches) where TTLs are constants drawn uniformly at random in the interval [0.5; 1.5],

and the exogenous requests at each cache are described by an IPP. The expected value and the

squared coefficient of variation of inter-arrival times are uniformly chosen at random in [0.05; 2]

and [1.5; 2] respectively. As shown in Table 4.2, the relative errors between the event-driven

simulations and our analytic approach are of order of 1%. This result provides good insights on

the robustness and accuracy of our approach when dealing with large networks.

4.2 Content-Centric Networks 93

1 2 3 4 5 6 7
0

0.5

1

Cache n

H
it
P
ro
b
.:
H

P
,n

Det
Exp
Hypo
Hyper

1 2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

Cache n

O
cc
.
P
ro
b
.:
O

P
,n

Det
Exp
Hypo
Hyper

Figure 4.17: Optimality of the Deterministic TTL at leaves fed by IPP arrivals

Type (Degree, Depth, # Caches) Level l, Cache n EHP,n(%) EMR,n(%) EOP,n(%)

Binary Tree 1, 1 1.059 0.929 0.021

(2, 5, 31) 2, 3 0.406 0.042 0.117

5, 31 0.075 0.018 0.061

Ternary Tree 1, 1 0.127 0.085 0.134

(3, 4, 40) 2, 3 0.061 0.278 0.124

4, 40 0.006 0.283 0.759

Table 4.2: Relative Errors on Performance metrics for large trees

We have shown that Approximation 4.1 leads to very accurate results when exogenous

requests are described by renewal process (Poisson and Interrupted Poisson processes) and

TTLs have some matrix-exponential distributions or deterministic ones. This lets us think that

the superposition of the request arrival processes at every cache is very ‘close’ to a renewal

process at least for all the cases we tested.

4.2.7 Computational cost and time

In this section we perform a preliminary analysis of the computational cost and time of

our approach, and we compare it to other solutions presented in the previous section such as

solving a Markov chain (Section 4.2.6) and event-driven simulations (Sections 4.2.6 and 4.2.6).

TTLs with diag.ME distribution

We first address the case of a hierarchical tree of diag.ME TTL caches introduced in Sec-

tion 15. We consider a tree of N nodes and M internal nodes (i.e. N −M leaves). Since the

computational cost for all the metrics is roughly the same, we focus here on the hit probability.

In order to calculate the hit probability at one of the nodes labeled n ∈ {1, . . . ,N}, say at cache

n, we need to:

94 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

� calculate the CDF Hn(t) of inter-arrival times of the aggregated request process in (4.37).

This requires a number of operations proportional to

(1+ Cn)
∏

i∈C(n)∪{0}

Ki,n = O
(

(1+ Cn) × K̃1+Cnn

)

, K̃n = max
i∈C(n)∪{0}

Ki,n

where Ki,n is the minimal order of the i-th child miss process, K0,n is the minimal order

of the exogenous request process, and Cn = |C(n)| is the number of children of cache n.

� evaluate the LST H∗
n(µn,j) in the expression of the hit probability in (4.30) which requires

Kn× Jn operations where Kn is the minimal order of the aggregated request process (and

it is at most equal to K̃1+Cnn) and Jn is the minimal order of the TTL distribution.

Then, the total cost is

Kdiag.ME = O

(

N∑

n=1

(1+ Cn+ Jn) × K̃1+Cnn

)

. (4.38)

For linear networks in Figure 4.3 (case of small maximum degree), the number of children

per cache is Cn = 1 and there are no exogenous requests at cache n > 1. Hence, the total cost

is

Klinear = O
(

NJ× (K0,1(J+ 1))N
)

, J = max
n=1,...,N

Jn (4.39)

For star networks in Figure 4.4 (case of large maximum degree), the number of children at

the root is N− 1 and the total cost is

Kstar = O
(

NJK+ J (K(J+ 1))N−1
)

, J = max
n=1,...,N

Jn, K = max
n=1,...,N

K0,n (4.40)

TTLs with exponential distribution

The exponential distribution has the minimal order which is one. Hence, if we consider

exponential timers and exogenous requests are described by Poisson processes, we have K0,n =

Jn = 1 at each cache n. Therefore the costs Klinear and Kstar are respectively equal to O(N ×
2N) and O(N+ 2N).

We showed in Section 4.2.6 that alternative approaches like the Markov chain analysis can

provide exact results when the tree is fed by Poisson traffic and the TTLs are exponentially

distributed. The size of the state space of the Markov process {x(t), t ≥ 0} is 2N where N is the

number of nodes. The cost of determining the steady-state distribution by solving the linear

equation system is O(23N). This is much larger than the cost of our method O(N2N).

A different approach is to obtain an approximate steady-state distribution of the Markov process

using an iterative method. This approach takes advantage of the fact that most of the transition

rates are zero. In fact, a state change is triggered by an exogenous request arrival at a cache

4.2 Content-Centric Networks 95

that does not have the data item or by a timer expiration at a cache with the data item, i.e. from

a given state we can only reach other N states. Then the number of non-zero rates is N × 2N
and each iteration of the method requires O(N× 2N) operations. The total cost of the iterative

method is then O(I × N × 2N), where I is the number of iterations until termination. The

quantity I depends on the spectral gap of the matrix used at each iteration, and also on the

required precision. In general, we can expect that O(I × N × 2N) ≪ O(23N). Having this

inequality, we can say that our method, even in the worst case, is still more convenient than

solving the Markov process on linear/star networks, because O(N2N) < O(I×N× 2N).

TTLs with deterministic distribution

Let us now consider the case of a general tree network with constant TTLs (equal to T). In

this case there is no exact solution to compare our approach with, so we consider simulations

as an alternative approach. We perform an asymptotic analysis. A meaningful comparison of

the computational costs needs to take also into account the incertitude of the solution: both

the simulations and our method can produce a better result if one is willing to afford a higher

number of operations. In order to combine these two aspects in our analysis, we consider as

metric the product precision times number of operations. Intuitively the larger this product the

more expensive is to get a given precision.

For the simulations the computational cost is at least proportional to the number of events

that are generated, let us denote it by nE. The incertitude on the final result can be estimated by

the amplitude of the confidence interval, that decreases as 1/
√
nE, then the product precision

times number of operations is proportional to
√
nE for the simulations.

In the case of our approach, the most expensive operation is the solution of the renewal

equation (4.5). If we adopt the same τ and ∆ for all the integrals, we need to calculate the

value of the CDF of the miss rate (Gn(t)) in nP = τ/∆ points and then we need to calculate

nP integrals. The integration interval is at most equal to the TTL duration T thanks to (4.48),

then each integral requires a number of operations proportional to n ′
P = T/∆. If the value of

τ is selected proportionally to T , then the cost of our method is proportional to n2P. A naive

implementation of the integral as a sum of the function values leads to an error proportional

to the amplitude of the time step and inversely proportional to n ′
P or nP. In conclusion the

product precision times the number of operations is proportional to nP.

Then, for a given precision, our method would require a number of points much larger than

the number of events to be considered in the corresponding simulation (at least asymptotically).

The comparison would then lead to prefer the simulations at least when small incertitude is

required (then large nE and nP). In reality integrals can be calculated in more sophisticated

ways, for example if we adopt Romberg’s method, with a slightly larger computation cost, we

can get a precision proportional to n−2
P . In this case the product precision times number of

96 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

operations is a constant for our method, that should be preferred.

Numerical experiments

Case of linear networks. We performed some experiments to validate our conclusion based on

an asymptotic analysis. First, we consider linear networks of N ∈ {1, 2, . . . 9} exponentially dis-

tributed TTL-based caches. We compare the running time of solving the corresponding Markov

chain (see Section 4.2.6) against our Algorithm 5. Figure 4.18 shows the ratio of the compu-

tation times TA and TM respectively for our Algorithm 5 and for the Markov chain resolution.

Both the solutions have been implemented in MATLAB, in particular the naive function linsolve

has been used to determine the steady-state distribution of the Markov chain and the Algo-

rithm 5 has been implemented with basic routines. Our algorithm performs faster than the

Markov chain resolution specially when the depth of the linear network is large.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Number of Caches (N)

T
im

e
ra
ti
o
:
T

A
/
T

M

Figure 4.18: Computation time comparison on linear networks

Case of tree networks. Second, we evaluate the computational time of the event-driven simula-

tion and our Algorithm 4 on the k-ary trees of Section 4.2.6 where the TTLs are constants and

the request processes are IPPs. TS and TA are respectively the time to compute all performance

metrics on these large tree networks via event-driven simulations and our analytic methodology

in Algorithm 4; they are computed by using the MATLAB routines tic and toc. Table 4.3 shows

that as the number of caches N increases, our analytic solution is clearly preferable since it is

the least time consuming.

Type Degree Depth # Caches, N TS TA

Binary Tree 2 5 31 53 88

Ternary Tree 3 4 40 197 129

Table 4.3: Comparison of computation time on large trees

4.2 Content-Centric Networks 97

4.2.8 TTL-based caches: implementation and other policies

We recall that TTL-based models we presented until now assume infinite cache capacity. In

this section, we address issues and practical concerns related to finite capacity constraints.

Pra-TTL cache: a practical implementation of a TTL-based cache

While the TTL-based model allows an arbitrarily large number of contents in its memory,

a real cache will have a finite capacity B. In this paragraph, we consider a possible practical

implementation of our TTL-based model that we call Pra-TTL. The Pra-TTL cache uses a timer

for each content item in the same way as the TTL-based model, but does not discard a content

item whose timer has expired as long as some space is available in the memory. If a new content

item needs to be stored and the cache is full, the content item to be erased is the one whose

timer expired furthest in the past (if any) or the one whose timer will expire soonest.

We have compared the performance of the Pra-TTL cache with that of our TTL-based model

on a linear network of N = 5 caches labeled n = 1, . . . , 5 having the same capacities Bn = 20.

The requests for each file f = 1, . . . , F = 200 arrive only at the first cache at rate λ1 = 2.0

i.e. there is no exogenous arrival at caches 2–5. We consider that requests over the set of

files follow a Zipf distribution with parameter α = 1.2: i.e. requests for file f are described

by a Poisson process with rate λ1,f = λ1 ×
(

f−α/
∑
gg

−α
)

. TTLs of file f at cache n are

exponentially distributed with rate µn,f = µn such that the total occupancy for the TTL-based

model equals the corresponding cache capacity Bn in average. In other words, µn is chosen such

that
∑F
f=1OP,n,f = Bn where OP,n,f is the occupancy probability of file f at cache n calculted in

Proposition 4.1 (i.e. predicted by the model of an infinite TTL-based cache).

The hit probability per file f at each cache n is denoted HP,n,f and the aggregate hit prob-

ability at cache n is denoted HP,n,∗. We compute theses performance metrics for both Pra-TTL

and TTL-based caches by using the following expression for HP,n,∗:

HP,n,∗ =

(∑

f

Λn,fHP,n,f

)

/Λn,∗

where Λn,f is the total request rate of file f at cache n and Λn,∗ =
∑
fΛn,f. Then, Λn,f is simply

the miss rate of file f at cache n − 1 since the network is linear and there is no exogenous

request arrivals at cache n (∀ n > 1).

Table 4.4 and Figure 4.19 show that our model (that assume infinite cache size) well predict

the performance metrics for Pra-TTL, both those of the aggregate at a cache and those of a

specific file respectively. These preliminary results suggest that our analysis can be useful to

study TTL-based policies under capacity constraints.

98 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

Table 4.4: Aggregated Hit probability at cache n, HP,n,∗

Caches n 1 2 3 4 5

Pra-TTL 0.5590 0.4216 0.3030 0.1941 0.1380

TTL-Model 0.5585 0.4658 0.2672 0.1670 0.1154

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

File popularity rank f

H
it
P
ro
b
.:
H

P
,1
,f

Pra-TTL
TTL-Model

(a) Cache 1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

File popularity rank f

H
it
P
ro
b
.:
H

P
,2
,f

Pra-TTL
TTL-Model

(b) Cache 2

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

File popularity rank f

H
it
P
ro
b
.:
H

P
,3
,f

Pra-TTL
TTL-Model

(c) Cache 3

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

File popularity rank f

H
it
P
ro
b
.:
H

P
,4
,f

Pra-TTL
TTL-Model

(d) Cache 4

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

File popularity rank f

H
it
P
ro
b
.:
H

P
,5
,f

Pra-TTL
TTL-Model

(e) Cache 5

Figure 4.19: Pra-TTL against TTL-Model, hit probability HP,n,f of file f at each cache n.

Relationship with other replacement policies

In this paragraph, we establish a link between our TTL-based model and other replacement

policies at a single cache. We consider a single cache with capacity B serving F files, where

requests are described by independent Poisson processes with rates λf for f = 1, 2, . . . , F. We

tune the expiration rate µf for each file f in order to obtain the same performance metrics of

common replacement policies like LRU, FIFO or RND.

We detail the procedure for a single RND cache, but it can be extended to the other policies.

Let us denote by πf the stationary probability that file f is in the RND cache. This distribution

has been calculated in [17, 62]. For the exponentially distributed TTL cache, the stationary

occupancy probability of the f-th file is given by

OP,f = λf
1− F∗f(µf)

µf
,

4.2 Content-Centric Networks 99

where F∗f(s) = λf
λf+s

is the LST of inter-arrival times. If we select µf = λf

(

1
πf

− 1
)

, we have

OP,f = πf, ∀f, i.e. the two policies have the same stationary cache occupancy for each file.

If we select the same TTL rate µ for all the files it is possible to achieve the same average

occupancy at the cache, i.e.
∑
fπf =

∑
f
λf
λf+µ

= B. For each file, the miss process obtained

with the exponential TTL-based cache is an accurate description of its miss stream on the RND

cache [72]. From the equality of the stationary cache occupancy probabilities, the equality of

hit/miss probabilities and rates follows due to the PASTA property since requests are described

by Poisson processes.

In this sense, the TTL policy is more general than RND or LRU since it can mimic their

behavior and reproduce their performance metrics. While, the exponential TTL cache enables

easy calculation we can select other distributions like the deterministic one (see Paragraph

Approximation for LRU caches in Section 4.2.3) in order to better match the CDF of the inter-

miss times of a LRU cache as well.

Remark 4.3 (Existing implementations of TTL-based models) We showed in Chapter 2 that

LRU, RND, and FIFO caches asymptotically behave as TTL-based caches. Thereby the former caches

may be seen as possible practical and simple implementations of TTL-based caches.

4.2.9 Perspectives on CCN work

In this section, we introduced a Time-To-Live (TTL) based policy as replacement algorithm

for cache networks in general, and for the content-routers of CCNs in particular. We developed

a set of building blocks for the performance evaluation of theses TTL-based cache networks

through renewal arguments. We characterized a class of networks for which we provided the

exact performance metrics: this class contains linear and star tree networks. We also provided

a recursive and approximate procedure to study arbitrary hierarchical networks. We showed

that our theoretic model predicts remarkably well the performance metrics with relative errors

less than 1%. We formally proved that deterministic TTLs are optimal when the inter-arrival

times have a concave CDF. Our approach is promising since it appears as a unifying framework

to accurately analyze a richer class of networks also with heterogeneous policies deployed at

different caches. We have also demonstrated that our TTL-based model can be used in practice

under capacity constraints thanks to the new implementation Pra-TTL caches or existing ones

as LRU and RND caches. A reader interested in how TTL-based models perform under finite

capacity constraints may report to the next chapter where they are used to analyze general and

heterogeneous networks where caches are running LRU and RND replacement policies. We also

consider the case of correlated requests modeled by Markov-Arrival processes.

100 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

4.3 Modern DNS hierarchy

Caching is undoubtedly one of the most popular solution that easily scales up with a world-

wide deployment of resources. Records in Domain Name System (DNS) caches are kept for

a pre-set duration (time-to-live or TTL) to avoid becoming outdated. Modern DNS caches are

those that set locally the TTL regardless of what authoritative servers say. In this section, we

apply TTL-based cache models to study the modern DNS cache behavior relying on renewal

arguments. For tree cache networks, we derive cache performance metrics, characterize at

each cache the aggregate request and miss processes. We address the problem of the optimal

caching duration and find that constant TTL is the best only if if inter-request times have a

concave CDF. We validate our findings using real DNS traces (single cache case) and via event-

driven simulations (network case). Our models are very robust as the relative error between

empirical and analytic values stays within 1% in the former case and less than 5% in the latter

case.

4.3.1 Introduction

In-network caching is a widely adopted technique to provide an efficient access to data

or resources on a world-wide deployed system while ensuring scalability and availability. For

instance, caches are integral components of the Domain Name System, the World Wide Web,

Content Distribution Networks, or the recently proposed Information-Centric Network (ICN)

architectures. Many of these systems are hierarchical. The content being cached is managed

through the use of expiration-based policies using a time-to-live (TTL) or replacement algo-

rithms such the Least Recently Used, First-In First-Out, Random, etc.

In this section, we focus on hierarchical systems that rely on expiration-based policies to

manage their caches. These policies have the advantage of being fully configurable and provide

parameters (i.e. timers) to optimize/control the network of caches. Each cache in the system

maintains for each item a timer that indicates its duration of validity. This timer can be initially

set by an external actor or by the cache itself.

The Domain Name System (DNS) is a valid application case. In short, the DNS maintains in

a distributed database the mappings, called resource records, between names and addresses in

the Internet. Servers in charge of managing a mapping are said to be authoritative. Caches—

used to avoid generating traffic up in the DNS hierarchy—are found in both servers and clients

(devices of end users). Caching is however limited in duration to avoid having stale records

which may break the domains involved.

DNS cache updates are strongly related with how the DNS hierarchy works. When a re-

quested resource record RR is not found at the client’s cache, the client issues a request to a

bottom level DNS server (usually that of the Internet server provider). If the RR cannot be

4.3 Modern DNS hierarchy 101

resolved locally and is not found in the cache, the latter server forwards the request to a server

higher in the hierarchy. The process repeats itself until the RR is fetched at a cache or ultimately

from the disk of an authoritative server. The server providing the RR is called the answerer. The

RR is sent back to the client through the reverse path between the answerer and the client, and

a copy of the RR is left at each cache on this path.

According to RFC 6195, all copies of the RR are marked by the answerer with a time-to-live

(TTL) which indicates to caches the number of seconds that their copy of the RRmay be cached.

Consequently, all copies of a record along a path would be cached for the same duration. This

RFC specification is called the TTL rule in the literature. Caches compliant with it are referred

to as traditional DNS caches. Those overriding the advocated TTL with a locally chosen value

(cf. [80, 13]) are called modern DNS caches [19].

In a tree of traditional DNS caches a request occurring anywhere just after the content

expired in the local cache yields cache misses at all caches along the path to an authoritative

server. Such a miss synchronization effect [51] is avoided with modern caches. Other cases of

deviation from the TTL rule are reported in [74, Sect. 2.1]

Our objective is to assess the performance of these networks. Our contributions are:

(i) we are the first to provide analytic models to study both a single (modern) DNS cache

and a tree of caches with general caching durations;

(ii) we characterize the distribution of the DNS traffic flowing upstream in the DNS hierarchy

besides deriving the usual cache performance metrics;

(iii) for the case of a single cache we identify when deterministic caching duration is optimal

and discuss how to choose the optimal deterministic value when this is the case;

(iv) for the case of a network of caches with diagonal matrix-exponential distributions, we

compute the distribution of the inter-request and inter-miss times at each node;

(v) we check the robustness of our single cache model over DNS traces collected at Inria and

(vi) the robustness of our network of caches model through event-driven simulations.

The rest of the section is organized as follows. Section 4.3.2 reviews the works most relevant

to this paper. Section 4.3.3 presents the scenario considered and some introductory material.

Our single cache model is analyzed in Sect. 4.3.4 and the case of a tree of caches in Sect. 4.3.5.

We validate our models in Sect. 4.3.6 and show some numerical results. Section 4.4 summarizes

our findings.

102 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

4.3.2 Related work

Since the recent observation of the modern behavior of DNS caches [19, 80], only few

results of the state of the art are applicable to modern DNS caches. Hou et al. consider in [50]

a tree of traditional DNS caches fed by Poisson traffic. The performance metrics derived in [50]

cannot characterize modern caches as these do not cause a miss synchronization effect—like

traditional caches do—which is extensively used in their model.

Jung, Berger and Balakrishnan study in [59] a single traditional DNS cache fed by a re-

newal process. Their model assumes that each content is cached for a deterministic duration

which would be either the value marked by an authoritative server or the maximum among all

values received from intermediate caches. The hit/miss probabilities derived are approximate

in traditional DNS caches receiving different TTLs from higher-level caches and exact in tradi-

tional DNS caches receiving always their responses from authoritative servers. It is interesting

to note that the model of [59] is valid for a single modern DNS cache that overrides the given

TTL with a fixed caching duration. Characterizing the traffic not served by the cache (the miss

process), considering distributions of caching durations other than the deterministic one, and

most challenging extending to the case of a network of caches are issues yet to be addressed.

The approach introduced in Section 4.2 is methodologically close to the analysis we shall

derive here for modern DNS caches. The essential difference is that caching durations of TTL-

based models in Section 4.2 are regenerated from the same distribution at each cache hit. As

such, the model of Section 4.2 applies to modern DNS caches only if caching durations are

exponentially distributed, thanks to the memoryless property of the exponential distribution.

Observe that the context targeted in Section 4.2 is that of ICN achitectures.

It has been reported in [19, 60, 80]—and we have observed it in our collected DNS traces—

that the sequence of TTLs received corresponding to a given resource record exhibits some

randomness. We believe it is crucial to consider this randomness when modeling a modern

DNS cache. Another key issue concerns the optimal distribution for the caching durations.

Callahan, Allman and Rabinovich mention in [19] that no model or experiment characterizes

the optimal (deterministic) TTL choice. We will address a more general problem in this paper,

namely, finding the best distribution.

4.3.3 Definitions and assumptions

Considered scenario

In this section, caches are assumed to consist of infinite size buffers. This assumption derives

naturally from the fact that the cached entities—the DNS records—have a negligible size when

compared to the storage capacity available at a DNS server [59]. A nice consequence is that the

management of different records can safely be decoupled, simplifying thereby the modeling of

4.3 Modern DNS hierarchy 103

hit miss
SZ+1

inter-miss time Ym0 m1

SZ
S1

X1 XZ XZ+1

. . .

m2

Z hits

.

timet0 t1 tZ−1 tZ

data in cache data in cache

Tcaching duration T

Figure 4.20: TTL-based model of modern DNS cache.

caches. Our analysis will focus on a single content/record, characterizing the processes relevant

to it, keeping in mind that the same can be repeated for every single content requested by users.

Without loss of generality, consider that a cache miss occurred at time m0 = t0 = 0. In other

words, the content was not in the cache at time when a request arrived. We will neglect the

RR processing time at each server/client and the RR travel time between servers, as these times

are typically insignificant in comparison with the request inter-arrival time. Consequently the

content requested is cached and made available to the requester also at time t0. More precisely,

upstream requests and downstream responses are instantaneous.

A cache miss instantaneously makes the content available in the respective cache for a

duration T as shown in Figure 4.20. Each cache samples this duration from its respective

distribution. Caches along the path between the server/client receiving the original request

and the server where the content was found all initiate a new duration T at the same time,

but the durations initiated being different they will expire at different instants. Consequently,

caches become asynchronous, something that would not occur should the caches follow the

so-called TTL rule.

Any request arriving during T will find the content in the cache. This is a cache hit. The first

request arriving after T has expired is a cache miss. It initiates a new duration during which the

content will be cached.

Metrics and properties of a modern DNS cache

The performance of a cache policy can be assessed through the computation of several

metrics. The hit probability HP,n is the probability that a request can be served by cache n. The

miss probability MP,n is simply the complementary probability. The hit/miss rate (HR,n/MR,n)

represents the rate at which cache hits/misses occur. The occupancy OP,n is the percentage of

time during which the content is cached. We say “a cache policy is efficient” if its miss probability

is low. This is relevant as long as cached contents are up-to-date.

In fact, by setting timers (or violating the TTL rule in the case of modern DNS), a server/client

104 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

takes a risk by caching a content for a longer period than it should, as the content may well

have changed by the time the locally chosen duration T expires. The cache would then be

providing an outdated content. Observe that a content item in the cache is updated only upon

a cache miss. But it is only when the update originates from the authoritative server that one

can absolutely be certain that the given update is correct. Therefore, a relevant performance

metric is the correctness probability cP,n of cache n. Another property of a cache is its freshness

fR,n. It defines how fast a change in a record can propagate until this cache. High freshness is

desirable with dynamic authoritative servers.

Processes at hand

To fully analyze a cache n taken in isolation one needs to consider:

• The arrival process: it may result from the superposition of multiple independent requests

arrival processes. Let Xk = tk − tk−1 be the k-th inter-request time (k > 0). It is useful to

define the kth jump time Sk = X1 + X2 + . . . + Xk with its cumulative distribution function

(CDF) F(k)
n (t) = P(Sk < t) and its probability density function (PDF) f(k)n (t) =

dF
(k)
n (t)
dt

. Let

N(t) = sup{k : Sk ≤ t} =
∑
k>01(Sk ≤ t). The arrival counting process is then {N(t), t > 0}.

• The caching duration: cache n draws the duration T from the same distribution, such that

µn = 1/E[T]. The scenario analyzed here considers memoryless caches, i.e. all caching dura-

tions set by the same cache are independent and identically distributed. With a slight abuse of

notation, let Tn(t) be the CDF of the random variable (rv) T .

• The outgoing miss process: cache misses form a stochastic process whose inter-miss time is

denoted by Yk = mk−mk−1 for k > 0.

• The number of hits between consecutive misses: these hits occur within a single caching dura-

tion. Their number is a rv denoted by Z.

In the case of a tree of caches, a subscript referring to the cache label will be added to the

rvs for disambiguation. Besides the “instantaneous transmission/processing” assumption that

holds throughout this paper, the following holds:

Assumption 4.4 (Renewal arrivals) Inter-request times {Xk, k ≥ 0} are independent and identi-

cally distributed rvs.

Let X be the generic inter-request time, Fn(t) be its CDF, fn(t) =
dFn(t)
dt

be its PDF, and λn =

1/E[X] at cache n.

Assumption 4.5 (Independence) At any cache, inter-request times and caching durations are

independent.

Assumption 4.6 (Independent arrivals) Multiple arrivals at any high-level cache are indepen-

dent.

4.3 Modern DNS hierarchy 105

Assumption 4.7 (Independent caches) Caching durations from any two different caches are

independent.

Assumption 4.4 is in agreement with the analysis in [59] and [95]. Feldmann and Whitt

show in [95] that heavy-tailed processes can be well approximated by a renewal process with a

hyper-exponential inter-arrival distribution. Jung, Berger and Balakrishnan show in [59] that

the request process arriving at a DNS server’s cache is heavy-tailed. Renewal processes with

either Weibull or Pareto inter-event distributions are used in [59] to fit the collected inter-

request times.

Assumptions 4.5 an 4.7 hold at modern DNS servers [80, 19] and Web browsers [13] as

these use their own caching durations independently of the requests and other servers/browsers.

Assumption 4.6 holds if exogenous arrivals are independent, as long as requests for a given

content “see” a polytree network (that is a directed graph without any undirected cycles, cf. Fig-

ure 4.2).

It is worth noting that the scenario and the set of assumptions considered here fit the case of

a single traditional DNS server if the distribution of its caching durations fits the values marking

the responses. Observe also that the popularity of a content is proportional to its request rate

λn. Therefore, it should be clear that our models account for a content’s popularity (which can

be Zipfian, Uniform, Geometric, etc.) through the per-content request rate λn.

A word on the notation: for any function χ(t), its Laplace-Stieltjes Transform (LST) is

χ∗(s) =
∫∞
0
e−stdχ(t) (s ≥ 0). Observe that the LST of a function is the Laplace transform

of its derivative. The complementary cumulative distribution function (CCDF) of a CDF χ(t) is

χ̄(t) = 1− χ(t). Table 4.5 summarizes the main notation used in the paper.

4.3.4 Analysis of a single cache

We are ready now to analyze a cache n taken in isolation. The results found here will be

used in Sect. 4.3.5 when studying multiple caches in a tree network.

The model and its analysis

Our first goal is to characterize the miss process which is the same as the process going out

from a server towards the higher-level server. The request process and the caching durations

are as assumed in Sect. 4.3.3, i.e. {N(t), t > 0} is a renewal process. The renewal function and

the renewal density function associated to {N(t), t > 0} are, respectively, Mn(t) = E[N(t)] =∑
k>0F

(k)
n (t) and mn(t) =

dMn(t)
dt

=
∑
k>0 f

(k)
n (t). It is well-known that the renewal function

satisfies the so-called renewal equation [28]

Mn(t) = Fn(t) +

∫t

0

Fn(t− x)dMn(x). (4.41)

106 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

Table 4.5: Glossary of main notation of modern DNS cache

HP,n hit probability at cache n Fn(t) CDF of X at cache n

HR,n hit rate at cache n fn(t) PDF of X at cache n

MP,n miss probability at cache n λn arrival rate (1/E[X]) at cache n

MR,n miss rate at cache n N(t) requests during t (rv)

OP,n occupancy at cache n Mn(t) renewal function at cache n

T caching duration (rv) mn(t) renewal density funct. at cache n

Tn(t) CDF of T at cache n Y inter-miss time (rv)

1/µn expectation of T at cache n Gn(t) CDF of Y at cache n

X inter-request time (rv) Z hits during T (rv)

Sk kth jump time (rv) χ∗(s) LST of χ(t)

Ln(t) expected number of hits until t within T at cache n

Hn(t) CDF of inter-request time at a higher-level cache n

Since T is a rv and N(t) the counting variable, N(T) is a rv which represents the number of

requests during a caching duration T . As all requests arriving during this period are necessarily

hits, then following the definition of Sect. 4.3.3 we have that Z = N(T) and its expectation is

E[Z] = E[N(T)] = E [E[N(T)|T]] = E[Mn(T)] (Mn(.) is a deterministic function).

Proposition 4.6 (Miss process) Under Assumptions 4.4 and 4.5 the miss process of a single

cache is a renewal process.

Proof Without loss of generality, we assume that the first request arrives at time t0 = 0 while

the content is not cached. This cache miss triggers a new caching period as shown in Fig-

ure 4.20. Consequently, miss instants are regeneration points of the state of the cache, implying

that these form a renewal process.

According to Proposition 4.6 inter-miss times {Yk}k>0 are independent and identically dis-

tributed. Let Y be the generic inter-miss time and Gn(t) be its CDF. Deriving Gn(t) completes

the characterization of the miss process.

To this end we consider first the number of hits occurring in a renewal interval Y until time

t, and more specifically its expectation Ln(t). We can readily write for t ≥ 0

Ln(t) =
∑

k>0

P(Sk < t, T > Sk) =

∫ t

0

T̄n(x)dMn(x). (4.42)

Observe that Ln(∞) is nothing but the expected number of hits in a renewal interval and is

equal to E[Z].

4.3 Modern DNS hierarchy 107

Proposition 4.7 (Inter-miss times) The CDF Gn(t) of the generic inter-miss time Y and its LST

are given by

Gn(t) = Fn(t) −

∫t

0

(1− Fn(t− x))dLn(x) (4.43)

G∗
n(s) = 1− (1− F∗n(s))(1 + L∗n(s)). (4.44)

Proof Let m0 = 0 be the first miss time. The CDF Gn(t) of the inter-miss time Y can be derived

by noticing that Y = SZ+1 where Z is the number of hits in a renewal interval (Z ∈ N). As such,

the (Z+ 1)st request occurs after T expires and it will initiate a new renewal interval as shown

in Figure 4.20. By considering the possible values of Z, we can write

Gn(t) = P(SZ+1 < t) =
∑

k≥0
P(SZ+1 < t,Z = k)

=
∑

k≥0
P(Sk+ Xk+1 < t, Sk < T < Sk+ Xk+1).

By conditioning first on Sk and then on Xk+1, we get

Gn(t) =
∑

k≥0

∫t

0

∫t−u

0

(Tn(u+ x) − Tn(u))fn(x)dx f
(k)
n (u)du

=
∑

k≥0

∫t

0

∫v

0

(Tn(v) − Tn(u))fn(v− u)f
(k)
n (u)dudv

The last equality is obtained after letting v = u + x in the inner integral and then exchanging

the integrals. Observe now that, under Assumption 4.4, the density f(k)n (t) of the jump time

Sk is the k-fold convolution of fn(t) (the density of X). Also, the convolution of f(k)n and f is

nothing but f(k+1)n . Note that S0 = 0 and f(0)n (t) = 1(t = 0). A straightforward calculation yields

Gn(t) =
∑

k>0

∫ t

0

(1− Fn(t − x))Tn(x)f
(k)
n (x)dx

=

∫ t

0

(1− Fn(t− x))(1 − T̄n(x))dMn(x)

= Fn(t) −

∫t

0

(1− Fn(t− x))T̄n(x)dMn(x) (4.45)

where we have used (4.41) to write (4.45). By differentiating (4.42) and using dLn(x) in

(4.45), we find (4.43). It suffices to differentiate (4.43) then apply the Laplace transform to

get the LST given in (4.44). The proof is complete.

Proposition 4.7 states that one needs to know the CDFs of the arrival process and the caching

duration to derive the CDF of the miss process, or equivalently, the outgoing process. This

proposition will be repeatedly used in Sect. 4.3.5 when analyzing networks of caches.

108 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

Performance metrics

Our next goal is to derive the performance metrics defined in Sect. 4.3.3 at a single cache.

Note that these metrics have been defined with respect to a single content. Similar metrics

for the a set of contents can also be defined as long as the contents popularity is known. The

following proposition provides the cache performance metrics.

Proposition 4.8 (DNS Cache performance) Under Assumption 4.4, the stationary hit probabil-

ity HP,n, the stationary miss probability MP,n, the occupancy OP,n, the stationary hit rate HR,n,

and the stationary miss rate MR,n are respectively given by

HP,n =
E[Z]

1+ E[Z]
; MP,n =

1

1+ E[Z]
; OP,n =

λn/µn

1+ E[Z]
;

HR,n =
λnE[Z]

1+ E[Z]
; MR,n =

λn

1+ E[Z]
; E[Z] = Ln(∞).

Proof In the stationary regime, E[Z] is the expected number of hits within a renewal interval

and E[Z]+1 is the expected number of requests (including the single miss) in a renewal interval.

Their ratio naturally gives the hit probability. We can readily find MP,n = 1 − HP,n, HR,n =

λnHP,n and MR,n = λnMP,n since λn is the requests arrival rate. As Y is the inter-miss time,

we have E[Y] = 1/MR,n. Last, regarding the occupancy or the stationary probability that the

content data item is in cache, we know that a content is cached for a duration T in a renewal

interval Y. Then by renewal theory the occupancy OP,n is the ratio E[T]/E[Y] = µ−1
n MR,n which

completes the proof.

Proposition 4.8 states that it is enough to compute E[Z] and estimate the request rate λn
at a cache to derive all its metrics of interest (µn is locally known). It is worth noting that

the hit probability HP,n and the occupancy OP,n are different in general and in particular under

renewal arrival processes. The equality HP,n = OP,n holds only if the arrival process is a Poisson

process thanks to the PASTA (Poisson Arrivals See Time Average) property.

Refresh rate and correctness probability: case of a dynamic record A cached content may

be refreshed only after the TTL T expires, upon a cache miss. Hence the refresh rate is nothing

but the miss rate in the case of a cache directly connected to the authoritative server. In the

presence of intermediate caches, the refresh rate of a cache is its miss rate times the product of

miss probabilities at all intermediate caches.

The correctness probability of a cache is the probability that a request gets the correct

content, whether it was cached or not. When a cache is directly connected to the authoritative

server, a cache miss ensures that the delivered content is correct whereas a cache hit may or

may not provide a correct content. This will depend on the distribution of the inter-change

time, say W, at the authoritative server.

4.3 Modern DNS hierarchy 109

We denote by cP,n the correctness probability and fR,n the refresh rate at each cache n ∈
C(m) where is the set of children C(m) of cache m. P(n) is the set of caches (including cache

n) on the path from cache n to the server. We recall that HP,n is the hit probability at cache

n and we denote by cP,0 the correctness probability at the server (cP,0 = 1). Given that cache

n is fed by a renewal request process having a CDF Fn(t) for inter-arrival times and a rate λn,

the following result provides the second order metrics of interest of modern DNS caches when

caching duration is drawn from a CDF Tn(t).

Proposition 4.9 (Second order performance metrics of modern DNS cache) The refresh rate

fR,n at cache n is given by

fR,n = λn×
∏

i∈P(n)

(1−HP,i). (4.46)

Moreover, assuming that W is an exponentially distributed rv with parameter θ (i.e. the server

is memoryless), the correctness probability cP,n at each cache n ∈ C(m) is given by the recursive

formula

cP,n = 1− (1−HP,n)(1 − cP,m) − (HP,n− F∗n(θ))(1 − T∗n(θ)) (4.47)

Proof The refresh rate fR,n of cache n is by definition the product of the miss probabilities of

caches on the path between cache n to the server times the request rate on cache i which is

translated into (4.46).

The correctness probability cP,n at cache n ∈ C(m) is found as following

cP,n = P(SZ > T ; response from cache m is correct) + P(SZ < T ; SZ < W)

= MP,n× cP,m+ P(SZ < min(W,T)).

Assuming that T , W and X are all independent, then conditioning the event {SZ < min(W,T)}

on whether {W < T } or {W > T } we note that min(W,T) = T with probability P(T < W) = T∗n(θ)

and

cP,n = (1−HP,n) × cP,m+HP,nT
∗
n(θ) + F∗n(θ)(1 − T∗n(θ))

= (1−HP,n) × cP,m+HP,n−HP,n(1− T∗n(θ)) + F∗n(θ) × (1− T∗n(θ))

= (1−HP,n) × cP,m+HP,n+ (F∗n(θ) −HP,n) × (1− T∗n(θ))

= (1−HP,n) × cP,m+ 1− (1−HP,n) + (F∗n(θ) −HP,n) × (1− T∗n(θ))

= 1+ (1−HP,n) × (cP,m− 1) + (F∗n(θ) −HP,n) × (1− T∗n(θ))

= 1− (1−HP,n) × (1− cP,m) − (HP,n− F∗n(θ)) × (1− T∗n(θ))

where W is exponentially distributed with mean θ−1, T∗n(s) and F∗n(s) are the LST of the CDFs

Tn(t) and Fn(t) respectively.

110 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

Special TTL distributions

We will consider three particular cases for the distribution of the caching duration and

derive the corresponding results.

Deterministic distribution We first look at the case when the caching duration at cache n

is deterministic and equal to the constant Dn. This setup (single cache, deterministic TTL) is

identical to the one in [59].

Result 4.1 (Deterministic TTL) The expected number of hits in a renewal interval is E[Z] =

Mn(Dn).

Combining Result 4.1 with Proposition 4.8 yields the performance metrics. These are exactly

the ones found in [59, Thm 1]. The CDF Gn(t) of inter-miss times, on the other hand, is a new

result. Using Tn(t) = 1(t > Dn), (4.43) becomes

Gn(t) = 1(t > Dn)

(

Fn(t) −

∫Dn
0

(1− Fn(t− x))dMn(x)

)

. (4.48)

Approximation for FIFO caches. [72] showed that FIFO caches can be studied as deterministic

TTL based caches where the expected TTL valueD is solution of a fixed point equation obtained

by summing the occupancy probabilities over all files and equalizing to the size of the FIFO

cache. Hence, the TTL-based model of this section can be used to accurately describe the miss

stream and compute the approximate performance metrics of FIFO caches.

Exponential distribution If caching durations follow an exponential distribution with rate

µn, then Tn(t) = 1− e−µnt and the following holds.

Result 4.2 (Exponential TTL) The expected number of hits in a renewal interval is E[Z] =
F∗n(µn)
1−F∗n(µn)

,

and (4.44) giving the LST of Gn(t) becomes

G∗
n(s) =

F∗n(s) − F∗n(s+ µn)

1− F∗n(s+ µn)
. (4.49)

The result above is identical to Corollary 4.11. We recall that the system considered in Sec-

tion 4.2.3 consists of caches using expiration-based policies whose caching durations are reset

at every cache hit. The DNS scenario considered in this section pre-sets the caching duration at

each cache miss. However, when durations are drawn from an exponential distribution, both

systems coincide thanks to the memoryless property of the exponential distribution. Therefore,

RND caches can be also studied with the TTL-based model introduced in this section.

4.3 Modern DNS hierarchy 111

Diagonal Matrix-Exponential distribution The third particular case considered here is the

one of a family of distributions, the so-called diagonal matrix exponential distribution (diag.ME

for short). The CDF of an ME distribution can be written as 1− α exp(St)u, where α and u are

dimension-n vectors and S is an n× n matrix; the ME distribution is said to be of order n. If S

is diagonalizable, i.e. there exist then an n× n matrix P and an n× n diagonal matrix A such

that S = PAP−1, then a diag.ME is obtained. The LST of its CDF is rational.

Our interest in the diag.ME is threefold. First, it covers a large set of distributions including

the acyclic phase-type distributions like the generalized coxian distribution, the exponential

distribution, the hypo-exponential distribution or generalized Erlang, the hyper-exponential

distribution or mixture of exponentials. Second, as reported in [95], a general point process

can be well fitted by a renewal process having a “phase-type distribution” such as the “mixture

of exponentials”. Third (and most attractively) it is analytically tractable as will become clear

in Sect. 4.3.5. In brief, if inter-request times of exogenous arrivals and caching durations all

follow this distribution, then any inter-miss time and any overall inter-request time in a network

of caches will also follow this distribution (with other parameters), as long as an additional

assumption is enforced.

The CDF of a caching duration following a diag.ME of order K can be written

Tn(t) = 1−

K∑

k=1

bke
−µn,kt , with

K∑

k=1

bk = 1. (4.50)

There is no restrictions on {µn,k}1≤k≤K except that Tn(t) must be a CDF. The following then

holds.

Result 4.3 (diag.ME TTL) The expected caching duration and the expected number of hits are,

respectively,

µ−1
n =

K∑

k=1

bkµ
−1
n,k; E[Z] =

K∑

k=1

bkF
∗
n(µn,k)

1− F∗n(µn,k)
, (4.51)

and the LST of Gn(t) given in (4.44) can be rewritten

G∗
n(s) = 1−

K∑

k=1

bk
1− F∗n(s)

1− F∗n(s+ µn,k)
. (4.52)

Using (4.51) in Proposition 4.8 yields the performance metrics.

Optimal TTL distribution per content

This section addresses the following challenging question: which distribution optimizes the

performance of a content caching policy and under which conditions? A partial answer will be

provided in the following.

112 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

There are conflicting objectives when optimizing a caching policy. Caching has been intro-

duced to limit wide-area DNS traffic and to speed up DNS lookups at clients. An efficient cache

is then one that has a small miss rate, a high hit probability and yet a small occupancy (data

item is in cache only when needed). The counter effect is an increase in the probability for the

user to obtain an outdated content. Indeed, as explained in Sect. 4.3.3, contents are refreshed

only upon a cache miss. Having then a high miss rate is desirable when the content is likely to

change often.

In this section, we will order distributions according to the achieved performance metrics,

namely the miss rate MR,n, the hit probability HP,n and the occupancy OP,n. Consider two

different policies. In one policy, a content is cached for a deterministic duration D; in the other,

the caching duration T has a CDF Tn(t) such that E[T] = D. The performance metrics vary with

the distribution, the rv is then explicitely appended to the notation, e.g. OP,n(T).

Proposition 4.10 (Optimal policy) If inter-arrival requests at a cache have a concave CDF then

the deterministic caching duration yields the most efficient caching, i.e.

MR,n(D) ≤MR,n(T) , HP,n(D) ≥ HP,n(T) , OP,n(D) ≤ OP,n(T).

Proof Define φ(t) = 1+Mn(t). We therefore have (use E[Z] = E[Mn(T)] in Proposition 4.8)

MR,n(T) =
λn

E[φ(T)]
, HP,n(T) = 1−

1

E[φ(T)]
, OP,n(T) =

λnD

E[φ(T)]
.

We will now prove that φ is concave. Recall that Mn(t) is the renewal function. Differentiating

twice (4.41) yields

φ ′′(t) = m ′
n(t) = f ′n(t) +

∫ t

0

mn(t− x)f ′n(x)dx. (4.53)

Since mn(t) is a positive function (it is the renewal density function), it follows that φ(t) is a

concave function if Fn(t) is concave (i.e. if f ′n(t) < 0). Using now Jensen’s inequality yields

E[φ(T)] ≥ φ(E[T]) = φ(D) = E[φ(D)] which completes the proof.

As Fn is a CDF, it may not be convex and the corollary of Proposition 4.10 never applies.

Finding the optimal policy when Fn is not concave is an open problem. The simulations dis-

cussed in Sect. 4.3.6 suggest however that, in this latter case, the higher the coefficient of

variation, the better the hit probability and the smaller the occupancy.

The concavity of the CDF Fn(t) of the inter-request times is not a strong condition. Jung,

Berger and Balakrishnan [59] use Pareto and Weibull (with shape less than 1) distributions to

fit collected inter-request times (cf. discussion around Assumption 4.4 in Sect. 4.3.3). These

distributions have concave CDFs. Also, it is known that long-tailed distributions having a de-

creasing failure rate can be well approximated by a mixture of exponentials [95], whose CDF

4.3 Modern DNS hierarchy 113

is concave. Last, a conceptual model often used in the analysis of caches (e.g. [31, 82, 42]) is

the so-called independent reference model (IRM). This model is equivalent to assuming that re-

quests for a single content form a Poisson process [38]. The CDF of (exponentially distributed)

inter-arrival times is also concave.

Proposition 4.10 states that deterministic caching durations are the optimal when Fn is

concave (Assumption 4.4 must hold).This does not mean that all contents should use the same

constant TTL value but rather to have a fixed value per content. For each content which receives its

own deterministic timer, the hit probability is maximized and yet the occupancy is minimized,

suugesting that the content is found in the cache mainly at requests arrivals. The next obvious

question is: which deterministic value is the optimal one? This question, already posed in [19],

will be addressed now.

Since the deterministic policy is optimal only when Fn is concave, we will only consider this

case in the discussion. Ideally, the optimal deterministic value, D⋆, should maximize the hit

probability and minimize the occupancy.

For concave Fn, the renewal function Mn(D) is also concave (and increasing) (cf. (4.53)).

By combining Result 4.1 and Proposition 4.8, it becomes clear that the hit probability HP,n(D)

is concave increasing (and the miss rate MR,n(D) convex decreasing).

Introduce now the function g(D) = 1+Mn(D) −Dmn(D). The derivative of OP,n(D) w.r.t.

D yields O ′
P,n(D) =

λn g(D)

(1+Mn(D))2
. Given that g(0) = 1 and g ′(D) = −Dm ′

n(D) ≥ 0 for any

D ≥ 0 (recall that m ′
n(D) < 0 for concave Fn), the function g is thus always positive and so

is O ′
P,n. Hence, the occupancy is an increasing function of the caching duration. It is therefore

not possible to maximize HP,n(D) while minimizing OP,n(D), as both increase with the caching

duration D.

We believe that having a high hit probability supersedes the desire of having a low occu-

pancy. However, the miss rate should not be minimized (its minimum is 0 when D →∞) as it

directly relates to the correctness of the cached content. Cache misses must occur in order to

update the content and it is of great interest to keep an unpopular content for long duration.

The proper thing to do in such a case is to solve a constrained optimization problem, looking

for instance to maximize the hit probability subject to a maximal occupancy OP,max (for cache

size issues) and/or a minimal miss rate MR,min (for correctness issues)

max
D

HP,n(D)

OP,n(D) ≤ OP,max

(

= Cste × λn

Λn

)

MR,n(D) ≥MR,min

where Λn is the total request rate over all records at cache n. Given the monotonicity of HP,n,

114 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

MR,n and OP,n (for concave Fn), the solution is readily found as

D⋆ = min{argOP,max, argMR,min}.

The maximal occupancy OP,max for a given content can be for instance the fraction of the cache

size that is proportional to the content’s popularity λn
Λn

.

Applicability to traditional DNS caches

The modern DNS cache analyzed in Sect. 4.3.4 holds the content for a locally chosen du-

ration. Instead, in a traditional DNS cache, the caching duration is the one advocated by the

answerer. What matters in the analysis of a single cache is the distribution of the caching dura-

tions and not whether the distribution is set locally or it is imposed. Therefore, the findings of

Sect. 4.3.4 apply in the case of a single traditional DNS cache, as long as Assumptions 4.4–4.5

hold. Note that the model developed in [59] provides approximate results for a single tradi-

tional DNS cache everytime the answerer is not an authoritative server, because the authors

consider a deterministic caching duration (set to the maximum value among all those observed

in the responses). Instead our model yields exact results for both traditional and modern caches,

regardless of the distribution chosen for the whole range of caching durations.

4.3.5 Analysis of polytree cache networks

Section 4.3.4 focused on results for a single cache. In this section, we will extend these

results for the case where we have caches at multiple nodes (e.g. client, ADSL modem, Internet

server provider’s DNS server, authoritative server). We say that we have a network of caches.

To analyze it, one additionally needs to consider the network topology. Assumptions 4.4–4.7

are enforced throughout this section. Requests for a given content may only flow over a tree

network and exogenous arrivals are independent so that Assumption 4.6 holds. In the following

we consider the particular case of linear networks for which exact results can be derived (cf.

Section 4.3.5). We will move next to the general tree network case for which approximate

results can be derived by enforcing an additional assumption (cf. Section 4.3.5). Last, we focus

on the particular case where caching durations and exogenous inter-request times follow a

diag.ME distribution (cf. Section 4.3.5). Results for this last case are interesting as the diag.ME

distribution will be preserved inside the network.

Linear networks: exact results

Consider the linear network depicted in Figure 4.3. There are N caches and the disk of the

authoritative server (the rightmost cache is the one of the authoritative server). By Assumption

4.3 Modern DNS hierarchy 115

4.4, the overall request process at cache 1 is a renewal process. By Proposition 4.7, the miss

process at cache 1 (which is nothing but the request process at cache 2) is also a renewal process.

Hence, all processes in this linear network of caches are renewal processes. The performance

metrics at each cache are derived using Proposition 4.8.

Tree networks: an iterative procedure

The aggregation of several renewal processes in not a renewal process. However, it is

mandatory to have a renewal process for Proposition 4.6 to hold at any high-level cache in-

side the network. Similarly to Approximation 4.1, we overtake this limitation by proceeding as

if we do have a renewal process, and then assess the robustness of the model against situations

where this is not the case. The approximate results obtained are strikingly accurate as will be

seen later in Section 4.3.6. In the rest of the section, the following assumption will be enforced.

Assumption 4.8 (Aggregation) The overall request arrival process at each cache is a renewal

process.

A direct consequence of Assumption 4.8 is that the miss process at each cache is a renewal

process thanks to Proposition 4.6. Propositions 4.7 and 4.8 are also valid at any cache. For

the case of cache n in isolation, the CDF of the inter-miss time at a cache, namely Gn(t), is

expressed as a function of the CDF of the inter-request time, namely Fn(t); see (4.43).

In the case of a network, one needs to consider the inter-request time of the aggregate

process arriving at cache n. Let Hn(t) be its CDF. Equation (4.43) provides the CDF of the

inter-miss time at cache n, denoted by Gn(t), after replacing Fn(t) with Hn(t) and by using

the renewal function associated with the aggregate request process, say Mn(t), in (4.42). To

explicitly write this equation for the case of a network of caches, additional notation is needed.

The set of children of cache n is C(n) with C = |C(n)|. The rate of exogenous requests (if

any) at cache n is λn; the CDF of inter-exogenous request times is Fn(t). There are C+1 request

processes at cache n. Their aggregation has a rate

Λn = λn+
∑

i∈C(n)

MR,i. (4.54)

The n miss processes at the children of n and the exogenous request process at cache n are

all independent. Thereby, the result derived by Lawrance in Theorem 4.1 or [69, Eq. (4.1)]

applies. By Assumption 4.8, the aggregate request process at cache n is a renewal process and

116 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

the CCDF of the inter-request time is

H̄n(t) =
λn

Λn
F̄n(t)

∏

i∈C(n)

MR,i

∫∞

t

Ḡi(u)du (4.55)

+
∑

i∈C(n)

MR,i

Λn
Ḡi(t)λn

∫∞

t

F̄n(u)du
∏

j∈C(n)
j 6=i

MR,j

∫∞

t

Ḡj(u)du.

Equation (4.45) becomes

Gn(t) = Hn(t) −

∫ t

0

(1−Hn(t− x))T̄n(x)dMn(x) (4.56)

with T̄n(t) the CCDF of the caching duration at cache n and Mn(t) the renewal function asso-

ciated with the aggregate request process at the same cache. Equations (4.55)-(4.56) provide

a recursive procedure for calculating the CDFs Hn(t) and Gn(t) at each cache n of a tree

network. Numerical procedures such as Romberg’s method or other techniques for comput-

ing (4.55)-(4.56) recursively can be found in [93]. We consider next a special case in which

closed-form expressions for Hn(t) and Gn(t) can be found.

Closed-form results with diag.ME random variables

In this section, we consider a tree network where caching durations at any cache follow a

diag.ME distribution. Also, we will consider that the exogenous request process at any cache is

a renewal process whose inter-request time follows a diag.ME distribution. More precisely, at a

cache n we have

Fn(t) = 1−

Jn∑

j=1

an,je
−λn,jt, T̄n(t) =

Kn∑

k=1

bn,ke
−µn,kt, (4.57)

for t > 0. Jn and Kn are the respective orders of the diag.ME distributions. We are now

in position to prove an interesting property that is another contribution of this work. This

property is the self-preservation of the diag.ME distribution across a tree network as stated in

what follows.

Proposition 4.11 (diag.ME preservation) Under Assumptions 4.4-4.8 and as long as (4.57) is

verified at each cache n of a tree network, miss processes and aggregate requests are all renewal

processes whose inter-event time follows a diag.ME distribution (parameters are in the proof).

Proof The proof rests on three arguments: (i) the miss process at each of the lowest-level

caches checks Proposition 4.11; (ii) the aggregate request process and (iii) the miss process at

each of the next higher-level caches verify Proposition 4.11. Arguments (ii) and (iii) will be

4.3 Modern DNS hierarchy 117

used repeatedly until all caches in the network are covered. By Proposition 4.6 and Assump-

tion 4.8, the processes at hand are renewal processes. We focus then on the distribution of the

inter-event time.

Argument (i): the miss process at a lowest-level cache. Let n be such a lowest-level cache;

it corresponds to a leaf in a tree. The CDF of the inter-request time is given by (4.57). The

renewal equation (4.41) can be written as follows

Mn(t) = Fn(t) +

∫ t

0

Jn∑

j=1

an,jλn,je
−λn,j(t−x)Mn(x)dx. (4.58)

The solution of (4.58) is given in [81, Section 2.2.1.19] which we can differentiate to find

dMn(t) =

Jn∑

j=1

γn,je
−θn,jtdt (4.59)

where (θn,j)1≤j≤Jn are the Jn roots of the algebraic equation

0 = 1−

Jn∑

j=1

an,jλn,j

λn,j− z
, (4.60)

and (γn,j)1≤j≤Jn are the solution of the linear system

{
0 = 1+

Jn∑

j=1

γn,j

θn,j− λn,j
, 1 ≤ j ≤ Jn. (4.61)

Combining now (4.57) and (4.59), we can apply Proposition 4.7 to rewrite (4.45) as follows

Gn(t) = 1−

Jn∑

j=1

an,j

(

1+

Kn∑

k=1

Jn∑

i=1

bn,kγn,i

θn,i+ µn,k− λn,j

)

e−λn,jt

−

Kn∑

k=1

Jn∑

i=1





Jn∑

j=1

(−an,j)bn,kγn,i

θn,i+ µn,k− λn,j



 e−(θn,i+µn,k)t. (4.62)

Clearly, the inter-miss time at a lowest-level cache follows a diag.ME distribution, whose order

is Jn(Kn+ 1) which is the number of exponentials in (4.62).

Argument (ii): the aggregate request process at a next higher-level cache. The CCDF of the

inter-request time at this intermediate cache n is given in (4.55), where Fn(t) is relative to the

exogenous request process and Gi(t) is relative to the ith cache in C(n), the set of children of

cache n. Recall that C = |C(n)|. To simplify the derivation of Hn(t), we rewrite Fn(t) (4.57)

and (4.62) with a new/modified notation (t > 0)

Fn(t) = 1−

L0∑

l0=1

a0,l0e
−λ0,l0 t, Gi(t) = 1−

Li∑

li=1

ai,lie
−λi,li t.

118 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

The exogenous request rate is denoted λ0 =
∑L0
l0=1

a0,l0λ0,l0 . The miss rate at the ith cache in

C(n) is denoted MR,i. The overall request rate at cache n becomes Λn = λ0+
∑C
i=1MR,i (see

(4.54)). After tedious calculations, (4.55) can be rewritten

H̄n(t) =

∏C
i=0MR,i

Λn

L0∑

l0=1

L1∑

l1=1

· · ·
LC∑

lC=1

C∑

i=0

λi,li ×





C∏

j=0

aj,lj

λj,lj



 exp



−





C∑

j=0

λj,lj



 t



 .

(4.63)

The inter-request time at the intermediate cache n follows a diag.ME distribution of order at

most
∏C
i=0Li.

Argument (iii): the miss process at a next higher-level cache. Argument (i) can be repeated

here by carefully replacing the exogenous request process with the aggregate request process

discussed in Argument (ii). We can conclude that it is enough to have the caching duration

at a cache and the inter-request time at the same cache follow a diag.ME distribution for the

inter-miss process at this cache to follow a diag.ME distribution. This completes the proof.

The performance metrics can be found at each cache by using Result 4.3 and Proposi-

tion 4.8. It is important to start the computation with the lowest-level caches as their miss

rates will be used to derive Hn(t) at a higher-level cache. It is also H∗
n(s) that should be used

instead of F∗n(s) in Result 4.3 at each higher-level cache.

Sections 4.3.5 and 4.3.5 provide approximate results as Assumption 4.8 is not true. The

robustness of our model is tested in Section 4.3.6.

4.3.6 Validation and numerical results

The objective of this section is to test the robustness of our models against violations of the

main assumptions. We first address the case of a single cache by comparing the analytic results

of Sect. 4.3.4 to results obtained real DNS traces. The case of a network of caches is addressed

next, where the objective is to validate Assumption 4.8.

Using a real trace (single cache)

In this paragraph, we use traces collected from a real DNS cache to assess the robustness

of our analysis. Our home institution Inria at Sophia Antipolis manages two DNS servers in

parallel to provide load balancing. The DNS traffic at one of these servers has been collected

from 21 June to 1 July 2013. The trace contains information about 2313984 resource records

requested by a total of 2147 users. Processing the trace provides, for each resource record (or

content):

1. the request instants (from users to Inria’s DNS server);

4.3 Modern DNS hierarchy 119

 0

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50 60 70 80 90 100

lag

Auto-correlation function

Figure 4.21: Correlated requests

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 5 10 15 20

time (in seconds, linear scale)

Cumulative distribution function

empirical

fitted

(a) Inter-arrival times (s)

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.001 0.01 0.1 1 10

time (in seconds, logarithmic scale)

Cumulative distribution function

empirical

fitted

(b) Inter-arrival times (ms)

Figure 4.22: Arrival process fitting at second and millisecond time scales.

2. the cache miss instants (coinciding with the instants of requests from Inria’s DNS server

to Internet);

3. the response instants (from Internet to Inria’s DNS server);

4. the final response instants (from Inria’s DNS server to users);

5. the TTL values (in response packets).

A careful analysis of this trace reveals the following. First, requests instants and final re-

sponses instants do not differ much, thereby justifying our instantaneous transmission/pro-

cessing assumption. Second, requests are time-varying (week day/week-end, day/night) and

clearly dependent as illustrated in Fig. 4.21 for one of the contents (cf. lags 3 and 6). Therefore,

Assumption 4.4 (renewal request process) is not met. Testing our model using this trace will give

insights on its robustness since the main assumptions used in the single cache analysis are not

met in this trace. Third, based on the TTLs recorded, Inria’s DNS server behaves like a tradi-

tional DNS cache. For the same resource record, TTLs found in the final response packets vary

from 1 to the initial TTL advocated by authoritative servers; this emphasizes the pertinence of

our models as caches at the user side are given non-deterministic TTLs.

Our aim is to predict cache performance and most importantly the cache miss process as

it represents the traffic that flows upstream in the DNS hierarchy (also needed for network

120 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

analysis). We selected one resource record out of the most requested among users. The caching

duration of the chosen content (ranked 6th) turns out to be deterministic and equal to 2 hours

(value provided directly by five authoritative servers). We used the KPC-Toolbox [21] to find

the Markovian Arrival Process (MAP) that best fits the inter-request times X of the aggregated

arrival process (generated by 145 different users). This tool matches with priority higher-

order correlations and can convert any MAP into a renewal process having inter-arrival times

identically distributed as arrivals in the MAP. The number of states of the fitted MAP is 128. The

moments of the empirical inter-request time (as computed by the tool) are: mean = 4.1614,

variance = 4476.9, skewness = 83.8809, kurtosis = 7973.3.

 0
 0.2
 0.4
 0.6
 0.8

 1

 7150 7200 7250 7300

time (in seconds)

Cumulative distribution function

empirical

analytic

Figure 4.23: Miss process prediction.

Table 4.6: Performance metrics and relative errors (Rank 6)

Metric Trace Model Rel. err. (%)

miss rate 0.00013876 0.00013749 0.920

hit probability 0.99943 0.99941 0.002

occupancy 0.99914 0.98995 0.920

Taking as input the fitted distribution and the TTL value, we use the findings of Sect. 4.3.4

to obtain the performance metrics of the cache relative to the content ranked 6th (cf. Table 4.6)

and the CDF of the inter-miss times (cf. Fig. 4.23). To determine the CDF (4.48), we use a

naive Riemann’s sum for the integral computation. Two parameters must be set: (i) the upper

bound of the integral τ, and (ii) the step length ∆. Clearly, the larger τ and the smaller ∆, the

smaller the numerical error but also the larger the computational cost. We set τ = 720000 (100

times the maximum between the mean inter-request time and the TTL) and ∆ = 0.1.

The analytic results are compared to those computed from the trace. Table 4.6 reports

negligible values of the relative errors on the performance metrics. Proposition 4.8 appears to be

applicable even if Assumption 4.4 is not met. In fact, we believe that it is enough to have sta-

tionary and ergodic point processes as requests for Proposition 4.8 to apply; cf. [10, Eq. (1.3.2),

p. 21]. Lawrence’s theorem [69, Eq. (4.1)] can then be replaced with [10, Eq. (1.4.6), p. 35].

4.3 Modern DNS hierarchy 121

Table 4.7: Analytic performance metrics and their relative errors (in percentage) at represen-

tative caches (λ1 = 1.57 requests/s, λ2 = 0.87 requests/s, λ3 = 1.37 requests/s, λ4 = 0.68

requests/s)
Cache Performance Distribution of caching durations Trend

metric deterministic hypo-exponential exponential hyper-exponential

value rel. err. value rel. err. value rel. err. value rel. err.

1 miss rate 0.49479 0.00921 0.49906 0.00649 0.50039 0.08715 0.50235 0.07702 ր
hit probability 0.43275 0.03832 0.42785 0.02724 0.42632 0.00660 0.42408 0.00065 ց
occupancy 0.35786 0.04466 0.36094 0.04712 0.36191 0.03360 0.36333 0.02360 ր

5 miss rate 0.56708 1.1214 0.52673 0.08478 0.51681 0.10264 0.51073 0.00132 ց
hit probability 0.41611 1.4561 0.46389 0.18679 0.47589 0.1514 0.48412 0.10321 ր
occupancy 0.58169 1.146 0.54023 0.04850 0.53005 0.06307 0.52379 0.04179 ց

7 miss rate 0.52928 5.0614 0.48234 0.23668 0.46971 0.06873 0.46045 0.00650 ց
hit probability 0.51789 4.536 0.52049 0.25253 0.52361 0.1067 0.52731 0.07069 ր
occupancy 0.67667 5.0986 0.61667 0.19648 0.60051 0.02771 0.58866 0.03662 ց

1

2

4

3
6

5

7 disk exogenous
requests

independent

Figure 4.24: A binary tree with 7 caches.

As for the miss process, Fig. 4.23 is clear: our model accurately estimates the CDF of the

inter-miss time. Proposition 4.7 appears to be applicable even if Assumption 4.4 is not met. This

section suggests that our single cache model is robust.

Validating assumption 4.8

We now proceed to evaluate the robustness of our model of a network of caches. To this

end, we resort to performing event-driven simulations. It is worth recalling that with exponen-

tially distributed caching durations the model in this section coincides with the one developed

in Section 4.2 to study caches that reset the caching durations at each hit. In Section 4.2, As-

sumption 4.8 is also used; we evaluate the robustness of the TTL-based model by comparing the

approximate results it yields to exact analytic results that can be found when the conceptual

IRM is used for requests. An excellent match is found which legitimates the use of Assump-

tion 4.8. The same applies to our model when caching durations are exponentially distributed.

We consider a tree consisting of 7 caches as shown in Fig. 4.24. This tree represents well

the hierarchy found in DNS: cache 7 is that of the authoritative server, caches 5 and 6 are

typically those of ISP’s DNS servers, and caches 1-4 are found at the client side (ADSL modem,

laptop, etc.). To capture the fact that users have interleaving activity and inactivity periods,

requests for all contents are assumed to form a Markov-Modulated Poisson Process (MMPP).

122 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

In other words, requests for a single content form an Interrupted Poisson Process (IPP). As a

consequence, Assumption 4.8 is not satisfied at caches 5, 6 and 7 since each component (miss

process) of their overall request process is not a Poisson process.

In each performed simulation, we consider a single content whose requests at each bottom-

level cache form an IPP. The request rate at cache i is λi ∈ [0.5, 20] for i ∈ {1, 2, 3, 4}. The caching

durations at all caches follow the same distribution, with expectation in [0.5, 1.5]. Four distri-

butions have been considered in the simulations: deterministic, hypo-exponential, exponential

and hyper-exponential. Their respective coefficients of variation are 0, < 1, 1, and > 1.

The “exact” values of the performance metrics are those obtained after running long enough

simulations. Our criterion for a long simulation is one that yields a relative incertitude on each

metric less than 10−4. For instance, the hit probability at cache n obtained through simulation

is HSP,n (the superscript S stands for “simulation”). We calculated the 99% confidence interval

[HSP,n− ǫ,HSP,n+ ǫ], the relative incertitude on HP,n is then 2ǫ/HSP,n. At the end of a simulation

run, the latter was at most 0.6 × 10−4.

The approximate values of the performance metrics are those predicted by our model and

are obtained by following the recursive procedure explained in Sect. 4.3.5. We have imple-

mented a MATLAB numerical solver that determines the CDFs in the network (using (4.55)-

(4.56)) and then the metrics of interest at each cache (using Proposition 4.8 where E[Zn] =

Ln(∞)). The numerical error comes from the integral computation used in (4.55)-(4.56) (e.g.,

the integrals over infinite ranges). Again, we use Riemann’s sum and, for simplicty, unique

values for τ and ∆ for all computations relative to a single simulation run. Consider all inter-

request times and all caching durations within the network of caches. We set τ to one hundred-

fold the maximum expectation among all these random variables, and ∆ to one thousandth of

the minimum expectation among the same random variables.

We have computed the relative error between the exact results obtained from simulations

and the approximate results predicted by our model. The average relative error across all

simulations on the miss rate, the hit probability and the occupancy at caches from different

hierarchical levels are reported in Table 4.7 (columns 4, 6, 8, and 10). Our model is extremely

accurate in predicting the performance metrics when caching durations are not deterministic

as the relative error does not exceed 0.3%. For deterministic caching durations, an excellent

prediction is available at bottom-level caches. The relative error increases as we consider caches

at higher hierarchical levels, it reaches roughly 5% at the third level, which is nevertheless an

affordable value. We conclude that using Assumption 4.8 is not a limitation and that our model

is very robust to violations of this Assumption.

4.4 Perspectives on DNS work 123

Optimal caching policy in a network

According to Sect. 4.3.4, if the CDF of inter-request times at a cache is concave, then the

best caching policy is to cache a content for a deterministic duration. If exogenous request

processes satisfy this condition, it will not be the case of the aggregate request process reaching

a higher-level cache.

Consider again the simulations presented in Sect. 4.3.6. Table 4.7 reports in columns 3, 5,

7, and 9 the analytic values of the performance metrics obtained at caches 1, 5 and 7 (one cache

at each level) of the synthetic network of Fig. 4.24. The trend observed on these metrics as the

distribution changes from the least variable (i.e., the deterministic) to the most variable (i.e.,

the hyper-exponential) is shown in column 11.

The optimal values of the performance metrics are in bold fonts in Table 4.7. The best

distribution at bottom-level caches (e.g., cache 1) is the deterministic one. This is predicted by

Proposition 4.10 which applies here as the inter-request time of an IPP has a concave CDF. The

trend on each of the metrics is inverted at higher-level caches. The deterministic policy achieves

then the worst performance. The more variable a distribution, the better the performance

metrics. The inter-request time at higher-level caches no longer has a concave CDF. Recall that

these observations are for each content individually. The parameters of a given distribution will

vary from a content to another according to the popularity.

The above trends are observed when all the caches in a tree use the same distribution.

Since we have established that for concave CDF (the case of IPP requests) the deterministic

distribution is the best, we repeated the simulations described earlier with the exception of

having deterministic TTLs at all bottom-level caches. We observed the same trends for the same

values of λi for i ∈ {1, 2, 3, 4} as in Table 4.7 and for another set of values that is λ1 = 0.052

requests/s, λ2 = 0.061 requests/s, λ3 = 0.091 requests/s, λ4 = 0.078 requests/s.

Our study suggests that for better performance, deterministic caching durations should be

used only at bottom-level caches, i.e., at the client side. Caches at servers should store contents for

durations as variable as possible (large coefficient of variation).

4.4 Perspectives on DNS work

The TTL-based models used in this section proved to be very useful to study the modern DNS

cache hierarchy. Our single cache model has been tested on real DNS traces that do not meet

the renewal assumption. It predicts the performance metrics and the CDF of the miss process

remarkably well. We have addressed the problem of the optimal caching duration and found

that if inter-request times have a concave CDF, then the deterministic policy is the best. For

non-concave CDF, our numerical analysis suggests that more variable distributions are better.

124 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

4.5 Conclusions

In this chapter, we studied two application cases: a proposal of TTL-based caches for

content-routers of Content-Centric Networks and a TTL-based model for modeling modern

DNS caches. We showed that our unified framework for TTL-based cache networks produces

very accurate results under the assumption of renewal request processes. Several properties of

TTL-based caches are established: deterministic TTL as the optimal distribution when the CDF

of inter-request times is concave, closed-form characterization of processes involved at any

point of the network when exogenous inter-request times and TTL are matrix-exponentially

distributed, and simplified formulas for performance metrics. Moreover, we pointed out the

usefulness of our model to approximately describe the metrics of interest and the miss streams

of other caching systems running popular replacement policies such as LRU, RND and FIFO.

Hence, our theoretic studies open the perspective to build an accurate methodology to analyze,

dimension, predict performance of general and heterogeneous networks of LRU, RND and FIFO

caches. This challenging research opportunity will be investigated in the next chapter.

4.5 Conclusions 125

126 Chapter 4: Application cases: Content-Centric Networks and Domain Name System

5

APPROXIMATE ANALYSIS OF GENERAL

AND HETEROGENEOUS NETWORKS OF

LRU, FIFO AND RANDOM CACHES

5.1 Summary

In this chapter, we propose an approximate methodology to assess the performance of gen-

eral and heterogeneous cache networks. We consider that caches may run either the Least

Recently Used (LRU), First-In First-Out (FIFO) and/or Random (RND) replacement algorithms.

First, we address the case where requests are independently and identically distributed (i.i.d.)

and streams of requests may be approximated by renewal processes [95]. Then, we investigate

the case of correlated requests where statistical correlations are described by Markov-Arrival

Processes (MAPs) [49]. In the former case, we provide a detailed approach to study net-

works with arbitrary topology based on: (1) the characteristic time approximation [23, 72]

of LRU, FIFO, and RND caches, (2) the miss stream characterization of their corresponding

TTL-based models [25, 73], and (3) the routing of requests as polytrees i.e. towards several

destinations [52]. Our approximate model turns out to be very accurate in comparison to other

existing models [82]; moreover, in presence of correlated requests correlations we describe

how our modeling approach extends to account them.

Keyword 5.1 Approximate analysis, heterogeneous cache networks, Least Recently Used, First-In

First-Out, Random, characteristic time approximation, renewal and Markov-arrival processes.

127

128
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

5.2 Introduction

Over the past years, popular cache management algorithms such as Least Recently Used

(LRU), First-In First-Out (FIFO), and Random (RND) have received significant attention. Nowa-

days, the interest has shifted from caching systems in isolation to interconnected caches. The

benefits of the latter approach come from storing contents in caches that are world-widely de-

ployed or distributed across the network. This trend is mostly driven by the recent development

of content-oriented technologies such as Content Distribution Networks, social networks, Video

on Demand systems, and Information-Centric architectures [3, 53]. The purpose is of adapting

the network architecture to the current content usage patterns, to the potential reduction of

congestion, and the improvement of content delivery speed through deployment of caches in

various places in the network.

Although considerable work has focused on studying isolated caches, it is still poorly under-

stood how networks of caches operate. These cache networks have several properties such as

arbitrary topology, heterogeneous nodes, complex routing schemes, and various statistical re-

quest correlations which make their analysis, performance evaluation, and design significantly

challenging. Note that exact analysis of general cache networks is extremely difficult, and re-

quires vast computational resources. Even for an isolated cache the complexity of an exact

analysis grows exponentially with the cache size B and the number of files N. Also approxima-

tions [31] available for single cache systems have a complexity of order ofO(NB). This explains

why only the 2010 paper by Rosensweig et al. [82] can be found as probably the most quoted

modeling attempt of general (and homogeneous) network of LRU caches. Unfortunately, their

approximate methodology suffers from inaccuracies with relative errors of 16%. The existing

models for networks of caches are limited by one of the followings:

(i) the network topology, which is generally assumed to be hierarchical or tree-based [23,

72, 14, 42, 67];

(ii) the routing/forwarding schemes [23, 72, 20, 42], which are restricted to the case where

requests flow in the same direction, e.g. from-children-to-parents forwarding schema of

tree network;

(iii) the cache replacement policies [82], which are required to be identical across all caches;

(iv) the Independent Reference Model (IRM) or Poisson approximation [38], which is inaccu-

rate [57] and commonly used to represent request streams [82]; and finally

(v) computational complexity due to exact calculation [25, 73], which can be significant

especially for large networks.

5.3 Related works 129

Clearly, there is a lack of tools for performance evaluation of general and heterogeneous

cache networks that can help engineers to gain insights into how interconnected caches per-

form, to test several network configurations, and to design their own network without investing

too much effort and resources on test-beds. We address these five issues and derive approxi-

mate methodologies (and algorithms) by leveraging the notion of cache characteristic time for

isolated caches, techniques of approximating general request processes by renewal processes,

exact theoretic results on performance metrics calculation of TTL-based caches, and modeling

approaches of complex routing schemes. Our modeling attempt is validated through extensive

event-driven simulations.

The chapter is organized as follows. Section 5.3 presents relevant work under which our ap-

proach relies. It also shows the limitations of existing methodologies. We introduce our network

model, assumptions and solution schema in Section 5.4. Section 5.5 describes the approximate

models and algorithms for studying single LRU, FIFO, and RND caches. We also report some

misconceptions on characteristic times found in the literature [72]. In Section 5.6, we focus on

performance analysis of cache networks fed by independent and identically distributed (i.i.d.)

requests and we present challenges in terms of network primitives that we address by translat-

ing the latter into well-known operations on request processes. We also describe how we can

account for correlated request streams. Our modeling approach is evaluated in Section 5.7 and

our findings are summarized in Section 5.8.

5.3 Related works

The closest work, methodologically speaking, to ours is the 2010 paper by Rosensweig,

Kurose and Towsley [82]. The authors provide an in-depth analysis of sources of inaccura-

cies but also a simplified methodology for performance evaluation of general LRU cache net-

works. Their approach is built on top of the LRU cache approximation developed by Dan and

Towsley [31] which has a complexity of order of O(NB) where N is the number of files and

B the cache size. Besides the complexity which can be significant for typical content-oriented

networks (i.e. large values of N and B), [82] has identified the three potential sources of pre-

diction error of their analysis of general and homogeneous networks of LRU caches: (e1) the

inaccurate performance metrics calculation of [31], (e2) the violation of the IRM (or Poisson)

assumption on the miss streams of LRU caches (already shown by Jelenkovic and Kang [57]),

and (e3) the inaccurate characterization of the aggregated request process that feed a cache

within a network (this process may result from the superposition of miss streams other caches

and exogenous requests).

Che et al. [23] proposed an alternative approach to that of Dan and Towsley [31] for the

calculation of performance metrics of LRU caches. Their model is based on the cache charac-

130
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

teristic time and was experimentally proved to be very accurate on hierarchical (more precisely

on two-level tree-based) cache networks. To some extent, the characteristic time approximation

(CTA) on single LRU caches [23] addresses the source of prediction error (e1) with a precision

comparable to that of [82]. However, the complexity of the cache performance calculation us-

ing the CTA is not well established as the iterative procedure of [31, 82]. However, the network

model in [23] still suffers from: (e2) i.e. the characterization of the miss streams of LRU caches,

the huge complexity of the exact characterization [69] of the aggregated request process at

the root, the limitation of tree cache networks, and the strong dependence on Poisson request

streams at leaves.

Martina et al. [72] experimentally extended the results of Che et al. [23] in three orthogonal

directions. First their simulations showed that the characteristic time approximation can be

applied to other cache replacement policies such as LRU, FIFO, RND and variants. Second their

numerical results showed that the Poisson request streams assumption at leaves can be relaxed

and non-IRM models such as renewal request processes can be safely considered. Third their

analysis is carried out on arbitrary hierarchical (tree) cache network. However, their network

model did not successfully address errors (e2) and (e3) since miss streams of requests and

aggregated request processes are approximated by Poisson processes. Also, they stated that

their study on a tandem of two caches “with requests flowing in the same direction” is enough

to analyze general cache networks. We shall see in Section 5.6 that several operations such as

aggregating, splitting of request streams, and also “requests flowing in opposite direction” cannot

be handle or trivially derived from their tandem of two caches example.

In Chapter 3 we studied TTL-based caches which have been previously shown in Chapter 2

to describe and model the behavior of LRU, FIFO and RND caches under certain conditions

(general stationary request processes, large number of files N and/or large cache capacity B).

These latter conditions where sufficient to theoretically establish the validity and the accuracy

of the characteristic time approximation (CTA) of [23, 72]. Networks of TTL-based caches are

studied in Chapter 4 under the assumption that all request processes involved in the network

may be approximated by renewal processes. Simulations showed that performance metrics at

each node can be obtained with errors less than 5%. Hence, combining the CTA and TTL-

based network models, one can directly tackle the three sources of prediction errors (e1), (e2)

and (e3) on general and heterogeneous networks of LRU, FIFO and RND caches. However,

the exact analysis carried out in Chapter 4 is computationally expensive since it requires the

evaluation of integrals over infinite supports and the resolution of Integral equations [25, 73].

This is definitely an handicap for the analysis of large and arbitrary cache networks.

In this chapter, we develop an approximate methodology for cache networks that addresses

the numerical complexity observed in Chapter 4 while providing a similar level of accuracy. Our

approach is presented in the next section and it is worth noting that our approach can be easily

5.4 Model and assumptions 131

extended to include other replacement policies such as q-LRU and Least Frequently Used (LFU)

as introduced in [72].

5.4 Model and assumptions

In this section, we first describe the system of interest, and define the problem that we try

to solve, and then explain the approach we take to solve the problem.

5.4.1 Problem statement and network model

The problem is stated by following previous effort of Rosensweig, Kurose and Towsley [82].

Let G = (V, E) represent a network of caches, V = {v1, . . . , vN} the set of caches, and E ⊂
V × V the set of connections between caches. Additionally, the file catalog is denoted by F =

{f1, . . . , fK}. Each file is stored permanently at one or more public servers that are attached to a

node in the network.

At some of the nodes {vn ∈ V} in this system, requests arrive exogenously and directly from

users. When a request for file fi arrives at a cache, it generates a cache hit if the file is located

at the cache and a cache miss if not. In the latter case, the request is forwarded to other caches

in the network based on the routing table at each cache, until the file is located in a cache or

at the server storing the file. Then the file is forwarded along the reverse path taken by the

request, and stored at each cache along the way; this network caching strategy is also known

as Leave Copy Everywhere (LCE) by Laoutaris, Syntila and Stavrakakis [67].

If a buffer is full when a cache miss occurs, one of the files in the cache is selected based on

an eviction policy to make room for the new file. In this work, we consider that caches may run

one of the three most popular replacement policies, namely, LRU, FIFO, and RND. However,

the model can be easily extended to include other variant replacement policies studied in [72].

Following common practice, we assume that all files have the same size (see [82] and references

therein); otherwise, they can be divided in small chunks of identical size (see [41]). Hence we

express the cache size in terms of the number of files/chunks it can hold at any given moment.

As commonly agreed [31, 23, 82], we also assume that the request processing/forwarding times

and the file download time after a cache miss are significantly smaller than the inter-request

timescale. This assumption has been validated on real DNS traces in Section 4.3.6 of Chapter 4.

Thus, once a cache miss occurs, the file is instantaneously available in the cache.

5.4.2 Processes at hand

We denote by Rn,i = {tk(n, i)}k≥0 the overall request process of file fi at cache n where

tk(n, i) is the arrival instant of the k + 1-st request, Λn,i the intensity of the process Rn,i, and

132
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

λn,i the rate of exogenous arrival at cache vn. In the remainder of this chapter, the following

statement holds unless otherwise specified.

Assumption 5.1 (Renewal Request Process) Exogenous requests and aggregated streams of re-

quests may be approximated by renewal processes.

We denote by Xn,i the generic inter-arrival time of the process Rn,i, Fn,i(t) = P(Xn,i < t) its

Cumulative Distribution Function (CDF), F̂n,i(t) the CDF of its survival time (or forward recur-

rence time), Mn,i(t) the Renewal Function (RF) associated to Fn,i(t), and F∗n,i(s) = E[e−sXn,i]

its Laplace-Stieltjes Transform (LST) for all t ≥ 0 and s ≥ 0. We refer to classical references on

renewal theory, such as the book by Cox [28], for detailed definitions of theses quantities.

We aim at providing simple and accurate approximations of {Rn,i} based on minimal avail-

able information that engineers could easily measure or estimate at edge nodes of the network.

We choose the request rate and coefficient of variation of exogenous inter-request times as inputs

of our process model. This information is also translated into the frequency and the burtiness of

the cache solicitations.

Whitt’s approximation of general point processes [95] In this chapter, exogenous, miss

and aggregated request processes will be approximated by renewal processes having hyper-

exponential or shifted-exponential CDF for inter-arrival times introduced by Whitt [95]. The

following characteristics of these approximate renewal processes will be intensively used.

1. If X has an Hyper-exponential CDF with parameters p1, p2, θ1 and θ2, then

(a) the mean and the variance of X,

E[X] = p1θ
−1
1 + p2θ

−1
2 , Var[X] = p1θ

−2
1 + p2θ

−2
2 − E[X]2

(b) CDF of inter-request time X,

F(t) = 1− (p1e
−θ1t+ p2e

θ2t), p1+ p2 = 1, t ≥ 0

(c) CDF of forward recurrence time,

F̂(t) = 1−

(

p1θ
−1
1

E[X]
e−θ1t+

p2θ
−1
2

E[X]
e−θ2t

)

(d) Renewal Function associated to F(t),

M(t) =
t

E[X]
− p1p2

(

θ1− θ2

p1θ2+ p2θ1

)2
(

1− e−(p1θ2+p2θ1)t
)

5.4 Model and assumptions 133

(e) LST of F(t)

F∗(s) =
p1θ1

θ1+ s
+
p2θ2

θ2+ s

2. If X has a Shifted-exponential CDF with parameters τ and θ, then

(a) the mean and the variance of X,

E[X] = τ+ θ−1, Var[X] = θ−2

(b) CDF of inter-request time X,

F(t) = 1− e−θ(t−τ), t ≥ τ

(c) CDF of forward recurrence time,

F̂(t) =

(

1−
e−θ(t−τ)

1+ τθ

)

1(t ≥ τ) +

(

θt

1+ θτ

)

1(t < τ)

(d) Renewal Function associated to F(t),

M(t) =

K∑

k=1

γ (k, θ(t− kτ))

Γ(k)
, K =

⌊ t

τ

⌋

,

where γ(.) is the incomplete Gamma function.

(e) LST of F(t)

F∗(s) =
θ

θ+ s
e−sτ

Thanks to Whitt’s approximations, our task on characterization of processes reduces to deter-

mine the frequency and the burstiness of incoming and miss request streams at each node of

the network. Our approach is detailed in the next section.

5.4.3 Solution schema and contributions

In this section, we describe our procedure for a single cache. The latter will be iterated on

cache networks. Our approach relies on the following building blocks:

(b1) The Arrival Process Approximation, in short APA.

This block is used to provide a simplistic description of request processes of each file at

each cache of the network. It takes advantage of Assumption 5.1 and well-known approx-

imation procedures [95, 5] to describe a general point process. The method used here is

known as moment matching [77] since it requires knowledge of the first two moments of

the inter-request times.

134
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

(b2) The Characteristic Time Approximation, in short CTA.

The characteristic time Ti of file fi of a single cache is defined as the maximum inter-

request time of that file which leads to cache hit. This notion was initially introduced

by Che et al. [23] on LRU caches and later extended by Martina et al. [72] to other

replacement policies such as RND, FIFO and variants under Assumption 5.1. It was expe-

rimentally [23, 66, 72] verified that E[Ti] ≈ T, ∀i especially when the rate Λi is negligi-

ble [41] in comparison to the total request rate Λ =
∑K
i=1Λi. We proved in Chapter 2 and

simulations by [23, 72] confirmed that LRU and FIFO caches have a deterministic char-

acteristic time, while that of RND caches is exponentially distributed. Hence, this block

allows us to study LRU, RND and FIFO caches through their corresponding TTL-based

models where files are decoupled such that the analysis we derive for one file applies for

the others in the same fashion.

(b3) The Performance metrics and Miss process Characterization, in short PMC.

This block relies on exact and closed-form formulas of performance metrics of TTL-based

caches derived in Chapter 4 under Assumption 5.1. It is needed for the extension of our

approximation procedure to cache network since it provides an exact characterization of

the miss stream of TTL-based caches. We recall that this miss process was shown to be a

renewal process when Assumption 5.1 holds. Hence, we only need to compute the exact

two first moments of the cache miss process.

(b4) The Routing of Request Streams, in short RRS.

This step is useful at any point in the network where several destinations of requests

are possible. In other words, it implements routing table or routing policies (e.g. load

balancing, shortest path, or Peering/Transit link of Autonomous Systems) at each node

in the network. This operation is translated into dependent splitting/thinning request

processes [52].

hit miss

t0
time

m1

Xk

tk. . .t1
X1

m0

tk−1

inter-miss time Y

T1

T2

Tkdata in cache
sojourn time Q

Figure 5.1: TTL-model of LRU caches

5.4 Model and assumptions 135

Combining blocks (b2) and (b3), the TTL-based model of LRU caches initializes the timer

of a file when cache misses occur and later resets this timer at each cache hit as shown in

Figure 5.1; while that of FIFO caches sets the timer only when a cache miss occurs as depicted

in Figure 5.2. This is explained by the LRU (resp. FIFO) algorithm which inserts a requested

file at the head of the cache (resp. if a cache miss happens on that file) given that the eviction is

done at the tail. However, a cache hit does not change the state of a FIFO cache. According to

these different TTL-models, LRU and FIFO caches can be analyzed via the class of TTL-resetting

caches [25, 26] and TTL-non-resetting [73, 74] caches respectively. RND caches can be modeled

by either of these classes of TTL-based policies. This is due to the memoryless property of the

exponential TTL distribution of TTL-based models of RND caches. In the following, the terms

characteristic time and TTL will be interchangeably used.

hit miss

. . .

m2

Z hits

.

timet0 t1 tZ−1 tZ

data in cache data in cache

Q = T2sojourn time Q = T1

X1 XZ XZ+1

m0 m1

inter-miss time Y

Figure 5.2: TTL-model of FIFO caches

5.4.4 General results on single cache under Assumption 5.1

In this section, we define the metrics of interest and we establish results which hold for any

cache policy under Assumption 5.1. From now on we omit the subscript n that refers to the

cache label in all the quantities we introduced or the ones we shall define later.

We consider the TTL Ti of a file fi as defined in the previous section and we denote by Qi
the expected time that file fi resides/sojourns in the cache (see the notation data in the cache

in Figures 5.1 and 5.2). Also, Λi, HP,i and OP,i denote the request rate, the hit probability

(i.e. probability that an arriving request finds file fi in the cache), and the occupancy (i.e. sta-

tionary probability that the file fi is in the cache at any time instant) for file i, respectively. For

quick reference, notations of this chapter are summarized in Table 5.1.

The next result links metrics of interest and the sojourn time of a file in the cache.

Corollary 5.1 (Little’s Law) Under Assumption 5.1, the following relations hold:

OP,i = Λi× (1−HP,i) ×Qi, ∀ i = 1, . . . , K ; (5.1)

136
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

Table 5.1: Main notations for single cache and file fi

Notation Description

Λi Arrival rate of file fi (single cache)

1/µi Expected value of TTL Ti of file fi (single cache)

Fi(t) CDF inter-arrival times of file fi (single cache)

Gi(t) CDF inter-miss times of file fi (single cache)

Ti(t) CDF TTL duration of file fi (single cache)

Z∗(s) LST of CDF Z(t)

HP,i,MP,i Hit, miss probability resp. of file fi (single cache)

HR,i,MR,i Hit, miss rate resp. of file fi (single cache)

OP,i Occupancy probability of file fi (single cache)

moreover, if C is the cache of size we have

C =

K∑

i=1

Λi× (1−HP,i) ×Qi . (5.2)

Proof Equation (5.1) follows directly by applying Little’s law since successive requests of file fi
are independent, the expected number of copies for file fi in a cache is OP,i, the rate at which

file fi enters the cache is the miss rate i.e. Λi × (1 − HP,i), and the expected time that file fi
spends in the cache is Qi. Also, (5.2) follows from (5.1) by summing the two sides of the

equality over all files and replacing
∑
iOP,i by the cache size.

A similar result was established by Fricker et al. [41] for RND caches fed by Poisson request

processes. Therefore, Corollary 5.1 extends their results to all caches (e.g. LRU, FIFO, RND, ...)

fed by renewal request processes (i.e. under Assumption 5.1). Finally, this corollary has been

proved to hold for general stationary request process in Chapter 2, Section 2.6.2, Proposition 2.9.

The next result is a corollary of Proposition 2.13, Section 2.6.3, Chapter 2 which provides a

lower bound of the characteristic time Ti, under the CTA i.e. when we approximate E[Ti], ∀i by

the same constant T .

Corollary 5.2 (General Inequalities under Assumption 5.1) When E[Ti] ≈ T, ∀i, the follow-

ing inequalities hold

T ≤ Qi , ∀ i (5.3)

Λi(1−HP,i)T ≤ OP,i ≤ ΛiT, ∀ i (5.4)

Tmin =
C

Λ
≤ T ≤ Tmax =

C

Λ× m̄p
(5.5)

5.5 Single cache approximation 137

where m̄p =
∑K
i=1

Λi

Λ
(1 − HP,i) denotes the average miss probability and Λ =

∑K
i=1Λi is the

aggregate request rate.

Now we are ready to present our models for single cache approximation.

5.5 Single cache approximation

In this section, we implement our building blocks (b1) to (b4) on FIFO, RND and LRU caches

in isolation. Algorithms are provided and quickly evaluated.

5.5.1 FIFO cache

The hit probability HP,i on a file fi in caches running the FIFO replacement policy is given

by Proposition 4.8 in Chapter 4 as follows. HP,i = 1 − (1 + E[Z])−1 where E[Z] is the expected

number of hits during the sojourn time of the file in the cache.

Since FIFO is a TTL-non-resetting policy, the application of the CTA yields that Qi = E[Ti] ≈
T ; and hence, E[Z] = E [Mi(Ti)] ≈Mi(T). Therefore, it follows from Corollary 5.1 that

C =
∑

i

OP,i =
∑

i

λi(1+Mi(Ti))
−1Qi ≈ T

∑

i

λi(1+Mi(T))−1.

We propose an iterative procedure shown in Algorithm 6 to calculate T by solving the latter

fixed-point equation. We initialize the iteration as follows. Since Qi = T it follows from

Corollary 5.2 that
C

Λ
≤ T =

C

Λm̄p
.

Using the lower bound C/Λ as the initial value of T provides fast convergence. As one can see

in Figures 5.3 and 5.3, values of T are obtained after one iteration step.

Regarding the miss process of FIFO caches or more precisely the two first moment of inter-

miss times (needed by (b1) APA block), they are obtained deriving the LST G∗
i(s) of the CDF

Gi(t) of inter-miss times Yi derived in Proposition 4.7 of Chapter 4.

E[Yi] = E[Xi](1+ L∗i(0)) (5.6)

E[Y2i] = E[X2i](1+ L∗i(0)) − 2E[Xi]
dL∗i (s)

ds

∣

∣

∣

s=0
(5.7)

where L∗i(0) = Li(∞) = Mi(T), L∗i(s) and its derivative are given as follows.

138
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

� Xi has an Hyper-exponential CDF,

L∗i(s) =
1− e−sT

sE[Xi]
+
p1p2(θ1− θ2)

2

δ

1− e−(s+δ)T

s+ δ

L∗i(0) =
T

E[Xi]
+ p1p2

(

(θ1− θ2)

δ

)2

(1− e−δT)

dL∗i (s)
ds

∣

∣

∣

s=0
=

−T2

2E[Xi]
−
p1p2(θ1− θ2)

2

δ

1− e−δT − δTe−δT

δ2
, δ = p1θ2+ p2θ1

� Xi has an Shifted-exponential CDF,

L∗i(s) =

K∑

k=1

(

θe−sτ

s + θ

)k
γ (k, (s+ θ)(T − kτ))

Γ(k)

L∗i(0) =

K∑

k=1

γ (k, θ(T − kτ))

Γ(k)

dL∗i (s)
ds

∣

∣

∣

s=0
=

K∑

k=1

(θ(T − kτ))ke−θ(T−kτ)

θΓ(k)
−
kγ (k, θ(T − kτ))

Γ(k)E[Xi]
, 1 ≤ K =

⌊T

τ

⌋

.

Algorithm 6: Approximating characteristic time of a cache with FIFO or RND policy with

a renewal process input
input : Cache Size C, cache policy P, number of files K, total arrival rate λ, precision ǫ

output: Characteristic time T

1 n← 1

2 T (1)← C/λ

3 m̄
(1)
p ← 1

4 do

5 n← n+ 1

6 if P = FIFO then

7 m̄
(n)
p ←∑Ki=1 λiλ (1+Mi(T

(n−1)))−1

8 else

9 m̄
(n)
p ←∑Ki=1 λiλ (1− F∗i(1/T

(n−1)))

10 T (n)← C/(λ× m̄(n)
p)

11 while |T (n) − T (n−1)| > ǫ

12 T ← T (n)

5.5 Single cache approximation 139

5.5.2 Random cache

The characteristic time of RND caches is an exponentially distributed random variable which

allows us to model a RND cache as either a TTL-renewing or TTL-non-renewing cache. Consid-

ering RND as a TTL-non-resetting policy, the hit probability is given by HP,i = 1 − (1 + E[Z])−1

where E[Z] = F∗i(T
−1
i)(1 − F∗i(T

−1
i))−1 ≈ F∗i(T−1)(1 − F∗i(T

−1))−1. Moreover, Qi = Ti ≈ T and it

follows from Corollary 5.1 that

C =
∑

i

OP,i =
∑

i

λi(1− F∗i(T
−1
i))Qi ≈

∑

i

λiT(1− F∗i(T
−1)).

Again, the above equality can be seen as a fixed point equation. Algorithm 6 implements an

iterative scheme to compute the characteristic time T of RND caches with the initial point

provided by Corollary 5.2
C

Λ
≤ T =

C

Λm̄p
.

As first observed in Remark 2.4 of Chapter 2 and latter confirmed by simulations in Figures 5.3

and 5.3, the characteristic times of RND and FIFO caches are approximately equal under iden-

tical traffic conditions. This implies that we can safely replace FIFO caches by RND ones for

the calculation of the characteristic time T ; thereby avoiding the evaluation of the incomplete

gamma function several times.

Regarding the two first moment of inter-miss times (needed by (b1) APA block), model-

ing RND caches as TTL-resetting caches significantly simplifies their calculation since they are

obtained deriving the LST G∗
i(s) of inter-miss times Yi given in Proposition 4.2 of Chapter 4.

E[Yi] =
E[Xi]

1− F∗i(µ)
(5.8)

E[Y2i] =
E[X2i]

1− F∗i(µ)
−

2× E[Xi]

(1− F∗i(µ))2
dL∗i (s)

ds

∣

∣

∣

s=0
(5.9)

where µ = T−1; L∗i(s) = F∗i(s+ µ), L∗i(0) and dL∗i (s)
ds

∣

∣

∣

s=0
are given as follows.

� Xi has an Hyper-exponential CDF,

L∗i(0) = F∗i(µ) =
p1θ1

θ1+ µ
+
p2θ2

θ2+ µ

dL∗i (s)
ds

∣

∣

∣

s=0
= −

p1θ1

(θ1+ µ)2
−

p1θ1

(θ1+ µ)2

� Xi has an Shifted-exponential CDF,

L∗i(0) = F∗i(µ) =
θe−µτ

θ+ µ
dL∗i (s)

ds

∣

∣

∣

s=0
= −F∗i(µ)(τ + (θ + µ)−1)

140
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

5.5.3 LRU cache

LRU is modeled as a TTL-renewing policy; thefore the hit HP,i probability of file fi in LRU

caches is HP,i = Fi(Ti) ≈ Fi(T) thanks to the CTA. Applying Corollary 5.1 and summing over all

files, we get

C =
∑

i

OP,i =
∑

i

F̂i(Ti) ≈
∑

i

F̂i(T).

The above equality is solved using the iterative scheme of Algorithm 7 by multiplying both

members by T i.e.

T ≈ C× T∑
i F̂i(T)

,

and using the initial value C/Λ provided by Corollary 5.2. Similarly to RND caches, the first

and second moments of the inter-miss times Yi are obtained as following.

E[Yi] =
E[Xi]

1− Fi(T)
(5.10)

E[Y2i] =
E[X2i]

1− Fi(T)
−

2× E[Xi]

(1− Fi(T))2
dL∗i (s)

ds

∣

∣

∣

s=0
(5.11)

where L∗i(s) and derivatives are given as follows.

� Xi has an Hyper-exponential CDF,

L∗i(0) = Fi(T) = 1− p1e
−θ1T − p2e

−θ2T

dL∗i (s)
ds

∣

∣

∣

s=0
= −

p1

θ1
(1− e−θ1T − θ1Te

−θ1T) −
p2

θ2
(1− e−θ2T − θ2Te

−θ2T)

� Xi has an Shifted-exponential CDF, for T ≥ τ

L∗i(0) = Fi(T) = 1− e−θ(T−τ)

dL∗i (s)
ds

∣

∣

∣

s=0
= −E[Xi](1 − e−θ(T−τ)) + (T − τ)e−θ(T−τ)

with L∗(0) = 0 and dL∗i (s)
ds

∣

∣

∣

s=0
= 0 if T < τ.

5.5.4 Preliminary results and remarks

Before discussing the model for a network of caches, we validate Algorithms 6 and 7 on

single FIFO/RND and LRU caches in isolation. We consider caches with capacity C = 100 and a

catalog of K = 105 files fed by two types of request processes:

� Poisson Process: Here, requests are generated by a Poisson process with total request

rate λ = 1, and assume that file popularity follows a Zipf distribution with α = 0.7.

5.5 Single cache approximation 141

Algorithm 7: Approximating characteristic time of a cache with LRU policy with a renewal

process input
input : CacheSize C, number of files K, total arrival rate λ, precision ǫ

output: Characteristic time T

1 n← 1

2 C(1)← C

3 T (1)← C(1)/λ

4 m̄
(1)
p ← 1

5 do

6 n← n+ 1

7 C(n−1)←∑Ki=1 F̂i(T (n−1))

8 T (n)← C× T (n−1)/C(n−1)

9 C(n)←∑Ki=1 F̂i(T (n))

10 while |T (n) − T (n−1)| > ǫ

11 T ← T (n)

Figure 5.3(a) show that our algorithms are accurate and fast. This stresses the importance

of the initialization point to T (0) = C/Λ which makes our algorithms converge after one

iteration.

� Interrupted Poisson Process: In this case, request traffic is modeled by Interrupted Pois-

son Processes (IPP). An IPP is a renewal process having hyper-exponentially distributed

inter-arrival times. The total request rate is set to λ = 1, and the content popularity fol-

lows a Zipf distribution with α = 0.7. The squared coefficient of variation of each IPP is

chosen to be c2v = 1.5. Figure 5.3(b) shows that our algorithms converge very fast to the

real value of the characteristic time.

We conclude this section with two remarks:

Remark 5.1 (TLRU 6= TFIFO) Unlike what was stated in [72], the characteristic time of a FIFO

cache, TFIFO, is not in general equal to that of a LRU cache, TLRU; but, TLRU ≤ TFIFO. This is

because TLRU measures the time required to observe C distinct requests, while TFIFO is the time

to observe C cache misses. For a FIFO cache in the steady state, a cache hit will not change

the state of the cache. This means that files are not pushed down when a cache hit occurs (as

the case for LRU caches) and hence the characteristic time of a FIFO cache is at least equal to

that of a LRU cache with same size C, i.e. TLRU ≤ TFIFO. Figure 5.3 confirms this result.

142
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

1 2 3 4 5
100

100.5

101

101.5

102

102.5

Number of Iterations, n

T
im

e-
T
o
-L
iv
e,

T
T
L

T
(n)
LRU

T cta

LRU T
(n)
FIFO

= T
(n)
RND

T cta

FIFO
= T cta

RND

(a) IRM traffic/Poisson processes

1 2 3 4 5
100

100.2

100.4

100.6

100.8

Number of Iterations, n

T
im

e-
T
o
-L
iv
e,

T
T
L

T
(n)
LRU

T cta

LRU T
(n)
RND

T cta

RND T
(n)
FIFO

T cta

FIFO

(b) Renewal traffic/Interrupted Poisson Processes

Figure 5.3: Approximation of the Characteristic times of FIFO, RND and LRU caches.

Remark 5.2 (Poisson Assumption) When the arrival request for file i is assumed to follow a

Poisson process of rate λi, the occupancy probability OP,i equals the hit probability HP,i. In this

case, Qi and Ti are related through Corollary 5.1 as follows

Qi = λ−1
i × HP,i

1−HP,i
, ∀ i. (5.12)

where HP,i is a function of Ti. By applying the CTA i.e. E[Ti] = T,∀ i we obtain:

C =
∑

i

HP,i ≈





∑
i 1− (1+ λiT)−1 , for FIFO caches

∑
i 1− (1+ λiµ

−1)−1 , for RND caches
∑
i 1− e−λiT , for LRU caches

(5.13)

5.6 Network approximation 143

v4
v5

v2

v3

v1

Disk

Disk

Disk

Disk

Disk

Figure 5.4: Request flows merge, split, move in opposite directions at some nodes.

We proved in Chapter 2 that the expected characteristic times of RND and FIFO caches are

asymptotically equal and our proof is supported by simulations in Figure 5.3. Having the ex-

pressions in (5.13) in hand, the equality of hit probabilities of RND and FIFO caches under IRM

or Poisson request processes follows from the equality of their expected characteristic times.

The former equality i.e. that of hit probabilities has been initially established by Gelenbe [43]

via a Markov chain analysis, and by Martina et al. [72] using the insensitivity property of the

M/G/1/0 queue. However, we bring to the attention of the reader that the approximate equal-

ity of these expected characteristic times is a new result which holds for general stationary

request processes. Unfortunately, the applicability of Remark 5.2 on cache networks is limited

since miss streams are no longer described by Poisson processes.

5.6 Network approximation

In this section, we extend our single cache approximation to a heterogeneous network of

caches with a general topology. We recall that each file is permanently stored in at least one

server connected to the network. Note that nodes also perform routing tasks; and hence, each

of them maintains a routing table such that requests of each file are routed on a tree or polytree

as shown in Figure 5.4.

In the case of Figure 5.4, we have two content items: one is blue and the other is green.

The blue content item is located at the server connected to node v5; requests for it are routed

on the tree formed by nodes v1 and v4 (the leaf caches), v3 (the intermediate cache), and v5
(the root cache). Meanwhile the green content item is available at two different servers and its

requests are routed on the polytree having nodes v4 and v5 as roots. We will in general refer to

this tree or polytree based routing as the routing topology. Each node can independently choose

to implement LRU, FIFO or RND for managing the cache content.

Finally, we assume that Assumption 5.1 holds i.e. exogenous and aggregated request streams

may be approximated by renewal processes.

144
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

The main challenges when extending the analysis of single caches to cache networks are to

describe the following network primitives in terms of operations on processes:

1. Merging streams of requests. This primitive is illustrated in Figure 5.5 where node 1 re-

ceived requests for file 2 from both caches 2 and 3. These latter request streams are always

independent thanks to our polytree-based routing topology; therefore, the aggregate re-

quest process of file 2 at cache 1 is the superposition of the exogenous request process

with CDF F0,1,2(t) and the miss request processes with CDFs G2,1,2(t) and G3,1,2(t).

renewal
exogenous

request process

renewal
request process

miss
S1,2

F0,2,1(t)

3

2 1

F0,1,1(t)

G3,1,2(t)

G2,1,1(t)

F0,2,2(t)

F0,3,2(t)

G2,1,2(t)
F0,1,2(t)

Figure 5.5: Requests are merged at cache 1: miss and exogenous processes

We rely on block (b1) to describe this aggregate request process as a simple renewal

process introduced in Section 5.4.

2. Characteristic Time Approximation: Case of flows in “opposite” direction. Describing

the miss process of a cache requires the calculation of the characteristic time of that cache.

However, the characteristic time of a cache depends on the arrival processes which could

be miss processes of other caches as shown in Figure 5.6.

renewal
exogenous

request process

renewal
request process

miss
1 2 S1S2

F0,1,1(t)

F0,2,2(t)

G1,2,1(t)

G2,1,2(t)

Figure 5.6: Two files requested on a Tandem of two caches

In this case, cache characteristic times are dependent i.e. coupled and cannot be obtained

by just running Algorithms 6 or 7 in one shot as we did for cache in isolation.

3. Splitting a stream of requests. This network primitive should be take into account when

several destinations are possible as illustrated by Cache 1 in Figure 5.7.

This operation is known as dependent thinning of point processes [52, 71]. Thinning/routing

can be simple (e.g. via a Bernoulli process) or complex (e.g. via Markov chains). In this

work, we assume that the routing policy at each cache is simple i.e. implemented by a

Bernoulli process.

5.6 Network approximation 145

renewal
exogenous

request process

renewal
request process

miss
1S2

F0,1,1(t)

2 S1

F0,2,2(t)

G2,1,2(t)

3

G1,3,1(t), p1,3(1)

G1,2,1(t), p1,2(1)

S′
1

Figure 5.7: Bernoulli splitting of requests for green file at cache 1

Let N (i) denote the set of neighbor caches fed by miss requests of cache i. Assuming a Bernoulli

routing scheme, we denote by pi,j(k) the probability that cache i forwards a missed request of

file fk to cache j. We also assume

∑

j∈N (i)

pi,j(k) = 1 , ∀(i, k).

Since exogenous, aggregated and miss processes involved in the network are renewal processes

(under Assumption 5.1), Isham [52] proved that the processes resulting from Bernoulli thinning

of a renewal process are also renewal processes. Taking the example of cache 1 in Figure 5.7,

the LSTs of inter-request times of the thinned miss processes [52, Eq.(1.2)] are:

G∗
1,j,1(s) =

p1,j(1)G
∗
1,1 (s))

1− (1− p1,j(1))G
∗
1,1 (s)

, j = 2, 3

where G∗
1,1(s) is the LST of inter-miss times of file 1 at cache 1. These thinned processes may be

approximated by simpler renewal processes via the moment matching technique of [95, Sect.3]

by calculating the two first moments of inter-request times after sucessive derivation of the

latter LSTs. One can easily show that if a renewal process with inter-request times Xi is thinned

by a Bernoulli process with probability p, the resulting thinned process has inter-request times

Xi,th with the following two first moments:

E[Xi,th] =
E[Xi]

p

E[X2i,th] =
E[X2i]

p
+ 2

1− p

p2
(E[Xi])

2

Before discussing the algorithms for the general network, we make two remarks regarding

the routing schemes.

Remark 5.3 (Probabilistic Routing) In case of several possible paths, a Bernoulli routing scheme

selects a path according to a probability distribution. When routing is done according to the

shortest path, the probability mass distribution on the paths can be concentrated on the short-

est path. This Bernoulli routing can be easily extended to more sophisticated routing schemes

146
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

that account for request history through l-dependent Markov chain thinning method described

in [52, Sect.2, 3 & 4].

Remark 5.4 (Deterministic Routing) The general network of LRU caches studied in [82] was

defined as follows. It is assumed that there is at least one server in the network for each content,

one path from any cache to any server, and the routing is done by always selecting the shortest

path, which is assumed to be unique or chosen uniformly at random in case of multiple shortest

paths. This scheme is a special case of our probabilistic routing on polytrees. In fact, if Ns(i, k)

is the set of different caches which correspond to the next hop on one of the shortest paths

from cache i to a server of file fk, it is enough to take pi,j(k) = 0, ∀j ∈ N (i)\Ns(i, k) and

pi,j(k) = 1/|Ns(i, k)|, ∀j ∈ Ns(i, k).

For the sake of simplicity, we will first consider the case of a cache network with polytree

(physical) topology where file servers are connected to the root node(s). In this case, the rout-

ing topologies of files are polytrees made of caches of the physical network topology; and more

important, requests are assumed to flow in the same direction e.g. from leaves/edges towards the

root(s). Then, we will address the case of tandem of two caches where requests flow in oppo-

site directions. And, finally we will extend the model to a network having a general physical

topology.

5.6.1 Cache network with polytree topology

In this section, we consider a network with a polytree topology, where servers are located

at root nodes. Requests are forwarded from children-to-parents and they flow in the same

direction. Under this settings, we can analyze our network by starting from the leaf nodes

and approximating the characteristic time and the miss processes. The latter processes are

then aggregated with the exogenous request streams if any to form the arrival process at a

higher level cache. We repeat this process until we reach all root nodes. The algorithm for

approximating performance of cache networks with polytree topology is given in Algorithm 8.

5.6.2 Cache network with arbitrary topology

Case of two caches in tandem We consider a network of two caches connected in tandem,

where the requests flow in opposite directions as shown in Figure 5.6. Moreover, we assume

without loss of generality that these two caches runs the RND replacement policy to manage

files in its cache. In fact, we can easily adapt our result to the case of LRU or FIFO policy.

5.6 Network approximation 147

Algorithm 8: Approximating performance of a cache network with polytree topology
input : Topology G(V, E), Depth d, Number of files K, Exo. processes

{F∗0,i,k(s), vi ∈ V, fk ∈ F}, Size of caches {Ci, vi ∈ V}

output: Characteristic times Ti, hit probs HP,i,k, occupancy OP,i,k, {vi ∈ V, fk ∈ F}

1 while d 6= 0 do ; // Ca
hes are different from the server

2

3 S(d)
Select caches at depth d←−−−−−−−−−−−−−−−− G(V, E)

4 foreach i ∈ S(d) do ; // Start from Edges

5

6 for k = 1, . . . , K do ; // On ea
h file at a given
a
he

7

8 {Λi,k, H
∗
.,i,k(s)}

Whitt ′s Approx.←−−−−−−−−−− {F∗0,i,k(s), νj,i,k, G
∗
j,i,k(s), j ∈ C(i)};

9 end

10 {Ti, µi}
Single Cache Approx. −− Algs. 6, 7←−−−−−−−−−−−−−−−−−−−−−− {Ci, H

∗
.,i,k(s), k = 1, . . . , K};

11 for k = 1, . . . , K do ; // On ea
h file at a given
a
he

12

13 {HP,i,k, OP,i,k}
Exact Metrics←−−−−−−−−− {Ti, µi, H

∗
.,i,k(s)};

14 G∗
i,.,k(s)

Exact Miss←−−−−−−− {Ti, µi, H
∗
.,i,k(s)};

15 {G∗
i,j,k(s), j ∈ N (i)}

Isham ′s Thinning. −− Eqs. (1.2, 2.5, 3.0), [52]←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− G∗
i,.,k(s);

16 {Gi,j,k(t), G
∗
i,j,k(s)}

Whitt ′s Approx.←−−−−−−−−−− G∗
i,j,k(s);

17 end

18 end

19 d← d− 1;

20 end

148
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

Tandem of caches We denote by F0,j,k(t) the CDF of inter-arrival times of exogenous requests

for file fk at cache j and by Gi,j,k(t) the CDF of inter-miss times of requests for file fk at cache i

forwarded to cache j.

We apply Corollary 5.2 at each cache to obtain

C1 =
λ1,1

µ1
(1− F∗0,1,1(µ1)) +

λ2(1− F∗0,2,2(µ2))
µ1

(1−G∗
2,1,2(µ1)) (5.14)

C2 =
λ2,2

µ2
(1− F∗0,2,2(µ2)) +

λ1(1− F∗0,1,1(µ1))
µ2

(1−G∗
1,2,1(µ2)) (5.15)

where G∗
i,j,k(s) = 1 −

1− F∗0,i,k(s)
1− F∗0,i,k(s+ µi)

. We get the following coupled system of fixed-point

equations:

µ1C1 = λ1,1(1− F∗0,1,1(µ1)) + λ2,2(1− F∗0,2,2(µ2)) ×
1− F∗0,2,2(µ1)

1− F∗0,2,2(µ1+ µ2)
(5.16)

µ2C2 = λ2,2(1− F∗0,2,2(µ2)) + λ1,1(1− F∗0,1,1(µ1)) ×
1− F∗0,1,1(µ2)

1− F∗0,1,1(µ2+ µ1)
(5.17)

These coupled equations can be solved using an iterative scheme. Given µj, the performance

metrics at cache j for file fk are obtained as follows:

HP,j,k = G∗
i,j,k(µj) and OP,j,k = λi,k(1−HP,i,k)µ

−1
j (1−HP,j,k).

Case of tandem of two caches with exogenous arrivals Let us consider now the tandem of

two caches as illustrated in Figure 5.8 with exogenous request arrivals at both caches. F0,j,k(t)

the CDF of inter-arrival times of exogenous requests for file fk at cache j, H.,j,k(t) the CDF

of inter-arrival times of the aggregated requests for file fk at cache j and Gi,j,k(t) the CDF of

inter-miss times of requests for file fk at cache vi sent to cache j. We also denote by Λj,k the

renewal
exogenous

request process

renewal
request process

miss
1 2 S1S2

F0,1,1(t)

F0,2,2(t)

G1,2,1(t)

G2,1,2(t)
F0,1,2(t)

F0,2,1(t)

Figure 5.8: Two files exogenously requested on a Tandem of two caches

total request rate of file fk at cache j, νi,j,k is the miss rate of requests of file fk at cache j sent

by cache i and N (j) is the set of caches in the next hop which are connected (might receive

requests from) to cache j. The coupled fixed-point equations becomes

µ1C1 = Λ1,1(1− F∗0,1,1(µ1)) +Λ1,2(1−H∗
.,1,2(µ1)) (5.18)

µ2C2 = Λ2,2(1− F∗0,2,2(µ2)) +Λ2,1(1−H∗
.,2,1(µ2)) (5.19)

5.6 Network approximation 149

where H∗
.,i,k(s) is approximated by the two moments matching techniques [5] of the superposi-

tion of the processes
{
F∗0,i,k(s), G

∗
j,i,k(s), i ∈ N (j)

}
,

1−G∗
i,j,k(s) =

1−H∗
.,i,k(s)

1−H∗
.,i,k(s+ µi)

, Λj,k = λj,k+
∑

vi∈C(j)

νi,j,k, and νi,j,k = Λi,k(1−H∗
.,i,k(µi)).

If cache 2 is running LRU (resp. FIFO) policy, the second equation of the system (5.18) of

coupled equations is replaced by

C2 = F̂0,2,2(T2) + Ĝ1,2,1(T2),

(

resp. C2 =
Λ2,2T2

1+M0,2,2(T2)
+

Λ2,1T2

1+M1,2,1(T2)

)

General case Thanks to these previous toy networks, we have clearly shown that calculating

the performance of general cache networks requires solving a coupled system of fixed-point

equations, specially when requests flows in opposite direction.

An intuitive approach would be to derive these coupled equations for each network and

them solve them through an iterative method. However, this approach will be a per-case solu-

tion; instead, we develop a cache network iterative algorithm similar to Algorithms 6 and 7 for

single cache approximation.

Our cache network approximation algorithm starts with an initialization step where all

caches are assumed to have miss probabilities of one. The consequence is that the miss process

of a node is initialized by its aggregated arrival processes. Then the TTLs at each cache are

also initialized by the minimum TTL values provided by Corollary 5.2 i.e. the ratio of the cache

capacity and the total request rate on the cache. After, this initialization step, our algorithm

updates the miss processes of the caches using the initial value of the TTLs; and recalculates

the new TTL values as described in Algorithms 6 and 7. Our cache network algorithm stops

when all TTL values at all nodes of the network have converged. In this way we can iteralively

solve any system of coupled equations and handle arbitrary cache network. This approach is

presented in Algorithm 9.

5.6.3 General cache networks under correlated requests

In this section, we propose an implementation of the building blocks of our solution schema

(see Section 5.4.3) which takes into account the correlation structure within request streams.

The (b1) APA block is now implemented by a simple Switched Markov-Arrival Process

(SMAP) as described by Horváth [49, Eqs(11-12)]. The MAPmatch [49, Figure 2] approxi-

mation technique requires very few inputs (i.e. the frequency, the burstiness, the skewness, the

first auto-correlation lag, and possibly the second auto-correlation lag) of the original request

process. We recommend to calculate input parameters of aggregated processes (which are the

superposition of several MAPs in this case) before applying the Horváth’s approximation. This

150
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

Algorithm 9: Approximation on arbitrary physical network of caches
input : CacheSize Ci, CatalogSize K, ExoRates λi,k, Precision ǫ

output: CharacteristicTime Ti, µi

1 n := 1;

2 m
(1)
p,i,k := 1;

3 Λ
(1)
i,k := λi,k+

∑
vj : vi∈N (j)λj,k;

4 H
∗(1)
.,i,k(s)

Aggr. Arr. −− Whitt ′s Approx.←−−−−−−−−−−−−−−−−−−− {F∗0,i,k(s), F
∗
0,j,k(s), vj : vi ∈ N (j)};

5 µ
(1)
i := 1/T

(1)
i := (

∑
kΛi,k)/Ci;

6 {G
∗(1)
i,j,k(s), vj ∈ N (i)}

Exact Miss, Isham ′s Thinning & Whitt ′s Approx.←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− {H
∗(1)
.,i,k(s), µ

(1)
i , T

(1)
i };

7 while true do ; // Iterate until
onvergen
e

8

9 n := n + 1;

10 H
∗(n)

.,i,k(s)
Whitt ′s Approx.←−−−−−−−−−− {F∗0,i,k(s), G

∗(n−1)

j,i,k (s), vj : vi ∈ N (j)};

11 {H
(n)
P,i,k, O

(n)
P,i,k,m

(n)
p,i,k, Λ

(n)
i,k }

Exact Metrics←−−−−−−−−− {H
∗(n)
.,i,k(s), µ

(n−1)
i , T

(n−1)
i };

12 m
(n)
R,i :=

∑K
k=1Λ

(n)
i,km

(n)
p,i,k;

13 C
(n)
i :=

∑K
k=1O

(n)
P,i,k;

14 if RND or FIFO then

15 µ
(n)
i := 1/T

(n)
i :=

m
(n)

R,i

Ci
;

16 else

17 T
(n)
i := C

C
(n)

i

× T (n−1)
i ;

18 end

19 if µ(n−1)
i − µ

(n)
i < ǫ or T

(n)
i − T

(n−1)
i < ǫ then

20 µi, Ti :≈ µ(n)
i , T

(n)
i ;

21 break;

22 end

23 {G
∗(1)
i,j,k(s), vj ∈ N (i)}

Exact Miss, Isham ′s Thinning & Whitt ′s Approx.←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− {H
∗(1)
.,i,k(s), µ

(1)
i , T

(1)
i };

24 end

5.7 Evaluation of the approximation under independent requests 151

prevents generally a MAP representation with a large state space when applying the Kronecker

sum. The (b2) CTA, (b3) PMC, and (b4) RRS blocks are then adapted using our unified frame-

work introduced in Chapter 3. Finally, similar procedures such as Algorithms 6, 7, and 9 are

obtained.

5.7 Evaluation of the approximation under independent requests

In this section, we evaluate the accuracy of our model by computing performance metrics of

cache networks: the hit probability of each file at each cache and the average miss probability

of each node. We consider as “exact” the metrics of interest obtained via long event-driven

simulations (≈ 16.77 million of events generated). If the per-file hit probabilities are interesting

from the user point of view, the per-cache average miss probabilities are other performance

metrics of particular interest from the system point. In fact, the miss probability provides

insights on the residual load on end-servers.

In order to appreciate the quality of our model, we also calculate the percentage of relative

errors on the average hit probability and the miss probability ratio between simulation results

and our predictions. A small percentage of the relative error on the average hit probability and

miss probability ratios close to one are desirable and will be the global indicators of the quality

of our model.

Our model assume that requests streams are described by renewal processes. We imple-

mented our model using three classes of renewal processes where inter-requests times are

drawn from hyper-exponential, shifted-exponential, and exponential distributions. As we shall

see soon, the main difference among these implementations is how we calculate the character-

istic of the aggregated request process at the input of a cache.

Unless otherwise specified, we consider that exogenous requests arrive at leaf/edge nodes

of the network according to a Poisson process with rate λ = 1, and the file popularity follows

a Zipf distribution with parameter α = 0.7. Moreover, caches of tree networks are labeled

starting from the root (which is the node with label 1 at level 1), then the most left children

(is the node labeled 2) until the last child (is the node labeled k) at level 2 if the root has an

in-degree equals to k, and so on. Finally, the cache capacity is set C = 102 to accommodate a

total number of files N = 103 and the metrics of interest are reported for one cache per level of

the tree.

5.7.1 Accuracy of the Whitt approximations

In this section, we consider that request streams at any point of the network are approx-

imated by renewal processes having hyper-exponentially or shifted-exponentially distributed

152
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

inter-request times (See Section 5.4).

In order to characterize the superposition of independent request streams, where each of

them are described by these hyper/shifted-exponential renewal processes, Whitt developed

two basic techniques to compute the request rate and the square coefficient of variation of

inter-request times needed to approximate the aggregated arrival process [95, Sect. 4]. These

techniques are known as the stationary-interval and asymptotic methods. The former method

calculates the two first moments of the inter-request times using the exact CDF of the first

inter-request time (this CDF is given in [69, 10]); while the latter uses asymptotic results (over

a large interval of time) on the cumulants or equivalently the moments of the random variable

defined by the time-average renewal rate over a finite interval of time (see the elementary

renewal theorem [28, 65] and [92, Theorems 5.1 and 5.2]).

Both techniques provide the same request rate of the aggregated process; however they

return different values for the square coefficient of variation (or equivalently the variance) of

inter-request times. Therefore, we will first evaluate the accuracy of our model while imple-

menting each of Whitt’s methods.

On linear networks with exogenous request at the leaf node only. In this case the overall

request process at each cache is not the superposition of renewal processes but a simple re-

newal process. Hence, we can expect the asymptotic and the stationary interval methods to

predict identical performance metrics. The interest of this case study is to evaluate the accu-

racy of renewal approximation itself (i.e. without the aggregating effect) which is based on the

description of request streams by hyper/shifted-exponential renewal processes.

First, we consider the case where each node is running the RND replacement policy. Fig-

ure 5.9 shows our metrics of interest on a tandem network of five RND caches. As expected we

can easily check that both implementations perform almost identically.

Figures 5.9(a–e) show the per-file hit probabilities at caches 1–5 where the model fairly ap-

proximates the simulations. This means that the hyper/shifted-exponential renewal processes

introduced in Section 5.4 are appropriate models to describe the miss stream of a RND cache.

Although the curve of the miss probability ratio is relatively close to one (see Figure 5.9(g)),

Figure 5.9(f) reveals that both implementations slightly underestimate the average hit proba-

bility with a maximum absolute relative error around 15% as depicted in Figure 5.9(h). This

inaccuracy at least at cache 4 where the maximum error is observed can be explained as follows.

Under the characteristic time approximation (CTA), a RND cache may be analyzed as an

exponential TTL-based cache. In this case, one can easily show that each inter-miss time at

cache 5 may be described as the sum of two exponentially distributed random variables, namely

the TTL and the inter-request time at cache 5, given that cache 5 is fed by Poisson request

processes. Therefore, the LST of inter-arrival times of file i at cache 4 is λiT
−1

(λi+s)(T−1+s)
where λi

5.7 Evaluation of the approximation under independent requests 153

is the request rate and T is the characteristic time at cache 5.

However, Whitt’s approximation methods (and thus our model) cannot match exactly the

latter LST since it approximates the arrival streams at cache 4 by shifted-exponential renewal

processes instead of the hypo-exponential renewal processes suggested by the TTL-based caches

analysis. Clearly, Whitt’s approximation methods add a potential source of prediction errors at

cache 4 as observed in Figures 5.9(e).

154
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

File ID, k

H
it
P
ro
b
.,
H

P
,1
,k

Level 1, Cache 1, Policy:RND, Capacity: 100

Sim
Whitt-Interv
Whitt-Asymp

(a) Cache 1, root node

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

File ID, k

H
it
P
ro
b
.,
H

P
,2
,k

Level 2, Cache 2, Policy:RND, Capacity: 100

Sim
Whitt-Interv
Whitt-Asymp

(b) Cache 2

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

File ID, k

H
it
P
ro
b
.,
H

P
,3
,k

Level 3, Cache 3, Policy:RND, Capacity: 100

Sim
Whitt-Interv
Whitt-Asymp

(c) Cache 3

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

File ID, k

H
it
P
ro
b
.,
H

P
,4
,k

Level 4, Cache 4, Policy:RND, Capacity: 100

Sim
Whitt-Interv
Whitt-Asymp

(d) Cache 4

10
0

10
1

10
2

10
3

0

0.5

1

File ID, k

H
it
P
ro
b
.,
H

P
,5
,k

Level 5, Cache 5, Policy:RND, Capacity: 100

Sim
Whitt-Interv
Whitt-Asymp

(e) Cache 5, leaf node

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Cache ID, n

H
P
,n

Average Hit Probability

Sim
Whitt-Interv
Whitt-Asymp

(f) Average Hit Probability

1 2 3 4 5

1

1.02

1.04

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Whitt-Interv Whitt-Asymp

(g) Miss Probability Ratio

1 2 3 4 5
0

5

10

15

Cache ID, n

E
H

P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Whitt-Interv Whitt-Asymp

(h) Percentage of relative errors

Figure 5.9: Whitt approximations on a linear network of five RND caches, N = 103, C = 102.

5.7 Evaluation of the approximation under independent requests 155

We repeat the previous experiments on a tandem network of LRU caches. We only report

in Figure 5.10 the per-file hit probabilities at cache 4 and the global metrics of interest at each

node. In this scenario, Figure 5.10(a) reveals significant discrepancy on per-file hit probability

at cache 4 between our model predictions and the simulations. Moreover, the percentage of the

absolute relative errors at the same node reaches 70% as shown in Figure 5.10(d). Note also

that Whitt’s stationary interval method predicts a hit probability equal to zero.

As previously, this error may be explained by comparing the LST of the CDF of inter-request

times at cache 4 predicted by our model and that suggested by the analysis of deterministic

TTL-based caches.

In fact, a LRU cache may be modeled as a constant TTL-based cache under the CTA;

therefore the LST of inter-arrival times of file i at cache 4 given by the TTL-based analysis

is λie
−λiT×e−sT

s+λie
−λiT×e−sT where λi is the request rate of file i and T is the cache characteristic time

at cache 5. Clearly, the latter LST cannot be matched using the shifted-exponential renewal

process of Whitt [95]; hence, this explains the error observed at cache 4.

10
0

10
1

10
2

10
3

0

0.05

0.1

File ID, k

H
it
P
ro
b
.,
H

P
,4
,k

Level 4, Cache 4, Policy:LRU, Capacity: 100

Sim
Whitt-Interv
Whitt-Asymp

(a) Cache 4

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Cache ID, n

H
P
,n

Average Hit Probability

Sim
Whitt-Interv
Whitt-Asymp

(b) Average Hit Probability

1 2 3 4 5
0.995

1

1.005

1.01

1.015

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Whitt-Interv Whitt-Asymp

(c) Miss Probability Ratio

1 2 3 4 5
0

50

100

Cache ID, n

E
H
P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Whitt-Interv Whitt-Asymp

(d) Percentage of relative errors

Figure 5.10: Whitt approximations on linear network of five LRU caches, N = 103, C = 102.

On binary trees of depth three. The purpose of this experiment is to assess the impact on the

calculation of performance metrics when using the stationary-interval and asymptotic methods

156
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

in the presence of superimposed request streams.

We consider two binary trees of depth three having seven caches; the first tree is made of

RND caches only, while the second consists of LRU caches only. For both scenarios, we report

the per-file hit probabilities at the root node and the per-cache average hit probabilities.

As we can see in Figures 5.11 and 5.12 respectively for the binary tree of RND and LRU

caches both implementations underestimate the metrics of interest. However, the stationary-

interval method clearly outperforms the asymptotic method in term of minimizing the prediction

error. Therefore, we will refer to the implementation of our model using the stationary-interval

method as the Whitt approximation in the rest of this chapter.

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

File ID, k

H
it
P
ro
b
.,
H

P
,1
,k

Level 1, Cache 1, Policy:RND, Capacity: 100

Sim
Whitt-Interv
Whitt-Asymp

(a) Cache 1, root node

1 2 3 4 5 6 7

0.1

0.2

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Whitt-Interv
Whitt-Asymp

(b) Average Hit Probability

1 2 3 4 5 6 7
0.95

1

1.05

1.1

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Whitt-Interv Whitt-Asymp

(c) Miss Probability Ratio

1 2 3 4 5 6 7
0

10

20

30

40

Cache ID, n

E
H
P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Whitt-Interv Whitt-Asymp

(d) Percentage of relative errors

Figure 5.11: Whitt approximations on a binary tree of RND caches, Depth 3, N = 103, C = 102.

5.7.2 Accuracy of the Poisson approximation

In this section, we consider that request streams are described by renewal processes with

exponentially distributed inter-request times (or equivalently Poisson request processes). This

workload model is commonly used in the literature [82, 72] and it is also known as the Inde-

pendent Reference Model (IRM). We refer to this implementation as the Poisson approximation.

We report simulation results obtained on a tandem network and a binary tree of LRU caches

of depth three respectively in Figures 5.13 and 5.14. We also test our Poisson approximation

5.7 Evaluation of the approximation under independent requests 157

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

File ID, k

H
it
P
ro
b
.,
H

P
,1
,k

Level 1, Cache 1, Policy:LRU, Capacity: 100

Sim
Whitt-Interv
Whitt-Asymp

(a) Cache 1, root node

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Whitt-Interv
Whitt-Asymp

(b) Average Hit Probability

1 2 3 4 5 6 7

1

1.1

1.2

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Whitt-Interv Whitt-Asymp

(c) Miss Probability Ratio

1 2 3 4 5 6 7
0

50

100

Cache ID, n

E
H
P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Whitt-Interv Whitt-Asymp

(d) Percentage of relative errors

Figure 5.12: Whitt approximations on a binary tree of LRU caches, Depth 3, N = 103, C = 102.

on a tandem network and a binary tree of RND caches of depth three.

We note that the Poisson approximation overestimates the metrics of interest. As expected,

the prediction errors decreases as the in-degree of the cache increases; for instance from 1 in

the tandem network to 2 in the binary tree.

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

File ID, k

H
it
P
ro
b
.,
H

P
,4
,k

Level 4, Cache 4, Policy:LRU, Capacity: 100

Sim Approx.

(a) Cache 4

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Cache ID, n

O
ve
ra
ll
H
it
P
ro
b
.,
H

P
,n

Overall Hit Probabilities

Sim Approx.

(b) Average Hit Probability

Figure 5.13: Poisson approximation on a linear network of five LRU caches, N = 103, C = 102.

158
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

File ID, k

H
it
P
ro
b
.,
H

P
,1
,k

Level 1, Cache 1, Policy:LRU, Capacity: 100

Sim Approx.

(a) Cache 1, root node

1 2 3 4 5 6 7
0.92

0.94

0.96

0.98

1

1.02

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Sim-VS-Approx.

(b) Miss Probability Ratio

Figure 5.14: Poisson approximation on a binary tree network of LRU caches, Depth 3, N = 103,

C = 102.

5.7.3 Accuracy of the Hybrid approximation

The previous experiments showed that the Whitt approximation underestimates our metric

of interests; while the Poisson approximation overestimates the same performance metrics. As

suggested in [95], we propose a method—called the Hybrid approximation—to approximate

the superposition of independent request streams. Our approach is similar to the one developed

by Albin in [5] and it consists of combining Whitt’s stationary-interval method and Poisson

assumption as follows. The aggregated request rate predicted by the Hybrid approximation is

identical to that of Whitt and Poisson approximation; however, the coefficient of variation of

inter-request times c2h is computed as a convex combination of that obtained from the stationary-

interval method of the Whitt approximation c2s and from the Poisson approximation c2p (c2p = 1):

c2h = wc2s + (1−w)c2p, w ∈ [0, 1].

The parameterw is known from [5] as the weighting function; and we notice thatw is close

to zero (resp. one) when the in-degree of the cache is large (resp. small) i.e. the aggregating

effect (resp. filtering effect) is more dominant in which case the Hybrid approximation is similar

to the Poisson (resp. Whitt) approximation.

Using a small training set of k-ary trees of depth three (i.e. the root node at level 1, k

intermediate nodes at level 2, and the leaf nodes at level 3) of LRU caches, we found numerical

values of the weighting function w when the number of files is N = 103 and the cache capacity

C = 102. These values are reported in Table 5.2 and they can be fitted using the following

rational expressions for more general networks.

w = (1+ 0.4686 × (k− 0.7130))−1 , at parents of leaf nodes (5.20)

w = (1+ 0.6425 × (k− 0.9519))−1 , at ancestor nodes, i.e. parent of parents (5.21)

5.7 Evaluation of the approximation under independent requests 159

Table 5.2: Values of the weighting function w for the k-ary trees of depth h = 3 from our

training set with settings N = 103, C = 102, LRU caches

Degree Depth Weight. funct.

k h = 3 w ≈ 1
1+a(k−b)

1 level = 2 = h− 1 0.875

level = 1 < h− 1 0.97

2 level = 2 = h− 1 0.65

level = 1 < h− 1 0.60

3 level = 2 = h− 1 0.45

level = 1 < h− 1 0.40

4 level = 2 = h− 1 0.40

level = 1 < h− 1 0.35

5 level = 2 = h− 1 0.35

level = 1 < h− 1 0.30

6 level = 2 = h− 1 0.30

level = 1 < h− 1 0.25

7 level = 2 = h− 1 0.25

level = 1 < h− 1 0.20

8 level = 2 = h− 1 0.20

level = 1 < h− 1 0.15

In the reminder of this section we use these values of weighting function w to compute

the request rate and the square coefficient of variation c2h of inter-request times of each arrival

request process. Then, we approximate all request streams in the network by hyper/shifted-

exponential renewal processes introduced in Section 5.4. Finally, we investigate the accuracy

of the Hybrid approximation on large, heterogeneous, and hierarchical cache networks having

up to 1093 nodes; and we also report results on a five LRU caches general network.

Unless otherwise specified, we recall that the cache capacity is set to C = 102, the total

number of files is N = 103, exogenous request streams are described by Poisson processes with

total rate λ = 1, and popularity of files follow a Zipf distribution of parameter α = 0.7.

Homogeneous tree networks

In this section, we show simulation results obtained on homogeneous k-ary tree networks

where caches are running the same replacement policy. These cache networks were not in the

training set used to calculate the values of the weighting function w obtained on k-ary tree

160
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

networks of LRU caches of depth three at most (see Table 5.2).

FIFO policy everywhere. First we consider the case of a tandem network of five FIFO caches.

We report in Figure 5.15 the per-file hit probabilities at caches 4 and 5, and also the average

hit probability at each node of the network.

As expected from the analysis of single FIFO cache, an accurate match on the per-file hit

probabilities between our model and simulation results is found at cache 5 (see Figure 5.15(b)).

However, Figures 5.15(a), 5.15(c), and 5.15(c) show that the Whitt approximation provides

a more accurate prediction of all metrics of interest than that obtained from the Hybrid approx-

imation. This suggests that the weighting function w for FIFO caches with small in-degree (as

in this tandem network) should be set to one (w = 1) at all caches of this tandem network.

This conclusion is not surprising if we look carefully at the LST of inter-arrival times of file i

at cache 4 (or equivalently the inter-miss times at cache 5) for instance. The TTL-based model

predicts that this LST is λie
−sT

λi+s
where λi is the request rate of the Poisson process and T the

cache characteristic time at cache 5. Meanwhile, the Whitt approximation can exactly match

the latter LST since it corresponds to a shifted-exponential CDF.

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

File ID, k

H
it
P
ro
b
.,
H

P
,4
,k

Level 4, Cache 4, Policy:FIFO, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(a) Cache 4

10
0

10
1

10
2

10
3

0

0.5

1

File ID, k

H
it
P
ro
b
.,
H

P
,5
,k

Level 5, Cache 5, Policy:FIFO, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(b) Cache 5, leaf node

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(c) Aggregate Hit Probability

1 2 3 4 5
0.8

0.9

1

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(d) Miss Probability Ratio

Figure 5.15: Comparison of all approximations on linear network with five FIFO caches, N =

103, C = 102.

5.7 Evaluation of the approximation under independent requests 161

We investigate the quality of the Hybrid approximation on a ternary tree of depth five having

121 FIFO caches. This test case provides insights on the accuracy of our model when accounting

for the aggregating effect. We report numerical results in Figure 5.16. For all metrics of interest

the Hybrid approximation outperforms both the Whitt and Poisson approximations. Moreover

its relative error and miss probability ratio are respectively less than 5% and close to one for all

caches of the tree.

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

File ID, k

H
it
P
ro
b
.,
H

P
,1
,k

Level 1, Cache 1, Policy:FIFO, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(a) Cache 1, root node

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(b) Average Hit Probability

0 20 40 60 80 100 120 140
0.9

1

1.1

1.2

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(c) Miss Probability Ratio

0 20 40 60 80 100 120 140
0

20

40

60

80

Cache ID, n

E
H

P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Hybrid Poisson Whitt

(d) Percentage of relative errors

Figure 5.16: Comparison of all approximations on ternary tree of depth five with 121 FIFO

caches, N = 103, C = 102.

RND policy everywhere. We also consider a tandem and, later, a ternary tree of depth five

having 5 and 121 RND caches respectively. We observed in Figures 5.17 and 5.18 that the

Hybrid approximation is very accurate in both cases with relative errors less than 5%.

LRU policy everywhere. We consider a tandem network of five LRU caches and, then, two

ternary tree networks of depth five and seven having 121 and 1093 LRU caches respectively.

As shown in Figures 5.19, 5.20, and 5.21 our Hybrid approximation predicts all performance

metrics with high accuracy.

162
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

File ID, k

H
it
P
ro
b
.,
H

P
,4
,k

Level 4, Cache 4, Policy:RND, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(a) Cache 4

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(b) Average Hit Probability

1 2 3 4 5
0.9

0.95

1

1.05

1.1

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(c) Miss Probability Ratio

1 2 3 4 5
0

50

100

150

200

250

Cache ID, n

E
H
P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Hybrid Poisson Whitt

(d) Percentage of relative errors

Figure 5.17: Comparison of all approximations on linear network with five RND caches, N =

103, C = 102.

Meanwhile, by crossing simulation results obtained on tandem networks of FIFO, RND, LRU

caches respectively in Figures 5.15(c), 5.17(b) and 5.19(b) we can see that LRU policy provides

the best average hit probability at leaf node (i.e. at cache 5); while RND policy is more efficient

at core node (e.g. cache 4). This simulation result was already suggested by the analysis of TTL-

based caches where a deterministic TTL values were recommended to be used at a cache (such

as leaf nodes of our experiments) if the inter-request times have a concave CDF; while TTL

values with high coefficient of variation as possible are suitable for core nodes (i.e. when the

CDF of inter-requests is no longer concave).

In all of the homogeneous k-ary tree networks we tested, our Hybrid approximation accu-

rately predicts all performance metrics with excellent quality indicators i.e. the curve of the

per-cache miss probability ratio close to one and the percentage of relative errors on the per-

cache average hit probabilities less than 5%.

Next, we shall present preliminary results on heterogeneous tree networks.

5.7 Evaluation of the approximation under independent requests 163

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

File ID, k

H
it
P
ro
b
.,
H

P
,1
,k

Level 1, Cache 1, Policy:RND, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(a) Cache 1, root node

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(b) Average Hit Probability

0 20 40 60 80 100 120 140
0.95

1

1.05

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(c) Miss Probability Ratio

0 20 40 60 80 100 120 140
0

10

20

30

40

50

Cache ID, n

E
H

P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Hybrid Poisson Whitt

(d) Percentage of relative errors

Figure 5.18: Comparison of approximations on ternary tree of depth five with 121 RND caches,

N = 103, C = 102.

Heterogeneous tree network

Mix of FIFO, RND, and LRU caches. We first consider two ternary trees of depth five where

the replacement policy at each cache is chosen uniformly at random among the FIFO, RND, and

LRU policies. In the first case, the cache capacity is C = 102; while in the second case the latter

parameter is set to C = 10.

For both scenarios, we report the per-file hit probabilities at cache 9 located at level 3 of

each tree. In the first case, this node is running the RND policy on cache size of 102; while the

policy and the cache capacity are set to LRU and 10 in the second cache. Figures 5.22 and 5.22

show an accurate match between our Hybrid approximation and the simulation results.

Mix of replacement policies, variable cache capacity, and larger number of files. We

consider a 4-ary tree of depth five having 341 caches. The cache capacities and the replacement

policies are respectively chosen uniformly at random within the interval [50; 150] and among the

FIFO, RND, and LRU policies. The total number of files is set to N = 104.

Figure 5.24(d) shows that the percentage of relative error on the average hit probability

may reach 20–30% meaning that the values of the weighting functionwwe used should depend

164
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

File ID, k

H
it
P
ro
b
.,
H

P
,4
,k

Level 4, Cache 4, Policy:LRU, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(a) Cache 4

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(b) Average Hit Probability

1 2 3 4 5
0.85

0.9

0.95

1

1.05

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(c) Miss Probability Ratio

1 2 3 4 5
0

0.5

1

1.5

2
x 10

5

Cache ID, n

E
H
P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Hybrid Poisson Whitt

(d) Percentage of relative errors

Figure 5.19: Comparison of all approximations on linear network with five LRU caches, N =

103, C = 102.

on the parameters of the system that might be the in-degree of the cache, level of the cache in

polytree routing topology, number of files, cache capacity. This claim can be justified by the

analysis carried out in [5] as shown in Section 5.7.4.

Five caches general network

In this section, we calculate the performance metrics of the five caches general network

presented in Figure 5.4. The interest for this toy network is to investigate the accuracy of our

model specially when requests are flowing in opposite directions in the network. In this case,

our general Algorithm 9 is needed.

Two classes of files are requested and the total number of files is N = 103. Files labels from

1 to 500 (resp. 501 to 1000) belong to the first (resp. second) class of files which is accessed

according to Poisson processes with total rate λ = 1. The access rates of files are modulated by

a Zipf distribution of parameter α1(resp. α2) = 0.7.

Files of first class is routed as a polytree with maximum depth equal three; meanwhile those

of second class are routed as tree. Hence, caches do not have the same level and degree with

respect to each class of files and each routing topology. We recall that this information is needed

5.7 Evaluation of the approximation under independent requests 165

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

File ID, k

H
it
P
ro
b
.,
H

P
,1
,k

Level 1, Cache 1, Policy:LRU, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(a) Cache 1, root node

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(b) Average Hit Probability

0 20 40 60 80 100 120 140
0.9

0.95

1

1.05

1.1

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(c) Miss Probability Ratio

0 20 40 60 80 100 120 140
0

20

40

60

80

Cache ID, n

E
H

P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Hybrid Poisson Whitt

(d) Percentage of relative errors

Figure 5.20: Comparison of all approximations on ternary tree of depth five with 121 LRU

caches, N = 103, C = 102.

to select the appropriate value of the weighting function. For instance, cache 3 has a degree of

2 and belongs to level 2 while cache 5 has a degree of 1 and belongs to level 2 of the polytree

routing topology of files of class 1.

We implement our model using the weighting functions in (5.20) and (5.21) depending on

the position of each cache in each routing topology (defined for each class of files).

LRU policy everywhere. First, we consider the case where caches are running the LRU policy.

Performance metrics at caches 1 and 2 are similar to that of single cache in isolation; hence,

we will report simulation results only at caches 3, 4, and 5 since their characteristic times are

coupled due to requests flowing in opposite direction between caches 3 and 4.

As shown in Figure 5.25, our hybrid approach is more accurate than others and predicts the

per-cache average hit probabilities with a maximum relative error less than 8% in this test case.

5.7.4 Discussion on the weighting function w

A suitable and appropriate weighting function w should be ideally network “topologically

free”. Instead of looking for expressions of w in function of the (in-)degree and the depth of

166
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

File ID, k

H
it
P
ro
b
.,
H

P
,1
,k

Level 1, Cache 1, Policy:LRU, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(a) Cache 1, root node

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(b) Average Hit Probability

0 200 400 600 800 1000 1200
0.9

0.95

1

1.05

1.1

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(c) Miss Probability Ratio

0 200 400 600 800 1000 1200
0

20

40

60

80

Cache ID, n

E
H

P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Hybrid Poisson Whitt

(d) Percentage of relative errors

Figure 5.21: Comparison of all approximations on a ternary tree of 1093 LRU caches, Depth 7,

N = 103, C = 102.

a cache as in (5.20) and (5.21) which were suggested by Table 5.2, we consider other cache

parameters.

First, the effective degree deff defined in [5, Eq. (2)]. Consider a cache with degree d and

a file i which is accessed on this cache through each of its k-th child with a rate λi,k. We denote

by λi the total request rate of file i on our cache i.e. λi =
∑
kλi,k. The effective degree deff of

our cache is given by

deff =

[

d∑

k=1

(

λi,k

λi

)2
]−1

(5.22)

We can easily check that if λi,k = λi,k′ ,∀k, k ′ or d = 1, then deff = d. This was the case for

most of the homogeneous tree networks of our training and test sets. Note also that if the cache

has an exogenous request stream, the sum in (5.22) should start from k = 0 where λi,0 is the

request rate of the exogenous request process.

Second, the occupancy probability OP,i of a file i in the cache. This parameter is the

probability to find file i in the cache at a random instant. By analogy,OP,i is the cache equivalent

of the intensity ρ of a queue which is also the stationary probability that there is a customer in

the server at a random time instant. A nice and simple approximation of OP,i can be derived

5.7 Evaluation of the approximation under independent requests 167

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

File ID, k

H
it
P
ro
b
.,
H

P
,9
,k

Level 3, Cache 9, Policy:RND, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(a) Cache 9

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

Cache ID, n

H
P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(b) Average Hit Probability

0 20 40 60 80 100 120 140
0.9

0.95

1

1.05

1.1

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(c) Miss Probability Ratio

0 20 40 60 80 100 120 140
0

50

100

Cache ID, n

E
H

P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Hybrid Poisson Whitt

(d) Percentage of relative errors

Figure 5.22: Comparison of all approximations on a heterogeneous ternary tree of 121 caches,

Depth 5, N = 103, C = 102.

from (5.4) and (5.5) which establish tight lower bounds of the occupancy probability OP,i and

the characteristic time T as follows.

OP,i ≈
T

E[Xi]
= λiT ≈ λiTmin = λi

C

Λ
(5.23)

where C is the cache capacity and Λ =
∑
iλi is the total request rate on the cache.

Using results and conclusions obtained from previous experiments on our training set of

networks, we propose the following weighting function w similar to the one used in [5] to

aggregate request processes of file i:

wi =
1

1+ a (1−OP,i)
b× deff

, OP,i ≈ λi
C

Λ
, a = 1 and b = 2, (5.24)

We can easily check that if OP,i → 1 and deff fixed, then the weighting function wi → 1

and the Hybrid approximation behaves as the Whitt approximation. This case occurs mainly

for popular files.

Meanwhile, as deff → ∞ the weighting function wi → 0 and the Hybrid approximation

converges to the Poisson approximation which was expected.

168
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

File ID, k

H
it
P
ro
b
.,
H

P
,9
,k

Level 3, Cache 9, Policy:LRU, Capacity: 10

Sim
Hybrid
Poisson
Whitt

(a) Cache 9

0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(b) Average Hit Probability

0 20 40 60 80 100 120 140
0.98

1

1.02

1.04

1.06

1.08

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(c) Miss Probability Ratio

0 20 40 60 80 100 120 140
0

50

100

Cache ID, n

E
H

P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Hybrid Poisson Whitt

(d) Percentage of relative errors

Figure 5.23: Comparison of all approximations on a heterogeneous ternary tree of 121 caches,

Depth 5, N = 103, C = 10.

We also added some corrections to accurately approximate the performance metrics of tan-

dem networks in particular. Since we observed in Figures 5.15 and 5.17 that w = 1 is the

appropriate value of the weighting function observed on linear networks of FIFO and RND

caches, we decide to use this value for the latter tandem networks. However, we also noticed

that w = 1 was a very loose value for tandem network of LRU caches (see Figure 5.19) in which

case the valuesw = 0.875 andw = 0.97 of Table 5.2 should be used at the two successive nodes

after the leaf; and w = 1 for the remaining nodes.

Implementing our model using the weighting function w in (5.24) and the previous cor-

rections, we found that the Hybrid approximation predicts all performance metrics with the

maximum relative errors on the per-cache average hit probability within 20–30%, the miss

probability ratio close to one, and a good estimation of the per-file hit probabilities. We also

observed that the expression in (5.24) is more robust and less sensible than those in (5.20)

and (5.21), specially on heterogeneous tree networks (previously tested with values provided

in Table 5.2) where caches may run different policies with different cache capacities.

5.7 Evaluation of the approximation under independent requests 169

10
0

10
2

10
4

0

0.05

0.1

0.15

0.2

File ID, k

H
it
P
ro
b
.,
H

P
,1
,k

Level 1, Cache 1, Policy:RND, Capacity: 79

Sim
Hybrid
Poisson
Whitt

(a) Cache 1, root node

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

Cache ID, n

,
H

P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(b) Average Hit Probability

10
0

10
1

10
2

10
3

0.98

1

1.02

1.04

1.06

1.08

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(c) Miss Probability Ratio

10
0

10
1

10
2

10
3

0

50

100

Cache ID, n

E
H
P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Hybrid Poisson Whitt

(d) Percentage of relative errors

Figure 5.24: Comparison of all approximations on a heterogeneous ternary tree of 341 caches,

Depth 5, N = 104, C ∈ [50; 150].

170
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

File ID, k

H
it
P
ro
b
.,
H

P
,3
,k

Cache 3, Policy:LRU, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(a) Cache 3, core node

0 200 400 600 800 1000
0

0.5

1

File ID, k

H
it
P
ro
b
.,
H

P
,4
,k

Cache 4, Policy:LRU, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(b) Cache 4, root & edge node

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

File ID, k

H
it
P
ro
b
.,
H

P
,5
,k

Cache 5, Policy:LRU, Capacity: 100

Sim
Hybrid
Poisson
Whitt

(c) Cache 5, root & core node

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Cache ID, n

H
P
,n

Average Hit Probability

Sim
Hybrid
Poisson
Whitt

(d) Average Hit Probability

1 2 3 4 5
0.85

0.9

0.95

1

1.05

Cache ID, n

M
A P
,n
/M

S P
,n

Miss Probability Ratio (MPR)

Hybrid Poisson Whitt

(e) Miss Probability Ratio

1 2 3 4 5
0

50

100

150

200

Cache ID, n

E
H
P
,n
(%

)

Abs. Relative Error on Average Hit Probability

Hybrid Poisson Whitt

(f) Percentage of relative errors

Figure 5.25: Comparison of approximations on general network with five LRU caches, N = 103,

C = 102.

5.8 Conclusion 171

5.8 Conclusion

In this chapter, we studied performance analysis of general and heterogeneous cache net-

works where caches are running LRU, FIFO and RND replacement policies under the assump-

tion that request streams are described by hyper/shifted-exponential renewal processes. Our

methodology is based on four independent and extensible building blocks that provide a step-

by-step analysis of a cache within a network. These blocks translate the main network primitives

into well-known operations on point processes such as superimposing, thinning, and filtering.

Our approach is validated in the case of independent requests. Clearly the renewal assumption

on all processes involved in the network is more accurate than Poisson assumption commonly

used in the literature.

In all the tree network cases we tested, we observed that Poisson approximation is accept-

able when the in-degree of a cache is large; meanwhile, Whitt approximation is more accurate

for flat networks such as tandem of caches or planar graph cache network with nodes having

small degree. Moreover, Whitt (resp. Poisson) approximation underestimates (resp. overesti-

mates) our metrics of interest in general; while the Hybrid approximation we proposed can be

very accurate has shown prediction error rates within 5–20% in our test set of cache networks.

However, this accuracy depends on a parameter called the weighting function which is

needed to trade between Poisson and Whitt approximations. A complete characterization of

the weighting function, a depth analysis of mesh (or non-tree) cache networks, and the imple-

mentation of our model for correlated requests are possible extensions of this work.

Finally, core networks can be easily designed using our models; meanwhile, users who take

advantage of fast access and high speed provide by the backbone cache networks tend to stay

almost always connected. This situation leads to an inefficient utilization of resources such as

energy on the access networks. In the next chapter, we model the energy consumption in a

wireless and cellular mobile networks.

172
Chapter 5: Approximate analysis of general and heterogeneous networks of LRU, FIFO and

Random caches

6

MODELING ENERGY CONSUMPTION ON

WIRELESS ACCESS NETWORKS

6.1 Summary

In this chapter, we analyze the power save and its impact on web traffic performance when

customers adopt the continuous connectivity paradigm. To this aim, we provide a model for

packet transmission and cost. We model each mobile user’s traffic with a realistic web traffic

profile, and study the aggregate behavior of the users attached to a base station by means of a

processor-shared queueing system. In particular, we evaluate user access delay, download time

and expected economy of energy in the cell. Our study shows that dramatic energy save can be

achieved by mobile devices and base stations, e.g., as much as 70%-90% of the energy cost in

cells with realistic traffic load and the considered parameter settings.

Keyword 6.1 Energy consumption models, power save mechanism, real web traffic, continuous

connectivity, Queueing theory, sensitivity analysis, 3/4G access networks.

6.2 Introduction

The total operating cost for a cellular network is of the order of tens of millions of dollars for

a medium-small network with twenty thousand base stations [78]. A relevant portion of this

cost is due to power consumption, which can be dramatically reduced by using efficient power

save strategies. Power save can be achieved in cellular networks operating WiMAX, HSPA, or

LTE protocols by optimizing the hardware, the coverage and the distribution of the signal, or

173

174 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

also by implementing energy-aware radio resource management mechanisms. In particular, we

focus on power save in wireless transmissions, which would enable the deployment of compact

(e.g., air conditioning free) and green (e.g., solar power operated) base stations, thus requiring

less operational and management costs.

An interesting case study is offered by the behavioral analysis of users that remain online

for long periods. These users request a continuous availability of a dedicated wideband data

channel, in order to shorten the delay to access the network as soon as new packets have to

be exchanged. This continuous connectivity requires frequent exchange of control packets, even

when no data are awaiting for transmission. Therefore, in the case of continuous connectivity, a

huge amount of energy might be spent just to control the high-speed connection, unless power

save is enforced. However, since power save mode affects packet delay, some constraints have

to be considered when turning to the power save operational mode.

Power save and sleep mode in cellular networks have been analytically and experimentally

investigated in the literature, mainly from the user equipment (UE) viewpoint. E.g., power

save in the UMTS UE has been evaluated in [97, 45] by means of a semi-Markov chain model.

The authors of [87] propose an embedded Markov chain to model the system vacations in IEEE

802.16e, where the base station queue is seen as an M/GI/1/N system. The authors of [7]

use an M/G/1 queue with repeated vacations to model an 802.16e-like sleep mode and to

compute the service cost for a single user download. Using Laplace-Stieltjes Transform and

Probability Generating Functions, [58] derives closed form expressions for the average power

consumption (objective) and the average packet delay (constraint) for an UE. The authors of

[58] also design a sleep mode mechanism based on traffic estimation and a solution of the

optimization problem. Analytical models, supported by simulations, were proposed by Xiao for

evaluating the performance of the UE in terms of energy consumption and access delay in both

downlink and uplink [96]. Almhana et al. provide an adaptive algorithm that minimizes energy

subject to QoS requirements for delay [6]. The works [11, 12] closely relate to our proposal

and mainly focus on the analysis of the discontinuous reception mode in 3GPP LTE and IEEE

802.16m respectively. The authors consider both the uplink and downlink packets for the UE

and show that uplink packets increase the power consumption and decrease the delay.

The existing work does not tackle the base station (or evolved node B, namely eNB) view-

point nor analytically captures the relation between cell load and service rate statistics. Further-

more, for sake of tractability, many of those studies assume that packet arrivals follow a Poisson

model. Instead, in real networks, the user traffic can be very bursty and follow long tail distri-

butions [24]. In contrast, we use a G/G/1 queue with vacations to model the behavior of each

UE, and we compose the behavior of multiple users into a single G/G/1PS queue that models

the eNB traffic. We analytically compute the cost reduction achievable thanks to power save

mode operations, and show how to minimize the system cost under QoS constraints. In par-

6.3 Continuous connectivity 175

ticular we refer to the mechanisms made available by 3GPP for Continuous Packet Connectivity

(CPC), i.e., the discontinuous transmission (DTX) and discontinuous reception (DRX) [1].

The importance of DRX has been addressed in [98], where the authors model a procedure

for adapting the DRX parameters based on the traffic demand, in LTE and UMTS, via a semi-

Markov model for bursty packet data traffic. A description of DRX advantages in LTE from

the user viewpoint is given in [16] by means of a simple cost model. In [63], the authors use

heuristics and simulation to show the importance of DRX for the UE.

The contributions of our work are as follows: (i) we are the first to provide a complete

model for the behavior of users (UEs) and base stations (eNBs) in continuous connectivity and

with non-Poisson traffic (namely web traffic), (ii) we provide a cost model that incorporates the

different causes of operational costs, (iii) we validate our model using packet-level simulations,

(iv) we study the importance of a variety of model parameters by means of a sensitivity analysis,

and (v) we show how to use the model to minimize operational costs under QoS constraints.

Our results confirm that a tremendous cost reduction can be attained by correctly tuning the

power save parameters. In particular, transmission costs can be lowered by more than 90%

with realistic traffic loads.

The rest of the chapter is organized as follows: Section 6.3 presents power save operations

in continuous connectivity mode. Section 6.4 describes a model for cellular users generating

web traffic. Section 6.5 illustrates a model for downlink transmissions, and Section 6.6 de-

scribes how to evaluate flow performance and transmission costs. In Section 6.7 we validate

the model through simulation. A sensitivity analysis is performed in Section 6.8, and a perfor-

mance analysis and optimization is done in Section 6.9 showing the achievable power saving.

Section 6.10 concludes the article.

6.3 Continuous connectivity

Cellular packet networks, in which the base station schedules the user activity, require the

online UEs to check a control channel continuously, namely for Tln seconds per system slot

(i.e., per subframe Tsub). For instance, CPC has been defined by 3GPP for the next generation

of high-speed mobile users, in which users register to the data packet service of their wireless

operator and then remain online even when they do not transmit or receive any data for long

periods [30]. A highly efficient power save mode operation is then strongly required, which

would allow disabling both transmission and reception of frames during the idle periods. The

UE, however, has to transmit and receive control frames at regular intervals, every few tens

of milliseconds, so that synchronization with the base station and power control loop can be

maintained. Therefore, idle periods are limited by the mandatory control activity that involves

the UE. To save energy, when there is no traffic for the user, the UE can enter a power save

176 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

mode in which it checks and reports on the control channels according to a fixed pattern, i.e.,

only once everym time slots. Relevant energy economy can be achieved. However, the queued

packets have to wait for the mth subframe before being served.

Discontinuous transmission. DTX has been first defined by 3GPP release 7. It is a UE

operational mode for discontinuous uplink transmission over the Dedicated Physical Control

Channel (DPCCH). With DTX, UEs transmit control information according to a cycle. There are

actually two possible DTX cycles. The first cycle is short (a few subframes) and is used when

some data activity is present in the uplink (normal operation). The second cycle is longer (up to

tens of subframes) and is activated when an inactivity timer in the uplink data channel expires

(power save mode operation). The threshold M for inactivity period is a power of 2 subframes

(specified values are in {21, 22, . . . , 29}).

Discontinuous reception. DRX is an operational mode defined by 3GPP release 6. It allows

the UE to save energy while monitoring the control information transmitted by the eNB. DRX

affects data delivery, since no data can be dependably received without an associated control

frame. 3GPP specifications define a DRX cycle, that is the total number of subframes in a

listening/sleeping window out of which only one subframe is used for control reception. Valid

values for this cycle are 4 to 20 subframes (i.e., using a 2 ms subframe in HSPA yields cycles

of 8 to 40 ms). DRX is activated only upon a timeout after the last downlink transmission, and

like DTX, the timeout threshold M specified in the standard is a power of 2 subframes.

6.4 Power save model

We focus on the power consumption due to wireless activity on the air interfaces of mobile

users (UEs) and base stations (eNBs). On one hand, we assume that uplink control transmission

follows the DTX pattern. On the other hand, the UE has to decode the downlink control channel

according to the DRX pattern, and receive packets accordingly [30]. Thus, uplink power save

can be enabled by means of a long DTX cycle, with a timeout whose duration can be of the

same order as the subframe size. Downlink power save is similarly enforced by setting the DRX

cycle and timeout.

Thereby, power save issues in uplink and downlink can be modeled in a similar way, and

there is little difference between the cost computation of a single UE and of a base station.

Indeed, the overall cost at the eNB can be seen as the collection of costs over the control and

data channels towards the various UEs, plus a fixed per-cell operational cost that the eNB has

to pay to notify its presence and maintain the users synchronized. Therefore, here we focus on

the downlink only, and begin our analysis with the behavior of a UE receiving a data stream.

Power save in downlink. As illustrated in Figure 6.1, downlink power savings can be ob-

tained by alternating between two possible DRX cycles: after any downlink data activity there

6.4 Power save model 177

Tout

mTsub mTsub

busy

Ips

Inorm

Tsub

power save mode

queue size

t

first

arrival

check

waiting

packets

Inorm

busy

Inorm

normal mode

Tsub Tsub

first

arrival

Tln

check for

Tln sec.

Figure 6.1: Downlink queue activity with power save and normal operation.

is a short cycle in which the UE checks the control channel at each subframe (normal opera-

tion mode); instead, upon the expiration of Tout (inactivity timer consisting of M subframes),

there is a longer cycle in which the UE checks the control channel periodically, with period m

subframes (power save mode).1 In power save mode, the UE monitors the downlink control

channel every m subframes, and returns to normal mode as soon as the channel sampling de-

tects a control message indicating that the downlink queue is no longer empty. Note that UEs

do not receive any service during: (i) Inorm, i.e., idle intervals in normal operation, (ii) timeout

intervals, and (iii) Ips, i.e., idle intervals in power save mode.

To quantify the power savings that can be achieved at the UE, in Section 6.5 we model the

behavior of downlink transmissions with DRX operations enabled and users generating web

traffic. Then, in Section 6.6 we discuss the tradeoff between per-packet performance and per-

UE cost. Our model can be used for systems using slotted operations, and in particular LTE

and HSPA [30]. The model can be applied to both uplink and downlink. However, for sake of

clarity, we explicitly deal with the downlink case.

Achievable cost saving and performance metrics will be expressed as a function of the sub-

frame length Tsub and the DRX parameters, namely the timeout duration, through the pa-

rameter M, and the DRX power save cycle duration, through the parameter m. We assume

fixed-length packets, and the server capacity is exactly one packet per subframe. However, no

packet is served when the UE is in power save mode, and the server capacity is shared, in each

subframe, between the UEs operating in normal mode. Therefore, we model a system which

behaves as a G/G/1PS queue with repeated fixed-length vacations of mTsub seconds.

Before proceeding with the model derivation, we introduce the traffic model adopted in this

study.

1The actual system timeout is M-subframe long. However, since the UE checks for new traffic at the beginning

of a subframe, the UE switches to power save mode if it does not receive any traffic alert at the beginning of the

Mth idle subframe. Therefore, it is enough to have no arrivals for M − 1 subframes and the UE will not receive any

packet for M subframes.

178 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

embedded object(s)

t

first

arrival

main object parsing reading

access

delay

access

delay

queue size

system cycle (web page)

busy busy

Figure 6.2: System cycle with web traffic as defined in [2].

Traffic model. We assume that downlink traffic is the composition of users’ web browsing

sessions. Traffic profiles are the same for all users and are as follows. The size of each web

request is modeled as suggested by 3GPP2 in [2]: a web page consists of one main object, whose

size is a random variable with truncated lognormal distribution, and zero or more embedded

objects, each with random, truncated lognormal distributed size. The number of embedded

objects is a random variable derived from a truncated Pareto distribution. Each web page

request triggers downloads of the packets carrying the main object only. Then a parsing time

is needed for the user application to parse the main object and request the embedded objects,

if any. The parsing time distribution is exponential with rate λp. After having received the

last packet of the last object, the customer reads the web page for an exponentially distributed

reading time, whose rate is λr. If no object is embedded, the reading time includes the parsing

time. Finally he/she requests another web page. Figure 6.2 represents the UE’s downlink queue

size at the eNB during a generic web page request and download. Table 6.1 summarizes the

parameters used for the generation of web browsing sessions. Note that the probability ψ0
to have no embedded objects in a web page can be computed through the distribution of the

truncated Pareto random variable Y described in Table 6.1: ψ0 = P(ymin ≤ Y < ymin + 1) =

1 −
(

ymin
ymin+1

)α

. Note also that the downlink of the web page experiences a small access delay

due to the completion of the current DRX cycle before the first packet of the new burst could

be served.

In our model, we assume that the time to request a web object with a http GET command is

negligible in comparison with the time needed to parse the main object, and therefore also in

comparison with the time needed for a customer to read the web page. Hence we incorporate

this request delay in the parsing time and in the reading time. In this way, we clearly focus our

study on the sole impact of the wireless technology on the system performance and costs. Fur-

thermore, packet arrivals are supposed to be bursty after each GET request, so that no power

save mode can be triggered after an object download begins, i.e., all power save intervals are

contained in either parsing or reading times. With these assumptions, we study the system per-

formance through the analysis of a generic web page download and its fruition. More precisely,

we study the system cycle defined as the time in between two consecutive web page requests.

6.5 Model derivation 179

Table 6.1: Parameters suggested by 3GPP2 for the evaluation of web traffic

Quantity Probability distribution Parameters

Main object size

Smo = ⌈X⌉
fX(x) =

(

2πσ2X
)− 1

2 e
−

(ln x−µX)2

2σ2
X

∫xmax

xmin

(

2πσ2X
)− 1

2 e
−

(ln t−µX)2

2σ2
X dt

,

x ∈ [xmin, xmax]

µX = 8.35

σX = 1.37

xmin = 100 bytes
xmax = 2 · 106 bytes

Number of

embedded objects

Neo = ⌊Y⌋ − ymin

fY(y) =




α
yα

min
yα+1 , y ∈ [ymin, ymax[

1−
[

ymin
ymax

]α

, y = ymax

ymin = 2

ymax = 55

α = 1.1

Embedded

object size
Seo = ⌈Z⌉

fZ(z) =

(

2πσ2Z
)− 1

2 e
−

(ln z−µZ)2

2σ2
Z

∫zmax

zmin

(

2πσ2Z
)− 1

2 e
−

(ln t−µZ)2

2σ2
Z dt

,

z ∈ [zmin, zmax]

µZ = 6.17

σZ = 2.36

zmin = 50 bytes
zmax = 2 · 106 bytes

Reading time Λr fΛr
(t) = λre

−λrt, t ≥ 0 λr = 0.03 s

Parsing time Λp fΛp
(t) = λpe

−λpt, t ≥ 0 λp = 7.69 s

Therefore, the system cycle can be decomposed in four phases, as depicted in Figure 6.2: (i)

download of the main object of the web page, (ii) parsing of the main object, (iii) download

of embedded objects, and (iv) web page reading. The first three phases represent the web page

download time, from the first packet arrival in the eNB queue to the last packet delivery to the

UE. Access delay and download time characterize the service experienced by the customer.

6.5 Model derivation

Here we derive the time spent by the system in the various cycle phases. For ease of no-

tation, we define βp = e−λpTsub and βr = e−λrTsub as the probabilities that, respectively, the

exponentially distributed parsing time and reading time are longer than one subframe. Hence

the timeout probability is βM−1
r in reading time, and βM−1

p in parsing time.

Timeouts in a cycle. Cycles always include one reading time, but the parsing time is

present only if there are embedded objects (i.e., with probability 1−ψ0). The average number

of timeouts in a cycle is then:

E[Nto] = βM−1
r + (1−ψ0)β

M−1
p . (6.1)

Hence each cycle includes, on average, E[Nto](M− 1)Tsub seconds due to timeout occurrences.

Idle time in power save mode. The average time per cycle during which the system is in

power save mode, denoted as I0, is computed by summing up the time spent in power save

mode (the intervals Ips as in Figure 6.1) occurring in the reading time and in the parsing time,

180 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

if any is present in the cycle: I0 = Ips|reading + Ips|parsing. Thanks to the memoryless property

of exponential arrivals, the interval between the timeout expiration and the arrival of the next

data packet is exponential too, and has the same exponential rate. In particular, the power save

interval that begins in the reading time lasts a multiple number of checking intervals mTsub,

with the following distribution and average:

P
(

I0 = jmTsub

∣

∣

∣ reading, timeout
)

= P
(

0 arrivals in (j− 1)mTsub

)[

1− P
(

0 arrivals in mTsub
)]

= (βmr)j−1 (1− βmr) , j ≥ 1;

E[I0|reading] = βM−1
r

mTsub

1− βmr
;

where we also removed the conditioning on the timeout occurrence. Similarly, for the parsing

time:

E[I0|parsing] = βM−1
p

mTsub

1− βmp
.

Therefore, the expected time spent in power save mode in a system cycle is given by the fol-

lowing average:

E[I0] = βM−1
r

mTsub

1− βmr
+ (1−ψ0)β

M−1
p

mTsub

1− βmp
. (6.2)

Note that E[I0] is a function of m and M, the web traffic parameters being fixed. It is easy to

show that ∂
∂m
E[I0] > 0, and ∂

∂M
E[I0] < 0, hence the power save interval I0monotonically grows

with the duration of the DRX cycle, and decreases with the duration of the timeout.

Idle time in normal mode. The amount of time spent in normal mode without serving any

traffic is the sum of the normal mode idle intervals due to parsing and reading times. Since

(6.1) accounts the time spent in timeouts, here we only count the intervals Inorm, whose sum

over a system cycle is denoted by I1 = Inorm|reading + Inorm|parsing. Considering that Inorm is

always a multiple of Tsub but smaller than a timeout, and since the component of I1 in reading

time is Inorm|reading, the conditional distribution of I1 in reading time and its expectation are as

follows:

P
(

I1 = jTsub
∣

∣reading
)

= P
(

Inorm = jTsub

∣

∣

∣ exp. arrivals with rate λr
)

=




βM−1
r , j = 0;

β
j−1
r (1− βr) , 1 ≤ j ≤M− 1;

E[I1|reading] = Tsub
1−MβM−1

r + (M− 1)βMr
1− βr

. (6.3)

6.5 Model derivation 181

Similarly, the expected value of the time spent in normal mode with no traffic to be served

during parsing, not counting the timeout, is given by

E[I1|parsing] = Tsub
1−MβM−1

p + (M− 1)βMp

1− βp
. (6.4)

Therefore, the average duration of I1, attained by using (6.3) and (6.4), is an increasing func-

tion of the timeout duration, as expressed by the following formula:

E[I1]=Tsub

[

1−MβM−1
r + (M−1)βMr
1− βr

+(1−ψ0)
1−MβM−1

p + (M−1)βMp

1− βp

]

. (6.5)

Cumulative idle time. The cumulative amount of idle time I in a cycle is the sum of

timeouts, I0, and I1. Its expected value is then as follows:

E[I] =
βM−1
r mTsub

1− βmr
+ Tsub

1− βM−1
r

1− βr
+ (1−ψ0)

[

βM−1
p mTsub

1− βmp
+Tsub

1− βM−1
p

1− βp

]

. (6.6)

E[I] is a decreasing function ofM, and increases withm. However, with our model assumptions,

E[I] is slightly larger than the sum of reading and parsing times. More precisely, its value is

bounded as follows:

1

λr
+
1−ψ0

λp
< E[I] <

1

λr
+mTsub+ (1−ψ0)

(

1

λp
+mTsub

)

. (6.7)

Given that m can be as large as several tens of milliseconds, and Tsub is only few milliseconds,

the product mTsub is negligible in comparison with the average parsing and reading times.

Hence, for all realistic values of m, the per-cycle idle time can be considered constant and

equal to its lower bound.

Busy time in a cycle. This is the time spent to serve the packets of a web page. Its

expectation is the expected number of packets per web page, E[Np], times the expected packet

service time E[σ]. The number of packets depends on the distribution of the web page objects.

Assuming the 3GPP2 traffic model reported in Table 6.1 and 1500-byte long packets, we can

compute:

E[Np] = E

[⌈

Smo

1500

⌉]

+ E[Neo] · E
[⌈

Seo

1500

⌉]

= 39.476.

The service time depends on the number of active UEs and on the server capacity, as we show

later in this section.

System cycle duration. Putting together the results for the time spent in timeouts, idle

intervals, and busy periods, the expected cycle duration is:

E[Tc] = E[I] + E[Np]E[σ]. (6.8)

182 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

The relation between E[Tc] and E[σ] is linear with a coefficient that is determined by the web

page object distribution. Since E[σ] too will be shown to grow with m and decrease with M

(see next paragraph), the entire expected system cycle increases with m and decreases with M.

Furthermore, as the expected service time increases with the numberNu of UEs attached to the

eNB, the system cycle behaves likewise. However, both E[I] and E[σ] are barely affected by m

and M, thereby E[Tc] is mainly affected by Nu.

Service time. We assume that there are Nu homogeneous UEs in the cell. The activity

factor of each UE is:

ρ =
E[Np]E[σ]

E[Tc]
=

E[Np]E[σ]

E[I] + E[Np]E[σ]
< 1. (6.9)

Equivalently, we can interpret ρ as the probability that a UE is under service. Note that E[σ],

E[Np], and E[I] assume always positive values, and thus E[Tc] > 0 and 0 < ρ < 1.

From the point of view of a generic queue, the service time in the lth subframe only depends

on the number Na(l) of queues which transmit in that specific subframe. In fact, the downlink

bandwidth is shared between all backlogged active queues, the total serving capacity being

fixed to one packet per subframe. Thus, given that the ith queue has a packet under service in

the lth system subframe, the service time for the ith queue is TsubNa(l). Since we are interested

in the service time for the ith queue, we condition the observation of the service time to the

transmission of a packet queued in the ith queue. Hence, considering all queues as i.i.d., the

number of active queues is a random variable Na = 1 + ν, with ν being a random variable

exhibiting a binomial distribution between 0 and Nu − 1 with success probability ρ. Thereby,

the average service time is:

E[σ] = TsubE[1+ ν] = Tsub[1+ (Nu− 1)ρ]. (6.10)

Hence, considering the expression (6.9) of ρ as a function of E[σ], we have a system of two

equations in two variables, from which we can compute E[σ].

Proposition 6.1 The expected packet service time E[σ] is the unique positive solution of the fol-

lowing quadratic equation:

E[Np]E
2[σ] + (E[I] − E[Np]NuTsub)E[σ] − E[I]Tsub = 0.

Proof The equation is obtained by combining (6.9) and (6.10). Since E[Np] and E[I] are positive

numbers, the quadratic coefficient in the equation is always positive, whilst the constant term is

negative: this is necessary and sufficient to have one positive solution and one negative solution.

However, the negative solution has no physical meaning. Thus, the positive solution is the only

acceptable solution candidate.

6.6 Performance and cost metrics 183

Corollary 6.1 The expected packet service time is

E[σ] =
(E[Np]NuTsub− E[I]) +

√

(E[I] − E[Np]NuTsub)2+ 4E[I]E[Np] Tsub

2E[Np]
.

As we stressed before, the term E[I] increases with m and decreases with M, but its varia-

tions are quite limited. So, thanks to the Corollary, we conclude that E[σ] behaves as E[I], i.e.,

it is barely affected by m and M. Furthermore, E[σ] grows with Nu, i.e., with the number of

UEs in the cell. Notably, the impact of Nu on E[σ] is amplified by a factor equal to the average

page size E[Np].

Since a new web page is requested only after the reading time of the previous request, the

number of customers has no theoretical upper bound. In fact, service time and system cycle

just keep growing with the number of UEs, and the average cumulative traffic generated and

served per subframe is Nu
E[Np]

E[Np]E[σ]+E[I]
≤ 1
Tsub

. Thus, as the system approaches saturation, E[σ]

tends to NuTsub, since in saturation the Nu users are always active and receive a fraction 1/Nu
of the server capacity. The asymptotic distribution of the system cycle duration is constant and

equal to Tupc = E[Np]NuTsub+ E[I], which scales linearly with the number of users and loosely

depends on the power save parameters m and M. Tupc is an upper bound on E[Tc], and can

be used to limit the maximum number of customers, thus guaranteeing a maximum web page

processing time to any customer.

6.6 Performance and cost metrics

The impact of power save mode on web traffic can be evaluated in terms of access delay and

page download time, assuming that all the traffic is served. Costs due to wireless transmission

and reception of packets are to be traded off with such indicators. Therefore, we first derive

an expression for performance metrics and show how to compute the fraction of time during

which power save can be realistically obtained. Then we derive the parametric expressions for

cost and power save at both UE and eNB.

6.6.1 Performance metrics and power save opportunities

Page download time. The time W needed to download a web page includes the time to

download each and every page’s packet, the time to parse the main object of the page, and

the access delay. Hence, we can derive E[W] as the difference between E[Tc] and the expected

reading time:

E[W] = E[Tc] −
1

λr
. (6.11)

Considering (6.7) and (6.8), a tight lower bound on the expected page download time is

E[Np]E[σ] + (1−ψ0)/λp.

184 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

Access delay. The access delay is the delay experienced after any download request. In our

model we consider only that part of the access delay which is due to the wireless access protocol.

In particular, we have two epochs within each cycle at which a request can experience access

delay: at the end of the reading time, corresponding to a new page request, and at the end of

the parsing time, corresponding to the request for the embedded objects. Let D be the total

access delay experienced within a web page download, accounting for the delay accumulated in

both reading and parsing times. E[D] can be easily computed by subtracting parsing, reading,

and busy times from the expected system cycle duration (see Figure 6.2), i.e.:

E[D] = E[I] −

(

1

λr
+
1−ψ0

λp

)

. (6.12)

The expected access delay is a function of the power save parameters used in the DRX config-

uration, plus the traffic profile parameters, through λr, λp, E[Np], and ψ0. However, using the

upper bound for E[I], one can conclude that the access delay is upper bounded by (2−ψ0)mTsub.

Power save time ratio. Energy savings can be achieved by reducing the radio activity,

including the possibly turning off the radio transceiver, according to the DTX/DRX pattern.

Therefore, power save opportunities can be represented by the fraction of the cycle during

which the transceiver can be deactivated. In practice, UE and eNB can save power during I0,

which is a multiple of mTsub during which no transmissions occur. However, in the interval

I0, the UE has to periodically be active to listen to the control channel for exactly Tln ≤ Tsub

seconds out of m subframes. The power save time ratio is then defined as follows:

R ,

(

1−
Tln

mTsub

)

E[I0]

E[Tc]
. (6.13)

Recall that E[Tc] is relatively insensitive to m and M, but increases with Nu, and that E[I0]

increases with m and decreases with M. Therefore, R is an increasing function of m, and it

decreases with M and Nu.

6.6.2 Cost analysis

Cost at the UE. The basic consumption rate of energy at the UE receiver is con if active

and cps < con otherwise. Receiving a packet increases the basic consumption rate by crx,

while listening to the control channel increases it by cln. The average consumption rate is a

combination of these four consumption rates. For sake of generality we assume that listening to

the control channel can last different amount of time, depending on whether data are associated

with the control message or not. For instance, in HSPA systems, the user can switch from the

control to data channel after having decoded the initial part (one third) of the control frame

indicating the arrival of a new data frame [30]. We denote by Tln the listening time when

no data are transmitted, and by T ′ln the listening time when data follow the control message.

6.6 Performance and cost metrics 185

Therefore, using definitions (6.9) and (6.13), and recalling that control channel listening is

performed in each subframe in normal mode, but only in one out ofm subframes in power save

mode, we can compute the cost per UE by taking the average over a system cycle while keeping

separated the listening occurrences with and without associated data transmissions. Namely,

CUE(m,M,Nu)=(1− R)con+Rcps+ρcrx+





[

1−ρ−m−1
m

E[I0]
E[Tc]

]

Tln

Tsub
+
ρT ′ln
Tsub



cln. (6.14)

Considering a fixed web traffic profile, the cost is a function of the power save parameters

m and M affecting R, ρ, E[I0], and E[Tc], and of the number of users Nu which appears in E[Tc]

and hence in R. The cost with no power save mode is computed by plugging E[I0] = 0, which is

equivalent to setting m = 1 and M→∞, in (6.14):

CUE(1,∞,Nu) = con+ ρ crx+

[

(1− ρ)
Tln

Tsub
+ ρ

T ′ln
Tsub

]

cln. (6.15)

Finally, the relative power save gain that can be attained is:

GUE(m,M,Nu) ,
CUE(1,∞,Nu) − CUE(m,M,Nu)

CUE(1,∞,Nu)
=
γ(m)E[I0]/E[Tc]

CUE(1,∞,Nu)
, (6.16)

where the quantity γ(m) is a cost reduction factor which increases with the DRX power save

cycle length m, namely:

γ(m) ,

(

1−
Tln

mTsub

)

(con− cps) +

(

1−
1

m

)

Tln

Tsub
cln. (6.17)

Note that T ′ln does not affect the cost reduction (numerator of (6.16)).

Summarizing, the relative gain is a function that increases with the duration of the DRX

power save cycle (i.e., with m), and decreases with the timeout (i.e., with M) and with the

number Nu of users in the cell.

Cost at the eNB. The power consumption rate at the eNB is the sum of a fixed component,

cf, that does not depend on the transceiver activity, and a variable component that depends on

the activity of UEs in the cell. Namely, the power consumption rate at the eNB is

CBS(m,M,Nu) = cf+NuC
′
UE(m,M,Nu). (6.18)

where C′
UE(m,M,Nu) is the cost per time unit to transmit to a single UE. It can be written as

follows:

C′
UE(m,M,Nu) = C′

UE(1,∞,Nu) − γ′(m) · E[I0]

E[Tc]
, (6.19)

with C′
UE(1,∞,Nu) = con+ ρ ctx+

T ′ln
Tsub

csg; (6.20)

γ′(m) =

(

1−
T ′ln
mTsub

)

(con− cps) +

(

1−
1

m

)

T ′ln
Tsub

csg. (6.21)

186 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

Here, ctx is a transmission cost rate and csg is a signaling cost. Last, the relative power save

gain is:

GBS(m,M,Nu) =
γ′(m)

C′
UE(1,∞,Nu) + cf

Nu

· E[I0]

E[Tc]
. (6.22)

Note that with few users the main eNB cost is represented by the fixed cost cf. Hence, the gain

increases with the number of users until the per-user cost becomes the predominant term in the

denominator of (6.22).

6.7 Validation through simulations

In this section we evaluate the robustness of the model by comparing the analytical results

to simulations. The main assumption used in the model states that queues related to different

active UEs are i.i.d.; however, queues are correlated in practice as they share the same processor.

This assumption is not met in the simulations.

We developed a C++ packet-level event-driven simulator that reproduces the behavior of

a time slotted G/G/1PS queue with Nu homogeneous classes. In the simulator, each class can

be in two different operational modes, namely normal mode and power save mode. The shared

processor resources are allocated equally to all classes in normal mode at the beginning of each

time slot of duration Tsub. The traffic is homogeneously generated, in accordance to the 3GPP2

suggested web traffic model of Table 6.1. Furthermore, all simulated packets have the same

size, i.e., 1500 bytes, and the processor capacity is 1500 bytes per slot. Hence, if only one class

is under service, a packet is served completely in one slot. Otherwise, since the processor is

shared, all classes in normal mode have a fraction of packet served in that slot. The fair per-

class share is computed as one over the number of classes in normal mode. If a class has not

enough backlog to use all its processor share, unused resources are redistributed among the

remaining classes. Packet service is considered complete at the end of its last service slot.

Simulations are performed for different numbers of classes Nu, duration of the timeout

M, and length of DRX power save cycle m. Hereafter, we will use λr = 1/30 s, λp = 1/0.13,

ψ0 = 1 − (2/3)1.1, and Tsub = 2 ms. Each simulation consists of a warm-up period lasting

10,000 seconds (5,000,000 slots), followed by 100 runs, each lasting 10,000 seconds. Statistics

are separately collected in each run. At the end of a simulation, all statistics are averaged over

the 100 runs and 99% confidence intervals are computed for each average result.

We need to run simulations for such a long time to have statistics with relatively small

confidence intervals. In fact, due to heavy tailed distributions involved in the generation of web

traffic, the number of packets per cycle has a huge variance. Furthermore, simulations with a

high number of users require very long CPU time (in our specific case, a single simulation point

requires up to 12 hours of a 3 GHz Intel CoreTM2 Duo E6850 CPU), which makes it prohibitive

6.7 Validation through simulations 187

to explore in detail all possible values of the input parameters. As a reference, our model can be

run with the Maple software in as few as 30 seconds on the same machine used for simulations.

The model, however, neglects the correlation between the activity of different users, e.g., in

the computation of E[σ]. Nevertheless, the comparison between model and simulation shows

that the model approximates the system performance with a good accuracy. Numerical results

for E[σ], obtained from both the model and the simulations, are reported in Figure 6.3. It is

clear from the figure that the model slightly overestimates the service time for high values of

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400 450 500

ex
p
ec

te
d
 s

er
v
ic

e
ti

m
e

E
[σ

]
[s

]

number of users Nu

model: M = 512, m = 100
model: M = 2, m = 100
model: M = 2, m = 4
sim: M = 512, m = 100
sim: M = 2, m = 100
sim: M = 2, m = 4

Figure 6.3: E[σ] grows with Nu and is almost not affected by the timeout and the DRX power

save cycle durations.

Nu, i.e., when the correlation between multiple users, in terms of probability to share the same

transmission slot, becomes relevant. As predicted, m and M do not significantly affect E[σ].

We now compare two performance metrics: the system cycle duration E[Tc] and the power

save time ratio R. E[W] can be easily computed from E[Tc]; cf. (6.11). For clarity of presentation,

we show only a subset of the results obtained. In particular we selected some extreme cases

that well depict the variability of performance with m, M, and Nu.

 30

 31

 32

 33

2 8 32 128 512 2048ex
p
ec

te
d
 s

y
st

em
 c

y
cl

e
E
[T

c]
 [

s]

timeout threshold M

mod: Nu = 400, m = 100

sim: Nu = 400, m = 100

mod: Nu = 400, m = 4

sim: Nu = 400, m = 4

mod: Nu = 1, m = 100

sim: Nu = 1, m = 100

mod: Nu = 1, m = 4

sim: Nu = 1, m = 4

(a) Expected system cycle duration E[Tc]

 0.7

 0.8

 0.9

 1

2 8 32 128 512 2048

p
o

w
er

 s
av

e
ti

m
e

ra
ti

o
 R

timeout threshold M

(b) Power save time ratio R

Figure 6.4: Comparison of analytic and simulation results: (a) E[Tc], and (b) R.

188 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

p
o
w

er
 s

av
e

ti
m

e
ra

ti
o
 R

packet arrival rate [arr/s]

M = 2, m = 100

model (p = 1)
p = 1
p = 2
p = 5
p = 10

(a) high save configuration

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

p
o
w

er
 s

av
e

ti
m

e
ra

ti
o
 R

packet arrival rate [arr/s]

M = 512, m = 4

model (p = 1)
p = 1
p = 2
p = 5
p = 10

(b) low save configuration

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

p
o
w

er
 s

av
e

ti
m

e
ra

ti
o
 R

packet arrival rate [arr/s]

M = 256, m = 20

model (p = 1)
p = 1
p = 2
p = 5
p = 10

(c) recommended setup

Figure 6.5: Impact of the number p of parallel user’s browsing sessions on R, for Tln = Tsub
3

.

Figure 6.4.a compares the estimates of E[Tc] obtained with the model (lines) and with the

simulator (marked points) for two very different values of m (4, which is the minimum in the

3GPP recommendations, and 100). The lower part of the figure contains the results obtained

with one user, and the upper part reports the results with Nu = 400 users. The results of

the simulation are highly variable due to the heavy tailed distribution in web page size statis-

tics, hence 99%-confidence intervals appear large over the zoomed y-scale used in the figure.

Though the average values show some small difference, both simulations and model behave

similarly. The maximum relative difference between model and simulation with one user is

within 1%, and it is below 2% with Nu = 400. Noticeably, model estimates are within the

99%-confidence intervals of simulation estimates.

The main cause of the difference between the results of the model and the ones obtained

via simulation is in the estimation of the service time, which linearly affects the cycle duration.

Similar differences can be observed for the power save time ratio R with Nu = 400 in Fig-

ure 6.4.b. Analytic and simulation results remain however very close. The results are sensitive

to m and Nu, while the effect of M is almost negligible for short timeouts.

In conclusion, simulations suggest that we can safely use the model to estimate the system

performance and evaluate its potentialities for power save with good accuracy.

6.7.1 Impact of parallel user’s browsing sessions

In real life, a user can activate more than one browsing window and switch from window to

window while a page is being loaded. Thus, in practice it is not uncommon to have more than

one browsing session active on the same device. Therefore, in that case, the arrival process at

the user’s download queue will result from the superposition of various per-browsing session

arrival processes. Here we simulate the occurrence of multiple active http browsing sessions

for each user, and we compare the performance with the case of single browsing session. Our

6.7 Validation through simulations 189

model does not capture the effect of parallel http sessions, hence the experiments proposed

in this subsection are aimed at evaluating whether our study can be used to approximate the

network behavior in more generic and realistic traffic scenarios. Specifically, we focus on one

particular metric, namely the power save time ratio, since it is representative of the system’s

power save performance.

In Figure 6.5, we plot the power saving time ratio R for three scenarios: a configuration for

the DRX parameters (M,m) yielding high power savings (Figure 6.5.a), a configuration yielding

the minimum power saving for realistic values of (M,m) (Figure 6.5.b), and the configuration

that we recommend in light of our optimization analysis reported in Section 6.9, i.e., (M,m) =

(256, 4) (Figure 6.5.c). The recommended configuration, yields a good tradeoff between power

save and serving delay incurred by the packets due to DRX operations.

Note that, since a user generates a traffic volume which depends on the number p of paral-

lel http browsing sessions, in Figure 6.5 we plot R as a function of the offered load, expressed

in terms of packet arrivals per second. For each represented curve, we change the load by

changing the number of users Nu, and report the corresponding arrival rate in the x-axis,

and the power save time ratio R in the y-axis. As reference, we include in each figure the

results obtained with the model by increasing Nu from 1 to 1000, then computing E[σ] by

solving the system consisting of Eqs. (6.9) and (6.10), or with the formula given in the Corol-

lary in Section 6.5, for each given value of Nu, and eventually computing the load factor as

NuE[Np]Tsub/E[Tc]. The latter formula represents the fraction of time spent in a cycle to serve

the average aggregate volume of downlink packets NuE[Np] generated in that cycle, when the

volume of data corresponding to one packet is served in exactly one subframe Tsub.2

In the model, the load in packet arrivals per second is computed by scaling the load factor

by 1
Tsub

, which is the maximum number of packets that can be served in a second, and is 500

in our case, corresponding to the capacity of a HSPA downlink with 2ms subframes. Clearly,

a given arrival rate corresponds to a different number of users Nu when p changes, and the

relation between the packet arrival rate, the number of browsing sessions p, and the number of

users Nu cannot be predicted with our model. Therefore, for p > 1 we only show simulation

results.

Observing Figure 6.5, one can notice that (i) the model accurately predicts the simulation

for p = 1, and (ii) values of p as large as 10 can have a remarkable impact on the power save

time ratio R. However the impact of p is important only for high loads and for large values

of the DRX timeout M, causing up to a ∼ 25% drop in power save opportunities. However,

for reasonable values of p, e.g., 2 to 5, R remains always very large and within a few percent

2Equivalently, the load factor can be computed as the sum of Nu activity factors expressed as in Eq.(6.9), mul-

tiplied by a coefficient Tsub/E[σ] which represents the fraction of resources allotted to a user when sharing the

processor with other users.

190 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

from the value achieved with p = 1. In light of this result, we argue that using our model can

suitably approximate the computation of the power save opportunities of a system with users

browsing a few (up to 5) web pages in parallel.

We will now perform a sensitivity analysis on our model to evaluate which parameters

mostly affect the performance metrics.

6.8 Sensitivity analysis

In the previous sections, we provided the expressions for the performance and cost metrics

that enables us, by a partial derivation, to outline a preliminary behavior of our metrics ac-

cording to the input parameters, namely M, m and Nu. Our objective now is to characterize

qualitatively and quantitatively the impact of our input parameters on the variability of our

metrics. We will further analyze the sensitivity of the metrics when the expected web page size

E[Np], the expected reading rate λr, and the expected parsing rate λr are uncertain, in addition

to the three input parameters.

Performing a sensitivity analysis allows us to understand how variability in the output of

a model can be apportioned to different input parameters. Variance-based techniques define

sensitivity indices (i) to measure the main effect of a given input on the output, (ii) to measure

the relative importance of any combination of input in the output variability, and (iii) to mea-

sure the total effect of a given input on the output. More precisely, assuming the inputs to be

random variables X1, . . . , Xn, and the model output to be a random variable Y = f(X1, . . . , Xn),

the first order and total sensitivity indices for random variable Xi are defined as follows:

Si =
Var
(

E[Y|Xi]
)

Var(Y)
, STi =

E
[

Var(Y|X−i)
]

Var(Y)
, (6.23)

where X−i denotes all input random variables except Xi. Si is a quantitative measure of the

main effect of Xi on output Y (through its variance) and STi is a quantitative measure of the

total effect of Xi, including the interactions with other input random variables. The difference

STi − Si measures the importance of interactions in the total effect of Xi. When there are no

interactions between the input random variables, the sum
∑n
i=1Si = 1; otherwise, this sum is

less than 1. If STi is small, then this means that the value of Xi is not essential, and it can be

considered as deterministic, taking any value within its range, without any significant impact

on the model output. Note that an exhaustive sensitivity analysis requires the computation of

2n− 1 sensitivity indices, including those accounting for interactions between any combination

of input random variables. The sum of these 2n− 1 indices amounts to 1.

One method for estimating Si and STi for non-correlated variables is the Extended Fourier

Amplitude Sensitivity Test (EFAST), introduced by Saltelli et al. in 1999 [85]. The EFAST

6.8 Sensitivity analysis 191

 0

 0.2

 0.4

 0.6

 0.8

 1

GBS GUE R E[D] E[W]

M

m

Nu

(a) First order sensitivity indices Si

 0

 0.2

 0.4

 0.6

 0.8

 1

GBS GUE R E[D] E[W]

(b) Total order sensitivity indices STi

Figure 6.6: Sensitivity indices of M, m and Nu for the defined metrics.

method does not require any knowledge on the function f(.), which can be seen as a black

box. The advantages of EFAST are its robustness, especially for small sample sizes, and its

computational efficiency. EFAST expands the output of the model by using the Fourier Series,

then assigns an integer frequency to each input parameter, to finally compute the variance of

output as well as the contribution of each input to this variance. Using a brute-force approach,

computing Si and STi requires the evaluation of multidimensional variance integral. The main

advantage of EFAST is to reduce the computation of this complex integral to a monodimensional

integral over a curve exploring the n-dimensional space. For a detailed description of the

method we refer the reader to [85, 29].

We will now show the results of the sensitivity analysis (SA) for the five performance and

cost metrics introduced in Sections 6.5 and 6.6. We have checked our results using two different

software packages that implement SA.

6.8.1 SA results with three input parameters: M, m and Nu

We first apply the EFAST method to our model with the web traffic configuration specified

by 3GPP2 (see Table 6.1). We consider the following ranges for the three input parameters:

M ∈ {2, 22, . . . , 215}; m ∈ {1, . . . , 50} and Nu ∈ {1, . . . , 600}. All other parameters are constant

in this analysis. We compute the first order (Si) and the total (STi) sensitivity indices of each of

the parameters M, m and Nu for the five performance and cost metrics defined in Section 6.6.

The results are displayed in Figure 6.6. It is clear that parameters with a small impact on some

metric may well be essential for other metrics. We can make the following observations:

� The download time E[W] is affected only by the number of cell users Nu; the DRX param-

eters M and m may take any value within their range without impacting E[W].

� The cycle length m is essential for the access delay E[D] and has a minor effect on the

eNB’s relative gain GBS. Noticeably, about two thirds of the total effect of m on GBS

192 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

 0

 0.2

 0.4

 0.6

 0.8

 1

GBS GUE R E[D] E[W]

M

m

Nu

E[Np]

λr

λp

(a) First order sensitivity indices Si

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

GBS GUE R E[D] E[W]

(b) Total order sensitivity indices STi

Figure 6.7: Sensitivity indices of M,m,Nu, λr, λp and E[Np] for the defined metrics.

comes from interactions with other variables.

� The timeout threshold M is the most relevant parameter concerning the power save time

ratio R and the gains GUE and GBS. The second most relevant input parameter affecting

these metrics is Nu.

� Last, interactions between multiple variables are mostly relevant for the gain GBS.

6.8.2 SA results with six input parameters: M,m,Nu, λr, λp and E[Np]

As the Internet (and so the web) is evolving very fast, it is easy to predict that the traffic

parameters suggested by 3GPP2 (see Table 6.1) will have to be modified. Therefore, power save

performance will change accordingly, and network optimization will require a different setup.

In particular, the actual trend for mobile devices is to increase memory and data processing

speed; meanwhile, web page sizes tend to increase because of the embedded objects, some of

which are large images/videos or heavy scripts. Furthermore, some websites offer light versions

of web pages specifically for mobile clients. To provide insights on the relevance of these

changes with respect to our metrics of interest, we now present the results of our sensitivity

analysis extended to the model parameters that characterize the user traffic behavior, namely

the reading and parsing time, through λr and λp, and the web page average size E[Np].

In our sensitivity analysis, we consider the following ranges of variability for the three ad-

ditional parameters: E[Np] ∈ {20, . . . , 100}, λr ∈ [0.02, 0.1], and λp ∈ [1, 50]. The selected

ranges include the original 3GPP2 parameters, and account for reasonable parameter modifica-

tions. For the resulting 6-parameter SA of our model, Figure 6.7 shows the first order and total

sensitivity indices for cost and performance metrics. The following is observed.

� The parsing rate λp is definitely unessential (this is mainly due to the negligible value of

the average parsing time compared to the other durations) and can be fixed to any value

within its range.

6.9 Performance analysis and optimization 193

� The earlier observation on E[D] remains unchanged: it is only impacted by the DRX

parameters M and m (including their interactions).

� E[Np] and λr are equally relevant as concerns GBS, GUE and R as they have almost the

same total sensitivity index.

� The download time E[W] is still mostly affected by Nu, but it is also impacted by the web

page size E[Np] and to a lesser extent by the reading rate λr.

Our analysis reveals that λr and E[Np] are essential for our model. It is important to accurately

estimate λr and E[Np] before using the model to optimize the power save configuration in the

network.

6.9 Performance analysis and optimization

The section focuses on the analysis of the performance and on its optimization, using the

model developed in Section 6.5 and validated in Section 6.7. Where not specified, we use the

traffic parameters reported in Table 6.1.

Access delay. The access delay is the performance metric most impacted by the tunable

parameters M (timeout threshold) and m (DRX cycle length), as confirmed by the sensitivity

analysis. The access delay experienced in the network is reported in Figure 6.8 for the parame-

ter set given in Table 6.1. E[D] is sensitive to m, especially with low timeout values. However,

reasonable values of m, e.g., below 20, yield access delay times not higher than 40 ms. As for

the timeout threshold, an interesting value is M = 256 (see shape of E[D] around M = 256 in

Figure 6.8).

 0
 20

 40
 60

 80
 100

4
16

64
256

1024
4096

16384
65536

 0

 0.04

 0.08

 0.12

 0.16

access delay E[D] [s]

1/λr = 30 s

DRX cycle m

timeout M

access delay E[D] [s]

Figure 6.8: Access delay (independent of Nu).

Page download time. Figure 6.9 depicts the behavior of the expected page download time

when one of the following terms is varied: (a) the number of users in the cell Nu; (b) the

194 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

 0.1

 1

 10

 0 100 200 300 400 500

p
ag

e
d
o
w

n
lo

ad
 t

im
e

E
[W

]
[s

]

number of users Nu

m = 1
m = 100

M = 2

1/λr = 30 s

E[Np] = 39.476

(a) E[W] grows with Nu

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70

p
ag

e
d
o
w

n
lo

ad
 t

im
e

E
[W

]
[s

]

reading time 1/λr [s]

Nu = 100

Nu = 350

Nu = 600

M = 2

m = 20

E[Np] = 39.476

(b) E[W] decreases with reading time

 0.1

 1

 10

 100

 20 30 40 50 60 70 80 90 100

p
ag

e
d
o
w

n
lo

ad
 t

im
e

E
[W

]
[s

]

expected number of packets per web page E[Np]

Nu = 100

Nu = 350

Nu = 600

M = 2

m = 20

1/λr = 30 s

(c) E[W] increases with E[Np]

Figure 6.9: The expected page download time is insensible to DRX cycle length m and timeout

M; it is roughly E[σ]E[Np] (tight lower bound).

 0 5 10 15 20 25 30 35 40 45 50

 100
 300

 500
 700

 900

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

power save time ratio R

M = 2048

M = 2

cf = 1000

1/λr = 30 s

E[Np] = 39.476

DRX cycle m

number of users Nu

power save time ratio R

(a) Great save opportunities with m ≥ 4

 0 5 10 15 20 25 30 35 40

4
16

64
256

1024
4096

16384
65536

 10

 30

 50

 70

 90

GBS [%]

DRX cycle m

timeout M

GBS [%]

Nu = 5

Nu = 500

Nu = 250

(b) Relevant gain with M ≤ 1024 and m ≥ 4

Figure 6.10: Power save time ratio vs. m and Nu (a) and eNB gain vs. m and M (b).

expected reading time 1/λr (user’s behavior); and (c) the expected web page size in packets

E[Np]. The following is observed. The expected page download time is small as long as Nu <

350. For a larger number of users, E[W] increases abruptly (and linearly) with Nu. The value

of m has only a negligible impact on the page download time: the latter is sensibly the same

whatever the value of m. The same is observed concerning the parameter M (not reported

here). Also, E[W] increases with the reading rate λr as can be inferred from Figure 6.9.b.

Indeed, larger reading times lower the load on the shared processor, thereby decreasing the

expected service time and consequently the page download time. Last, longer web pages (this

is a trend currently observed due mainly to large embedded objects and heavy scripts) yield

larger download times.

Power save time ratio. We now consider the power save time ratio R. The most important

parameters are m and Nu. We report the analytical results in Figure 6.10.a. The power save

6.9 Performance analysis and optimization 195

time ratio R remains constant for a large range of number of users values but decreases as soon

as Nu > 350.

Relative power save gain at eNB. Reasonably, the cost of transmitting a data packet is

larger than the cost of transmitting a control packet, which usually takes less bandwidth. Both

transmitting and signaling costs are much higher than the cost to stay on, which, in turn, is at

least one order of magnitude greater than the cost to stay in power save mode. As an example,

we use the following values: ctx = 100, csg = 50, con = 10, and cps = 1. Additionally, as

suggested by experimental measurements [33], we consider a base station cost one order of

magnitude larger than the transmission cost: cf = 1000. In the following Tln = Tsub/3 and

T ′ln = Tsub.

With the chosen cost parameters, the function γ′(m) grows very fast for small m, but it

quickly saturates. In practice, values ofm larger than 20 do not give substantial gain advantages

with respect to m = 20, that is the maximum value suggested by 3GPP for CPC. The relative

gain at the eNB is reported in Figure 6.10.b for a few values of Nu. One can notice that low to

medium values of the timeout, jointly with moderately high values of m, allow to obtain most

of the potential gain for the current value of Nu. Observe that when few users are attached to

the eNB, the main cost figure is cf, which is fixed. However, as shown in Figure 6.11.a, if the

number of users grows beyond 350, the gain recedes. In fact, with too many users, the system

saturates and power saving opportunities diminish (cf. Figure 6.10.a).

We have investigated the effect of the expected reading time 1/λr on the eNB gain. The

results are depicted in Figure 6.11.b for various values of Nu and m, the timeout M being

fixed to 256. We observe that the relative gain at the eNB saturates as soon as the reading

time reaches a threshold, which depends on the number of users. The saturation level of GBS
depends on the cycle lengthm. It is clear that small variations around the current recommended

simulation value, that is equal to 30 seconds, will not affect the gain in cells with a moderate

number of users (say Nu ≤ 300). Decreasing the expected reading time in very large cells will

yield less gain.

We now vary cf. It is expected to obtain smaller relative power save gain should the fixed

cost at the eNB be larger, and vice-versa (larger gain if smaller fixed cost). This is observed in

Figure 6.11.c.

Relative power save gain at UE. The last metric we analyzed is the user’s relative power

save gain. We have varied successively the number of users Nu, the reading time 1/λr, and the

web page size (in packets) E[Np]. Results are reported graphically in Figure 6.12 for timeout

threshold M = 2. Substantial user power savings are possible if m ≥ 20. Having timeout

thresholds larger than 2 subframes slightly decreases the user gain (about 2% loss in GUE if

M = 256, 1/λr = 30 s, and E[Np] = 39.476).

DRX protocol parameter optimization. We want to compute now the optimal values ofM

196 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

eN
B

 p
o
w

er
 s

av
e

g
ai

n
 G

B
S
 [

%
]

number of users Nu

M = 2, m = 4

M = 2, m = 100

M = 1024, m = 4

M = 1024, m = 100

cf = 1000

1/λr = 30 s

E[Np] = 39.476

(a) Large gain for many Nu ’s if m ≥

4

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70

eN
B

 p
o
w

er
 s

av
e

g
ai

n
 G

B
S
 [

%
]

expected reading time 1/λr [s]

N
u
 =

 1
0
0

N u
 =

 3
50

N u
 = 600

m = 2

m = 4

m = 20

M = 256

E[Np] = 39.476

(b) Gain saturates as λr decreases

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

eN
B

 p
o
w

er
 s

av
e

g
ai

n
 G

B
S
 [

%
]

eNB fixed cost cf

Nu = 100

Nu = 350

Nu = 600

M = 2

m = 20

1/λr = 30 s

E[Np] = 39.476

(c) Smaller cf yields a larger gain

Figure 6.11: GBS vs. the number of cell users Nu, the reading time 1
λr

and eNB’s fixed cost.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600U
E

’s
 p

o
w

er
 s

av
e

g
ai

n
 G

U
E
 [

%
]

number of users Nu

m = 2

m = 4

m = 20
m = 100

M = 2

1/λr = 30 s

E[Np] = 39.476

(a) Lesser gain with larger capacity

cell

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70U
E

’s
 p

o
w

er
 s

av
e

g
ai

n
 G

U
E
 [

%
]

expected reading time 1/λr [s]

N
u
 =

 1
0
0

N u
 =

 3
50

N u
 = 600

m = 2

m = 4

m = 20

M = 2

E[Np] = 39.476

(b) More gain if load decreases

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80 90 100U
E

’s
 p

o
w

er
 s

av
e

g
ai

n
 G

U
E
 [

%
]

expected number of packets per web page E[Np]

Nu = 100

Nu = 350

Nu = 600

M = 2

m = 20

1/λr = 30 s

(c) Larger web pages impair user

gain

Figure 6.12: Analytical evaluation of the relative power save gain at UE.

and m that yield the highest gain while keeping low the access delay and the download time.

We consider the eNB cost only, but the results can be easily extended to the UE.

Figure 6.13 shows some specific cases of system optimization. In the figure, Wx and Dx de-

note the maximum allowable download time and access delay, respectively. Each optimization

is performed over M and m, given a fixed number of users Nu. Each optimized value of the

gain is labeled with the pair (M,m) corresponding to the optimum. The figure shows that the

gain exceeds 70% in cells with at least 50 users, while keeping the total web page download

time bounded to less than 0.3 s, and the access delay below 0.05 s. However, with 300 users,

the minimum download time grows above 0.3 s and the system cannot be optimized unlessWx
was raised to at least 0.44 s. Note also that the optimization with very small values of the access

delay (e.g., Dx = 0.05 s) can only be obtained by setting relatively long timeout and short DRX

cycle values (e.g., M = 64 and m = 9). With higher access delay bounds (e.g., 0.1–0.3 s), and

in cells with at most 100 users, the optimal timeout is the smallest possible, i.e., M = 2. In all

cases reported in Figure 6.13, the optimization suggests to use very large values for m (larger

6.10 Conclusions 197

 0

 20

 40

 60

 80

 100

1 10 20 50 100 150 200 300

O
p

ti
m

al
 e

N
B

 g
ai

n
 [

%
]

Nu

(6
4
,3

9
)

(2
,5

8
)

(2
,1

1
0
)

(2
,1

6
0
)

(6
4
,3

9
)

(2
,5

8
)

(2
,1

1
0
)

(2
,1

6
0
) (6

4
,3

9
)

(2
,5

8
)

(2
,1

1
0
)

(2
,1

6
0
) (6

4
,3

9
)

(2
,5

8
)

(2
,1

1
0
)

(2
,1

6
0
)

(6
4
,3

9
)

(2
,5

8
)

(2
,1

1
0
)

(2
,1

6
0
)

(6
4
,3

9
)

(8
,5

3
)

(2
,1

1
0
)

(2
,1

5
4
)

(6
4
,3

9
)

(6
4
,4

1
)

(2
,1

1
0
)

(2
,1

3
8
)

(-
,-

)
(-

,-
)

(3
2
,4

6
)

(3
2
,4

6
)

(a,b) = (M,m)
∗

cf = 1000

1/λr = 30 s

E[Np] = 39.476

Wx = 0.3 s, Dx = 0.05 s
Wx = 0.3 s, Dx = 0.1 s
Wx = 0.5 s, Dx = 0.2 s
Wx = 0.5 s, Dx = 0.3 s

Figure 6.13: Relative gain for different number of users, optimized over bounded download

time and access delay.

than 39). However, from Figure 6.10.b, it is clear that near-optimal gain can be obtained with

values of m as low as 20.

Lessons learned. Our cost and sensitivity analysis shows that significant power savings are

possible while users are guaranteed to experience high performance. In particular, we have

unveiled that the threshold timeout does not need to be excessively short in order to enable

a remarkable power save, e.g., using M = 256 turns into reasonable access delay (tens of

milliseconds). We also observed that using m = 20 is a very good tradeoff between power save

and access delay. In order to limit the download time, it is crucial to limit the number of active

users in the cell (to less than 350 users, which is reasonable for 3GPP LTE, 802.16 and HSPA

networks). What is also needed is to limit the web page size. In conclusion, we suggest that

enforcing a green attitude for web designers, in terms of reducing the web page size and the

number of embedded objects, would enable the cellular operator to use reasonable power save

parameters (e.g., m = 20, M = 256) and so achieve a dramatic cost economy at both base

station and mobile user sides, without any quality degradation.

6.10 Conclusions

In this chapter, we have shown how to model the activity of cellular users adopting the con-

tinuous connectivity model under realistic traffic conditions. To this aim, we used a G/G/1PS

queueing model, which has been validated through simulation. We first modeled the per-user

activity and evaluated the service share that the base station processor can grant to each user.

Thus, we have derived close-form expressions for busy and idle periods for each mobile user’s

connection. Second, we provided performance metrics and a cost model enlightening the im-

pact of traffic and power save parameters on quality and cost of transmission. Third, we pro-

vided a sensitivity analysis to figure out the impact of each model parameter on performance

and power consumption. Forth, we showed how to optimize the power save parameters to min-

198 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

imize the transmission cost under bounded access delay and page download time. Remarkably,

we showed that with the considered parameter settings up to 90% or more of the transmission

cost can be saved while preserving the quality of packet flows.

6.10 Conclusions 199

200 Chapter 6: Modeling Energy Consumption on Wireless Access Networks

7

OPEN PROBLEMS

7.1 Summary

In this chapter, we present a set of questions that we believe could be interesting research

opportunities. Some of these problems are derived from our studies and then they are partially

addressed; meanwhile others remain totally open.

Keyword 7.1 Optimization, control, quality of service, geographical locality, temporal locality,

delayed cache networks, q-LRU, Least Frequently Used (LFU), sensitivity analysis.

7.2 Optimization and control of cache networks

This last decade, optimization problems on cache networks have received considerable

attention and researchers focused on finding the optimal cache/content placement or location

within a network. However less has been done for the control of self-organizing caches or the

management of quality of service specially when caching is performed on-demand or on-path.

One of the claims of this thesis is that TTL-based caches are more flexible and fully configurable

than popular LRU, FIFO or RND caches. While the latter caches run a specific and rigid algorithm

that either always keeps the least recently used content, orders files according to their access

times, or manages files without distinction, TTL-based caches provide different parameters,

namely the TTLs, to decide which contents should be kept or discarded from the memory. Indeed

TTLs are control parameters which can be used for network optimization (e.g. by monitoring

the load on end-servers and adjusting their values), for service differentiation (e.g. by allowing

201

202 Chapter 7: Open problems

certain type of contents to be stored or discarded based on the applications), and even for

quality of service (e.g. by providing a minimum caching performance to users or End-to-content

paths).

In the remainder of this section, we formulate a general optimization problem on TTL-based

cache networks since TTL-based policies are more general than other classical replacement

policies. Then, we carefully identify the information that can be shared between customers and

cache network providers. And finally we address the cache selection problem that guarantee a

minimum quality of service on End-to-content paths.

7.2.1 General optimization problem on TTL-based cache networks

Here, we formulate a general optimization problem where clients and cache network providers

(network operators, content providers, or content distribution networks) sign a contract in or-

der to satisfy the total of utility of users. Later in Section 7.2.2 we will identified the key

information that could be in the terms of such a agreement.

Scenario considered. We consider an information-centric architecture represented by a bi-

partite graph G(U,V, E) where U is the set of users, V is the set of cache providers and E =

{(u, v) : u ∈ U, v ∈ V} is the set of all possible agreements between users and cache providers.

We denote by P(u) the set of cache providers who have signed a contract with user u and C(v)

the set of clients who registered to cache provider v.

We assume that each user u always requests the same file fu from a catalog F and that each

cache provider v manages a single cache of capacity Cv measured in number of files or chunks

it may store. Note this latter assumption is not so restrictive since the case of a user requesting

several files or a cache provider owning several caches can be easily accommodated by adding

a virtual user per file requested or a virtual cache provider per cache facility. We further assume

that each user has a utility function Uu (HP,u,v) which is a function of its hit probability; this

utility can be the delay, energy consumption, hit rate, bandwidth, etc... Moreover, requests

generated for each file (or equivalently by a user) may be described/approximated by renewal

processes whose inter-request times have an exponential distribution (i.e. Poisson processes), 2-

stage hyper-exponential distribution (i.e. Interrupted Poisson processes) or shifted-exponential

distribution [95]. Since miss streams of TTL-based caches are also renewal processes under the

latter assumption, the formulation of this problem remains valid for caches within a network.

Log-concave utility function. We showed in Chapter 4 that the hit probability HP,u,v is an

increasing function of the TTL value Tu,v that file fu receives from the cache provider Cv which

is maximized when Tu,v is constant (resp. hyper-exponentially distributed) when the CDF Fu(t)

is concave (resp. not concave) under our renewal traffic assumption. Therefore, we will express

7.2 Optimization and control of cache networks 203

the utility function Uu (HP,u,v) directly in function of the control parameter Tu,v i.e. Uu (Tu,v).

Our objective is to find the optimal configuration {T∗u,v = E[Tu,v], u ∈ C(v)} that maximizes the

total utility of users.

Without loss of generality, we focus on a single cache provider. We omit the subscript v

that refers to the cache label in the variables and functions previously introduced. Hence the

user utility function Uu(.) depends on the expected TTL Tu and assuming |U| = |F | = N, we

formulate our optimization problem as follows.

7.1 Definition (Optimization problem)

max
T1,...,TN

N∑

i=1

Ui(Ti) (7.1)

subject to

N∑

i=1

λi (1−HP,i(Ti))Qi = C, (7.2)

N∑

i=1

λi (1−HP,i(Ti)) Ti ≤ C, (7.3)

N∑

i=1

λiTi ≥ C (7.4)

where λi is the request rate of user i, Qi is the expected sojourn time of file i in the cache, and

HP,i(Ti) is a known function of Ti.

For TTL-non-renewing caches we have Qi = Ti, while for TTL-renewing caches Qi =

E [Ti 1(Xi > Ti)] + E [(Xi+Qi) 1(Xi < Ti)].

Our objective in (7.1) is to maximizes the total utility by finding the optimal vector (T1, . . . , TN).

The equality constraint in (7.2) is related to the total occupancy of files which should be equal

to the cache size in average :
∑N
i=1OP,i = C, where OP,i = Qi

E[Yi]
and E[Yi]

−1 = λi(1 − HP,i) is

the average inter-miss times by renewal theory.

The inequalities in (7.3) and (7.4) say that {Ti}i cannot take any positive values and they are

derived as follows. By definition Ti ≤ Qi and also λi(1−HP,i)Qi = OP,i, we get λi(1−HP,i)Ti ≤
OP,i ≤ λiTi. The last inequality follows from the fact that the average number of file i in the

cache cannot exceed to the total number of request of file i during Ti. (7.3) and (7.4) are

derived by summing over all files the inequalities on the occupancy probabilities.

Note that if one assume Ti = T,∀i and denote by Λ =
∑
iλi (resp. MR =

∑
iλi(1 − HP,i))

the total request (resp. miss) rate, (7.3) and (7.4) give the following bounds for values of T

C

Λ
≤ T ≤ C

MR

204 Chapter 7: Open problems

The latter inequalities explain that T cannot be zero and an increase of its value increase its

upper bound until the total miss rate MR becomes zero. In this case, the occupancy OP,i and

the hit probability HP,i are both equal to one. This implies the cache size should be C ≥ N than

the number of files. To avoid this trivial case, we further assume N > C.

7.2.2 Cache selection problem: case of minimum quality of service guaranteed

In this section, we discuss the terms of an agreement when a client (user or cache) decides

for data plan with one or several cache provider(s). First we identify the information that can

be shared among the two parties; and we propose a dynamic cache selection algorithm that

guarantees a minimum QoS to the client.

Which information can be shared?

In our scenario, clients and cache providers sign a contract; however, they do not necessary

want to disclose information about their uses or infrastructure that they may consider as private

or confidential. Our agreement is described as follows.

1. A user who subscribes for a cache plan may not want to give information about its daily

activity (because he does not know a priori). This information can be translated in terms

of its request rate. However, the request rate is important for the cache provider who

may want to grab several users to maximize its profit with a small expenditure on cache

facilities. Hence, a cache provider and a client may then agree on the maximal request

rate λu allowed.

2. A cache provider usually considers that any information about its infrastructure (e.g. the

maximal bandwidth Bmax on their network, cache size C) cannot be disclosed for security

reasons and thus not available to clients whose main concerns are about the quality of the

service they will experience. Meanwhile, they have to provide some useful information

that helps clients to decide and go for a cache plan with them. Cache provider may

advertise the type (i.e. TTL-renewing or TTL-non-renewing) and the minimum expected

TTL value Tmin of the cache in terms of the contract.

3. Finally, the cache service can be priced based on the occupancy OP,u of file fu in the

cache which is a non-trivial function of the maximal client request rate λu.

Note that the value Tmin can be computed for any cache replacement policy as the ratio of the

cache capacity C and the maximum bandwidth available Bmax on the link:

Tmin =
C

Bmax
.

7.2 Optimization and control of cache networks 205

On contrary to the cache capacity and the maximum available bandwidth, the information Tmin

is less sensitive, it can be estimated on fly and thus it can be disclosed. At the same time, a cache

provider v will be able to predict the number of users they might still grab without damaging

the user experience or the current quality of service that its users receive. Given the maximal

client request rate λu, an estimate of the current minimum expected TTL value Tv can be found

with the following equation:

Tv,min =
Cv∑

u∈C(v)λu
.

Moreover, a client can easily estimate–without being aware of the traffic from other clients–the

value of its utility function by computing the minimum hit ratio HP,u,v(Tv,min) guaranteed by

the cache provider. For end-users whose inter-request times have a concave CDF F(t), if the

cache provider adopts deterministic TTLs (which is the optimal caching strategy in this case)

then the minimum hit ratio are given by

HLRU
P,min = F(Tmin) For TTL-renewing caches (7.5)

HFIFO
P,min =

M(Tmin)

1+M(Tmin)
For TTL-non-renewing caches (7.6)

where F(t) is the CDF of inter-request times andM(t) is the renewal function associated to F(t).

M-QCSA: “Minimun QoS-based” Cache Selection Algorithm The user utility function is

defined by the minimum QoS guaranteed i.e. the user selects the cache provider who ensures

the best minimum level of hit probability. In fact, a client simply selects the cache that provides

the best minimum expected TTL value Tmin and he can be sure to get the best minimum quality

of service. We can easily think about a simple scenario where cache servers initially send Tmin

to their clients and later update this value with the current minimum characteristic time they

have estimated based on their current load.

Algorithm 10: M-QCSA

input : MinExpectedTTL {Tv,min, v ∈ P(u)}

output: BestProvider v∗

1 while Request on client u do

2 Check current min. expected TTL {Tv,min, v ∈ P(u)};

3 v∗ Select server←−−−−−−−−− arg maxv∈P(u) {Tv,min};

4 end

It might happen that several clients have selected the same cache, this is actually an ad-

vantageous situation for the cache provider (minimal number of resources for huge revenue

206 Chapter 7: Open problems

in terms of number of clients). Clearly clients would get a minimal performance while other

caches could provide better, but we recall that our aim is to guarantee a minimum QoS formu-

lated in the agreement.

7.2.3 Perspectives on optimization and control

The optimization problem (7.1–7.4) is defined for each cache; hence, a distributed algo-

rithm can be used to solve this problem at each cache of the network. If the M-QCSA is a simple

algorithm that helps the client to select a cache based on the minimum QoS guaranteed, this

algorithm can be implement at nodes of a network to build minimum-guaranteed QoS End-to-

content paths. It remains to prove that optimizing utility locally at each cache leads to global

optimum or sub-optimum at network level.

7.3 Modeling the geographical locality in cache networks

Cache network optimization is of a particular interest when accounting for the geographical

popularity of contents and the physical deployment of caches (e.g. at base stations of mobile

networks). The main goal is to minimize the average miss probability on cache deployed in a

geographical area. We refer to this objective as the geographical locality problem.

7.3.1 Geographical locality problem statement

We consider an area with a set of users U requesting files from a catalog F which can be

accommodated in a set of TTL-based caches V deployed according to some general independent

stationary point processes {Rv, v ∈ V} with finite intensities {λv, v ∈ V} respectively. Without

loss of generality, user u always requests the same file fu which is divided into mu chunks of

equal size.

We assume that chunks of all files are requested according to popularity distribution {qu,k, u ∈
U, 1 ≤ k ≤ mu}. Moreover, a cache v of size Cv which is located within a vicinity of radius ru
from user u can stored at most nu,v chunks of fu such that nu,v ≤ mu and C =

∑
v∈VCv <

M =
∑
u∈Umu. We denote by N (u) the subset of caches in the neighborhood of user u which

contains any cache v located at a distance d(u, v) ≤ ru. Once added into cache v, the k-th

chunk of file fu receives a TTL Tv,u,k which is a random variable having a CDF Tv,u,k(t). We re-

call that the expected TTL value E[Tv,u,k] ≈ τv at cache v can be obtained by applying either the

characteristic time approximation (of LRU, RND or FIFO caches for example) or just assigned

by the cache provider such that the capacity constraint is satisfied.

Our objective is to calculate the miss probability Qu(ru) of user u on file fu within an area

of radius ru; and latter, we also aim at finding the optimal number of caches xu and also the

7.3 Modeling the geographical locality in cache networks 207

expected TTL values Tv,u,k that minimize our metric of interest.

7.3.2 Geographical locality model

First we note that user u may not be able to download its file fu

(c1) if the number of caches Nu = |N (u)| is such that

∑

v∈N (u)

nu,v < mu;

(c2) otherwise a chunk of file u is no more available in the cache (i.e. its TTL expired).

In the following, we will only consider that if (c1) is not satisfied, the file can be downloaded

with probability one. In fact, the analysis can be easily extended to account the expiration

condition (c2) just by calculation the conditional miss probability.

Let us define the indicator function ∆v(ru) = 1 (d(u, v) < ru) for (u, v) ∈ U × V . In other

words, ∆v(ru) = 1 if cache v covers an area where user u is located and ∆v(ru) = 0 otherwise.

Define ZV(ru) as the number of different caches whose coverage area overlap such that user u

is located in their intersected area. We have:

ZV(ru) =
∑

v∈V
∆v(ru) (7.7)

By definition Nu = ZV(ru); therefore the miss probability Qu(ru) of user u follows directly

from Condition (c1) and (7.7)

Qu(ru) = P

(∑

v∈V
∆v(ru)nu,v < mu

)

(7.8)

The average miss probability Q of the cache network is given by

Q(r) =
∑

u∈U
quQu(r), where, we define qu =

mu∑

k=1

qu,k (7.9)

Since cache v is deployed independently of others according to the process Rv, the variable

∆v(ru) is a Bernoulli random variable with parameter pv(ru) = λ−1
v

∫ru
r=0

P(d(v0, v) > r)dr

where d(v0, v) is the distance between any two points of the stationary process Rv. The distance

d(u, v) can be seen as the forward recurrence point of Rv.
It follows from (7.7) that ZV(ru) is the sum of independent Bernoulli random variables

∆v(ru); therefore, ZV(ru) is a Poisson-Binomial random variable with parameters {pv(ru), v ∈
V}. We established in Proposition 2.2 a necessary and sufficient condition µV(ru) = E [ZV(ru)] <

208 Chapter 7: Open problems

∞ under which the random variable ZV(ru) converges almost surely. Then Propositions 2.3, 2.4

and 2.5 provide several approximations of the CDF of ZV(ru) under specific conditions.

Note in the current formulation of the geographical locality problem, there is no restriction

on the number of chunks mu of file fu and the number of chunks nu,v that can be stored in

cache v. These quantities might be also random variables as well (e.g. mu and nu,v could be

exponentially distributed).

However, in the remainder we assume that mu and nu,v are constant; moreover, nu,v =

nu,∀v ∈ V . In this case, (7.8) reduces to

Qu(ru) = P (ZV(ru) < xu) , xu =
⌈mu

nu

⌉

(7.10)

In the next two sections, we will find the probability Qu(ru) when the caches are deployed

according to (i.e. {Rv, v ∈ V} are) Poisson processes. The results generalize easily to hyper-

exponential (resp. hypo-exponential or shifted-exponential) renewal processes described in

Section 2.7.3 of Chapter 2.

7.3.3 Caches are deployed with same rate: single cache provider

In this case, we assume the intensity of Rv is Poisson point process with rate λv = λ,∀v ∈ V .

One can show that the series µV(ru) diverges as |V | goes to infinity, and thanks to Proposi-

tion 2.5 ZV(ru) may be approximate by a deterministic function µV(ru) such that it exists a

minimal radius r(0)u which satisfies

µV(r
(0)
u) = xu and Qu(ru) = 1,∀ru < r(0)u

However, when |V | is finite the random variable ZV(ru) has a Binomial distribution with pa-

rameters {|V |, p = 1 − eλru }. Bounds of the miss probability Qu(ru) are then obtained from

Hoeffding’s inequality, Chernoff’s inequality or classical results by Arratia and Gordon [9], and

Feller [36].

7.3.4 Caches are deployed with modulated rates: multiple cache providers

We are interest in the situation where caches are deployed by a single provider with rates

modulated by the number of caches already added or each provider puts one cache with a rate

that depends on the number of providers already installed.

In this case, the intensity of Rv is λv = v−α, α > 0 (Zipf distribution), λv = ρv, ρ > 0

(Geometric distribution), λv = ce−δvβ , c, δ, β > 0 (Light-tail distribution), or λv = φ(v) where

φ(.) is a positive and decreasing function ∀v ∈ V .

We established in Sections 2.7.1 and 2.7.2 of Chapter 2 main results on the convergence

and the approximation of the probability Qu(ru) = P (ZV(ru) < xu)

7.4 Accounting for temporal locality in cache networks 209

7.3.5 Perspectives on geographical locality aware caches

The remainder on this work may consist in the derivation of approximate expressions of

the miss probability Qu(ru) that would ease the approximation of the average miss probability

Q defined in (7.9), and also facilitate question of finding the number xu which minimizes our

metrics of interest.

7.4 Accounting for temporal locality in cache networks

In this section, we address the problem of performance evaluation of cache networks under

non-stationary request traffic. We focus on cache running the Least Recently Used policy. Little

work [20, 4, 94] has been done in this subject although it is commonly agreed that users

behaviors/request are not stationary over the time (day/night, week day/weekend activities

periods).

Following our effort in Chapter 2, we provide conditions of validity of the characteristic time

approximation of LRU caches when requests are described by Cox processes or doubly stochas-

tic Poisson processes. This results provides a theoretical foundation of experiments conducted

in [4] on LRU caches where requests are described by special cox processes. Note that Cox pro-

cesses is a class of non-stationary processes which generalizes the Markov-modulated request

rate model of Carofiglio et al. [20] and the Shot Noise Model (SNM, i.e requests are described

by non-homogeneous Poisson processes with time-varying rate) of Traverso et al. [94].

7.4.1 Non-stationary workload and cache models

We consider a catalog of N different files labeled n ∈ 1, . . . ,N. Successive requests for

file n follow a non-stationary Cox point process Rn := {tni }i≥1 with stochastic rate process

{λn(t), t ≥ 0} such that the average value of the intensity function exists and is equal to some

constant, call it

λavgn = lim
t→∞

∫ t

0

λn(s)ds
t

, with probability 1.

We denote by tni (i ≥ 1) is the occurrence time of the i-th request of file n after origin time o = 0

(the analysis derived later easily generalizes when the origin is chosen o > 0). Throughout we

will assume that the expected time E[tn1] is finite for each file n, so that the CDF of the first

request to file n after time t = 0 is given pn(t) = P(tn1 < t) by

pn(t) = 1− E
[

e−
∫t
0
λn(u)du

]

.

210 Chapter 7: Open problems

7.4.2 Limit behavior of LRU caches under Cox request processes

Define the indicator function Xn(t) = 1 if the file n is requested within [0, t) and Xn(t) = 0

otherwise; and the counting process MN(t) =
∑N
n=1Xn(t). One can check that Proposi-

tions 2.2, 2.3, 2.4 and 2.5 of Chapter 2 still hold.

Since Proposition 2.2 establishes the deterministic limit ofMN(t) and thus that of TB,Nwhen

the expected value µN(t) of MN(t) diverges, we investigate here the remaining case i.e. when

µN(t) converges and we establish sufficient conditions for such deterministic behavior holds.

The process Rn is still a Cox process with a non-negative intensity rate function λn(t). We

denote by Λn(t) =
∫t
0
λn(u)du and we assume Λn(t) < ∞ for t ∈ [0,∞) (i.e. no explosions).

One can show the following result.

Proposition 7.1 (Convergence and Approximation for Cox processes) If the rate of the ag-

gregated process R defined as rN(t) =
∑N
n=1λn(t) converges to r(t), then the mean µN(t) con-

verges and it is bounded by E[
∫t
0
r(u)du] as N goes to infinity and for any finite t > 0.

Moreover, if λn(t) = λ(t)φ(n) where φ(x) is a positive and decreasing function on [0,+∞), the

rate r(t) and the mean sN(t) can be approximated by r̂(t) and µ(t) respectively with an error

bound 0 ≤ µ∞(t) − µ(t) ≤ ǫ1(t) given as following

r̂(t) = λ(t) ×
∫∞

1

φ(x)dx (7.11)

µ(t) =

∫∞

1

(1− Wt(−φ(x)))dx , ǫ1(t) =

∫1

0

(1− Wt(−φ(x))) dx (7.12)

where Wt(x) = E
[

exΛ(t)
]

is the moment generating function of Λ(t) =
∫t
0
λ(u)du.

Proof Given that {λn(t)}n are non-negative random variables at time t, the intensity rate

rN(t) =
∑N
n=1λn(t) of the aggregated process R is an increasing non-negative sequence. By

the Kolmogorov’s 0 − 1 law, rN(t) converges almost surely. Assuming that rN(t) converges to

r(t), it follows from the Monotone Convergence Theorem that E[rN(t)] converges to E[r(t)].

Having this in hand, we can easily show that the first moment of MN(t) converges. Since

1− e−Λn(t) ≤ Λn(t), it follows that pn(t) ≤ E[Λn(t)]. Hence,

µN(t) ≤
N∑

n=1

E[Λn(t)] = E

[

N∑

n=1

∫ t

0

λn(u)du

]

= E

[∫t

0

rN(u)du

]

−→N↑∞ E
[∫t

0

r(u)du

]

.

If we assume also that λn(t) = λ(t)φ(n) where φ(.) is a positive and decreasing function on

[0,+∞), we can show that

r(t) = λ(t)
∑

n≥1
φ(n) ≈ r̂(t) = λ(t)

∫∞

1

φ(x)dx

7.4 Accounting for temporal locality in cache networks 211

and

pn(t) = 1− E
[

e−φ(n)
∫t
0
λ(u)du

]

= 1− E
[

e−φ(n)Λ(t)
]

= 1− Wt(−φ(n)), (7.13)

µN(t) =

N∑

n=1

1− Wt(−φ(n)) ≈ µ(t) =

∫∞

1

(1− Wt(−φ(x)))dx (7.14)

0 ≤ µ∞(t) − µ(t) ≤ ǫ1(t) =

∫1

0

(1− Wt(−φ(x))) dx (7.15)

The series-integrals approximation in (7.14)) holds since 1− Wt(−φ(x)) is decreasing.

The function φ(x) defined in Proposition 2.14 and 7.1 has the following properties.

Remark 7.1 (The rate modulating function φ(n)) If the function φ(x) is a positive and mono-

tonically decreases in [0,+∞), then the aggregated rate
∑
nλn or

∑
nλn(t) converges; therefore,

results in Propositions 2.14 and 7.1 hold respectively. Moreover, (7.12), (7.13) and (7.15) also

hold if Λn(t) =
∫t
0
λn(u)du = Λ(t) × φ(n).

Remark 7.2 (Non vanishing rate) If the rate λn = φ(n) does not vanish at∞ or the stochastic

rate λn(t) (resp. Λn(t) =
∫t
0
λn(u)du) is a sample of a random variable λ(t) (resp. Λ(t)), the

term pn(t) = 1− e−φ(n)t in the former case or the term pn(t) = 1− E
[

e−Λn(t)
]

in the latter case

does not converge to zero. Hence µN(t) diverges and Proposition 2.5 hold.

LRU caches under Shot Noise Model (SMN)

Another interesting case where the characteristic time approximation was shown to be ac-

curate is the analysis of LRU caches under a generalized SNM assumption [4]. The authors

considered that the request process Rn is a non-homogeneous Poisson process with a time-

varying rate function λn(t) = Vn× λ(t − dn) where Vn (the volume of requests related to file

n) is a sample of a random variable V having a moment generating function V(x) = E
[

exV
]

and dn (the instant at which the file n is introduced in the catalog) is a uniform variable within

[0, t) (with a CDF D(t) = P(dn < t)) for all 1 ≤ n ≤ N. The aggregated request process R they

obtained is special Cox process with intensity rate rN(t) =
∑N
n=1Vn× λ(t− dn). We have

pn(t) = P(Xn(t) = 1) = P(Xn(t) = 1, dn < t) =

∫ t

x=0

{
1− V

(

−

∫t

u=x

λ(u − x) du

)}
dD(x).

So pn(t) does not depends on n and it is equals to a value p(t). We can also write pn(t)(1 −

pn(t)) = p(t)(1− p(t)) with 0 < p(t)(1 − p(t)) < p(t) < 1. It follows that the mean µN(t) and

variance σ2N(t) diverge as N ↑ ∞ since their general terms do not converge to zero. Therefore

Proposition 2.5 applies and the approximation of TB,N the characteristic time by a constant tB,N
is very accurate since c2N(t) and γN(t) vanish by the inequalities (2.8) and (2.9). This provides

the theoretic foundation of the characteristic time approximation performed in [4].

212 Chapter 7: Open problems

Markov-Modulated Rate Process with Zipf popularity

In [20], the authors assume that there are N classes of contents and each class contains K

identical content items. The request process Rn on the class n is a Poisson process with rate

λn = λcn−α where α > 1, c > 0 and λ is the rate of the aggregated request process R. The

content item k of the class n to be requested is chosen uniformly at random (i.e. the corre-

sponding request process Rn,k is a Poisson process with rate λn,k = λn/K). Each content item

k is divided into a geometric number C of chunks with mean κ. A request on a content item k

corresponds to the request of its first chunk, and the chunk request rate is a constant ρk equals

to the inverse of the virtual round trip time to get (i.e. the time it takes to download) a chunk

of the content item k. The rate ρk is identical for any content item of the same class, hence we

shall substitute the subscript k by the index of the corresponding class n.

The request process Rn on the class n is a Markov-Modulated Rate Process (MMRP) [20]

where the inter-request time τn of contents in the class n is exponentially distributed with rate

λn. During the time τn, we can distinguished two periods: (1) the ON-period having a length

equals to Cρ−1
n where C is the geometric number of chunks of the requested content and (2)

the OFF-period which corresponds to the time since the last chunk of the previous content was

requested to the instant of request of the first chunk of the next content. Note that, both the

ON-period and the OFF-period are exponentially distributed with the rates αn = ρnκ
−1 and βn

respectively such that

α−1
n + β−1

n = λ−1
n (7.16)

They assumed a large cache i.e. B = δN, 0 < δ < 1. Given their settings, it is easy to prove

the accuracy of their result [20, Proposition 5.1] which states that the miss probability of a

content item k in class n is e−λ
K
ck−αtB,N where tB,N is a constant (actually an approximation of

cache characteristic time). This result was first established by [57] with different arguments. In

fact, we note that the Riemann series
∑
nλn converge since α > 1. By proposition 2.14, µN(t)

converges and we can approximated MN(t) by its mean µN(t). The cache characteristic time

TB,N may be approximated by the root of the following µ∞(tB,N) = B or approximated by the

closed-form expression tB,N = NαΨ−1(δ) + o(Nα) as in Section 2.7.2.

Generalized Shot Noise Model (GSNM): 2-state Cox request processes

On contrary to [20] where it was assumed that the request process Rn on the class n is

a Poisson process, we consider that Rn is the superposition of K request processes {Rn,k}Kk=1.
The request process Rn,k of the k-th content item in the class n is a special Cox process with a

stochastic request rate λn,k(t) = ρn,k×χn(t) where ρn,k is a mark that captures the randomness

7.4 Accounting for temporal locality in cache networks 213

of the virtual round trip time [20, Observation 4.2] and {χn(t)}t is a 2-state continuous time

Markov chain having a state space {0 = OFF, 1 = ON} with transition rates βn from state 0 to

state 1 and αn from state 1 to state 0 respectively. The processes R and Rn are Cox processes.

Note that if the Markov chain {χn(t)}t has only one state, say state 1, and χn(t) is a deter-

ministic function of time, we retrieve the SNM of [4]. If in addition, we set ρn,k = 1 the process

Rn,k reduces to the non-homogeneous Poisson process with time varying rate of [94].

Let us introduce the following Bernoulli event χn(t) associated to the state of the Markov chain

and we denote by qn(t) = P(χn(t) = 1). We have

qn(t) = E [χn(t)] =
βn

βn+ αn
+

αn

βn+ αn
e−(αn+βn)t.

We assume that the K content items in each class n have identical round trip times i.e. {ρn,k}n,k

only depends on the network queuing delay and thus they are samples of a random variable ρ

having a moment generating function V(x) = E[exρ].

The total request rate rN(t) of the aggregated process R is given by

rN(t) =

N∑

n=1

K∑

k=1

λn,k(t) = Kρ

N∑

n=1

χn(t) (7.17)

This rate rN(t) converges almost surely if and only if the series
∑
nqn(t) converge. In fact,

rN(t) can be written as the sum of Bernoulli events {χn(t)}n as in Eq(7.17). By Proposition 2.2,
∑
nχn(t) converges almost surely if and only if the series

∑
nqn(t) converge. In this latter

case, qn(t) →n↑∞ 0 i.e. it exists a class with a rank n0 such that for any class n having a rank

n ≥ n0 the Markov chain {χn(t)}t has an absorbing state at χn(t) = 0 (= OFF). The existence

of this absorbing state means that items of classes {n ≥ n0} are never requested. A sufficient

condition on rates αn and βn such that the series
∑
nqn(t) converge is

α−1
n + β−1

n = ω(1/n−α). (7.18)

Note that the latter condition (7.18) is similar to (7.16) needed in [20, Proposition 5.1]. Since

the convergence of rN(t) implies that of µN(t) = E[MN(t)] by Proposition 7.1, the convergence

of MN(t) follows from Proposition 2.2.

We denote by Q(t) the sum of the series
∑
nqn(t) when (7.18) holds. Using the equality

Λn,k(t) =

∫ t

0

λn,k(u)du = ρ×
∫t

0

χn(u)du,

one can show that

pn,k(t) = qn(t) (1− V(−t)) (7.19)

µN(t) =

N∑

n=1

K∑

k=1

pn,k(t) = K (1− V(−t))

N∑

n=1

qn(t) −→N↑∞ µ(t) = KQ(t) (1− V(−t))

(7.20)

214 Chapter 7: Open problems

since

1− pn,k(t) = E
{
E
[

e−
∫t
0
λn,k(u)du|ρ

]}
= E

[

1− qn(t) + qn(t)e
−ρt
]

= 1− qn(t)E
[

1− e−ρt
]

.

Finally, the cache characteristic time TB,N may be approximated by a constant tB,N solution of

the following fixed point equation

µ(tB,N) = B i.e. K (1− V(−tB,N)) = B/Q(tB,N).

7.4.3 Perspectives on temporal locality aware caches

If performance metrics of caches under doubly stochastic Poisson processes can be addressed

using results [4] or following the Ross’s analysis of non-stationary queues (see Ross’s conjec-

ture [84]); the question that remains open is the characterization of the miss stream of a cache

under our non-stationary generalized shot noise model in order to provide new insights on

cache networks.

7.5 Delayed cache networks

Delays are usually studied as objective (i.e. minimize a delay function) or constraints of

optimization problems (see Section 7.2.1). However it is not well understood how they mod-

ified the request processes within network. Most of cache network models [23, 82, 41, 42]

including our TTL-based model consider that processing times and delays are negligible; hence

they assume instantaneous transmission. If this assumption eases the calculation, it is not well

explained how existing models could be extended to account delay in cache networks.

In this section we show how our TTL-based model can easily be extended for more realistic

scenarios accounting for non-zero delays and we describe a delayed TTL-based model that

could be use to analyze delayed cache networks.

7.5.1 Delay as a Bernoulli random variable

A slight modification of our zero-delay TTL-based model to account for transmission delay

can be described as follows. When a cache miss occurs on file n, the file is successfully retrieved

(i.e. not lost) and instantaneously downloaded into the cache with a probability dn as shown

in Figure 7.1. Assuming renewal request processes, once can easily show that miss streams are

also renewal processes where inter-miss times are of two types.

7.5.2 Delay as a continuous random variable

We consider that upon a cache miss, it takes a random durationDn to retrieve file n from the

server. Requests that occur during Dn are not forwarded and not replied until file n becomes

7.5 Delayed cache networks 215

hit miss

time

m
n
1

τ
n
i

file n in cache with prob. dn

τ
n
1

m
n
0

inter-miss time ϑ
n
1

tn
0 . . . t

n
it

n
1 t

n
i+1

T
(i)

B,n

T
(2)

B,n
T

(1)

B,n

Figure 7.1: A delayed TTL-based cache, delay on file n as Bernoulli rv of parameter dn.

available in the cache as illustrated in Figure 7.2. Assuming that requests are described by a

m
n
1

τ
n
i

m
n
0

inter-miss time ϑ
n
1

tn
0 t

n
i+1

T
(i)

B,n

T
(1)

B,n

file n in cachedelay

time

hit miss

delayed

t
n
it

n
i−1

Dn Dn

Figure 7.2: A delayed TTL-based cache, delay Dn on file n as continuous random variable.

renewal process, the miss process is also a renewal process. Moreover the metrics of interest,

the distribution of the generic inter-miss time ϑn1 , and the extension to cache network are

obtained from straightforward calculation.

7.5.3 Perspectives on delayed cache networks

It can be reasonable to consider a per-hop delay i.e. define a delay between a cache and

each of its neighbors. However the appropriate distribution of the delay is still unknown. We

believe performance of delayed cache networks can be significant contribution with respect to

the zero-delay models studied in this dissertation and existing work.

216 Chapter 7: Open problems

7.6 On design of cache networks

7.6.1 q-LRU, LFU and mixed TTL-based policies

q-LRU and LFU policies The q-LRU policy behaves as LRU policy but it adds a file into the

cache upon a cache miss with a probability q. Caches running the q-LRU replacement policy

can be study using the TTL-based model described in Figure 7.1. The performance metrics and

the characterization of the miss stream of a caches running the Least Frequently Used (LFU)

can be deduced from that of q-LRU caches by letting q→ 0. This results was proven by Martina

et al. [72]; therefore we can derive the analysis of general and heterogeneous cache networks

where caches may run LRU, q-LRU, FIFO, RND, and LFU replacement policies.

Mixed TTL-based policies A slight extension of TTL-based caches is obtained by combining

the behavior of TTL-based renewing caches and that of TTL-based non-renewing caches as

follows. Upon a cache miss, the TTL is always initialized and when a cache hit occurs the TTL

is reset with a probability r. If the request arrival process is a renewal process, the analysis of

this modified TTL-based cache can be easily derived by considering a TTL renewing caches fed

by requests described by the thinned-renewal request process [52] resulting from the Bernoulli

thinning with parameter r of the original request process.

7.6.2 Cooperative caching strategies

Several meta-algorithms for hierarchical Web caches has been proposed in [67]; these algo-

rithms may be extended to general and heterogeneous cache networks since requests are routed

as polytrees. Their analysis becomes more easier as shown by Martina et al. [72] for tree-based

network topology where requests flow in same direction i.e. from leaves to the root. The main

hint is to translate a network caching strategy on simple caches into a simple caching strategy

(where contents are stored everywhere) on probabilistic TTL-based caches. One can also study

general and heterogeneous cache networks with heterogeneous caching strategies i.e. where

several cooperative caching strategies are deployed at different levels of the networks (e.g. at

core/edge or leaf/intermediate/root caches).

7.6.3 Sensitivity analysis of performance metrics

The impact of parameters (e.g. the topology, number of caches, cache sizes, cache replace-

ment policies, etc.) on performance metrics of cache networks are not well understood and

not yet deeply addressed in the literature. Sensitivity analysis such as the one performed in

Section 6.8 of Chapter 6 could provide clear insights for the design of cache networks.

7.7 Conclusion 217

7.7 Conclusion

In this chapter we clearly formulate two problems we believe can lead to significant contri-

butions in the networking community but also that could be of a particular interest for indus-

trial. The optimization and control of cache networks where caching is done on-demand and

on-path appears simple thanks to our TTL-based caches. Also fine grain performance evaluation

of geographical and temporal aware cache networks can be easily held within our TTL-based

framework. The direct consequence of relying on our programmable TTL-based caches is that

all results apply to popular replacement policies such as LRU, q-LRU, RND, FIFO, and LFU.

However, there are other concerns which are not presented in this chapter. For instance, (i)

the temporal locality problem due to non-stationary traffic patterns, (ii) the non-zero delay

problem akin to congested links, and (iii) sensitivity analysis of performance metrics in cache

networks are issues yet to be addressed.

218 Chapter 7: Open problems

8

CONCLUSIONS

In this dissertation, we presented new models for performance evaluation of general cache

networks and Power save analysis in wireless access networks. These models provide solutions

and tools to adapt users needs/behaviors, to better design core and access networks, to opti-

mize future technologies, to control quality of service, to improve quality of experience, and to

predict states in content-oriented and wireless networks.

Our initial concern was about moving contents close to mobile or fixed users by the mean

of on-demand caching in the networks. First, we generalized the well-known concept of

expiration-based policy and we defined general Time-To-Live (TTL)-based caches. We showed

that caches running popular replacement policies such as LRU, RND and FIFO asymptotically

behave as TTL-based caches when they are fed by general stationary request processes. This

leads us to see LRU, RND, FIFO and other variants as existing implementations of TTL-based

caches; moreover, we propose Pra-TTL caches as a general and feasible practical deployment

of TTL-based caches. Second we provide a unifying framework for the exact performance eval-

uation of general and heterogeneous TTL-based cache networks where requests are correlated

and described by Markov-renewal processes. Our framework is built on top of the Theory of

Geiger Counters and Markov-renewal theory in one hand, and also on the translation of net-

work primitives (resp. multiple arrivals and multiple destinations) into well-known operations

on processes (resp. superimposing and dependent-thinning of request processes) in the other

hand. We studied three valid application cases for our theoretic findings. In the first case

study, TTL-based caches are proposed to be deployed as cache replacement policy on routers of

Content-Centric Networks. In the second case, TTL-based caches are used to model the behav-

ior of DNS caches that override the timer marked on resource records by authoritative servers.

Finally, we derive TTL-based model of general networks made of LRU, FIFO and RND caches.

219

220 Chapter 8: Conclusions

In all these applications, we assume that requests were described by renewal processes and we

found that our framework accurately predicts all metrics of interest with general relative errors

of order of 5–20% in all the scenarios we tested.

The other issue we addressed in this thesis was about the energy balance in next generation

wireless access network. We focused the situation where users are continuously connected to

base stations (or eNBs) and access contents according to general stationary request processes.

Our energy cost and sensitivity analysis shows that significant power save can be achieved while

users are guaranteed to experience high performance. More precisely, we found an optimal

configuration of parameters of DRX power saving protocols that leads to a very good tradeoff

between power save and access delay. Our studies also provide some recommendations for

both network operators and content providers: the number of active users in the cell should

be less than 350 users at least for 3/4G mobile networks such as 3GPP LTE, 802.16 and HSPA;

and web/applications designers should adopt a green attitude which consists of reducing the

web page size and the number of embedded objects. Remarkably, we showed that with the

considered parameter settings one can achieve a dramatic cost economy i.e. up to 90% or more

of the transmission cost at both base station and mobile user sides while preserving the QoS.

Finally, thanks to our TTL-based caches we formulated few problems yet to be addressed

and that we believe could be significant contributions in the networking research community.

These problems are described more realistic conditions such geographical and temporal locali-

ties of request processes, delays due to congestion, control and optimization in cache networks.

We also believe that a sensitivity analysis of cache network performance may help to better

understand how our metrics of interest are impacted by input parameters. Such analysis could

help to find the optimal network topology and cache settings with respect to traffic patterns.

Definitely TTL-based cache networks are far to be fully understood although a huge effort have

been done here to evaluate their performance; however they remains an exploratory area of

new scientific contributions.

221

222

BIBLIOGRAPHY

[1] 3GPP TS 25.214. Physical layer procedures (FDD), release 8, v8.9.0, March 2010. 175

[2] 3GPP2 C.R1002-B v1.0. CDMA2000 evaluation methodology - Revision B, Dec. 2009.

xvii, 178

[3] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A survey of

information-centric networking. IEEE Communications Magazine, 50(7):26–36, July 2012.

75, 128

[4] M. Ahmed, S. Traverso, P. Giaccone, E. Leonardi, and S. Niccolini. Analyzing the per-

formance of lru caches under non-stationary traffic patterns. CoRR, abs/1301.4909, Jan.

2013. 7, 16, 18, 209, 211, 213, 214

[5] S. Albin. Approximating a point process by a renewal process, II: Superposition arrival

processes to queues. Operations Research, 32(5), Sept. 1984. 11, 133, 149, 158, 164, 166,

167

[6] J. Almhana, Z. Liu, C. Li, and R. McGorman. Traffic estimation and power saving mecha-

nism optimization of IEEE 802.16e networks. In Proc. of IEEE ICC 2008, pages 322–326,

Beijing, China, May 2008. 9, 174

[7] S. Alouf, E. Altman, and A. Azad. M/G/1 queue with repeated inhomogeneous vacations

applied to IEEE 802.16e power saving. In Proc. of ACM SIGMETRICS 2008, volume 36 of

Performance Evaluation Review, pages 451–452, Annapolis, Maryland, USA, June 2008. 9,

174

[8] S. Alouf, V. Mancuso, and N. Choungmo Fofack. Analysis of power saving and its impact

on web traffic in cellular networks with continuous connectivity. Pervasive and Mobile

Computing, 8(5):646–661, 2012. 13

[9] R. Arratia and L. Gordon. Tutorial on large deviations for the binomial distribution. Bul-

letin of Mathematical Biology, 51(1):125–131, 1989. 208

223

224

[10] F. Baccelli and P. Brémaud. Elements of Queueing Theory. Palm Martingale calculus and

Stochastic recurrences. Applications of Mathematics, Stochastic Modelling and Applied

Probability, Springer, Berlin, Germany, second edition, 2003. 11, 19, 20, 30, 31, 32, 34,

57, 67, 78, 120, 152

[11] S. Baek and B. D. Choi. Analysis of discontinuous reception (DRX) with both downlink

and uplink packet arrivals in 3GPP LTE. In Proc. of ACM QTNA 2011, pages 8–16, Seoul,

Korea, August 2011. 9, 174

[12] S. Baek and B. D. Choi. Performance analysis of sleep mode operation in IEEE 802.16m

with both uplink and downlink packet arrivals. In Proc. of IEEE CAMAD 2011, pages

112–116, Kyoto, Japan, June 2011. 9, 174

[13] R. J. Bayardo, R. Agrawal, D. Gruhl, and A. Somani. Youserv: a web-hosting and content

sharing tool for the masses. In Proc. ACM WWW’02, pages 345–354, New York, USA,

2002. 101, 105

[14] G. Bianchi, N. Blefari-Melazzi, A. Caponi, and A. Detti. A general, tractable and accurate

model for a cascade of caches. CoRR, abs/1309.0718, 2013. 128

[15] J. R. Bitner. Heuristics that monotonically organize data structures. SIAM J. Computing,

8:82–110, 1979. 5, 16

[16] C. Bontu and E. Illidge. DRX mechanism for power saving in LTE. IEEE Communications

Magazine, 47(6):48–55, June 2009. 175

[17] P. Burville and J. Kingman. On a model for storage and search. Journal of Applied Proba-

bility, 10:697–701, 1973. 5, 6, 16, 98

[18] J. M. Cabe. On serial files with relocable records. Operations Research, 13:609–618, 1965.

5, 16

[19] T. Callahan, M. Allman, and M. Rabinovich. On modern DNS behavior and properties.

ACM SIGCOMM Computer Communication Review, 43(3):7–15, July 2013. 29, 101, 102,

105, 113

[20] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino. Modeling data transfer in content-

centric networking. In Proc. ITC 23rd, San Francisco, CA, USA, Sept. 2011. 50, 128, 209,

212, 213

[21] G. Casale, E. Zhang, and E. Smirni. KPC-Toolbox: Simple yet effective trace fitting using

markovian arrival processes. 5th Intl. Conf. on the Quantitative Evaluation of SysTems

(QEST’08), 2008. 120

BIBLIOGRAPHY 225

[22] E. Çinlar. Introduction to stochastic processes. Prentice Hall, 1975. 11, 15, 29, 53, 72, 73

[23] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching systems: modeling, design and

experimental results. IEEE J. on Selected Areas in Communications, 20(7):1305–1314,

2002. 7, 8, 9, 12, 15, 16, 17, 18, 21, 23, 24, 35, 41, 50, 66, 72, 127, 128, 129, 130, 131,

134, 214

[24] H. Choi and J. Limb. A behavioral model of Web traffic. In Proc. of ICNP 1999, pages

327–334, Washington, DC, USA, Oct. 1999. 174

[25] N. Choungmo Fofack, P. Nain, G. Neglia, and D. Towsley. Analysis of ttl-based cache

networks. In Proc. ACM ValueTools’12, Cargèse, Corsica, France, Oct. 2012. 13, 16, 127,

128, 130, 135

[26] N. Choungmo Fofack, P. Nain, G. Neglia, and D. Towsley. Analysis of ttl-based cache

networks. Technical Report RR-7883, Inria, Sophia Antipolis, France, July 2012. 77, 82,

135

[27] E. Coffman Jr. and P. Jelenkovic. Performance of the move-to-front algorithm with

markov-modulated request sequences. Operations Research Letters, 25:109–118, 1999.

6, 16

[28] D. R. Cox. Théorie du Renouvellement. Monographies DUNOD., Paris, 1966. 11, 105, 132,

152

[29] R. Cukier, J. Schaibly, and K. Shuler. Study of the sensitivity of coupled reaction systems to

uncertainties in rate coefficients. III. Analysis of the approximations. Journal of Chemical

Physics, 63(3):1140–1149, 1975. 191

[30] E. Dahlman, S. Parkvall, J. Skold, and P. Beming. 3G Evolution: HSPA and LTE for Mobile

Broadband. Academic Press, Oxford, UK, Second edition, 2008. 175, 176, 177, 184

[31] A. Dan and D. Towsley. An approximate analysis of the lru and fifo buffer replacement

schemes. In Proc. ACM SIGMETRICS’90, pages 143–152, Boulder, CO, USA, May 1990. 6,

7, 8, 16, 113, 128, 129, 130, 131

[32] R. Durrett. Probability: Theory and Examples. Cambridge University Press, fourth edition,

2010. 22

[33] F. Corrêa Alegria and F.A. Martins Travassos. Implementation details of an automatic

monitoring system used on a Vodafone radiocommunication base station. IAENG Engi-

neering Letters, 16(4):529–536, Nov. 2008. 195

226

[34] R. Fagin and T. G. Price. Efficient calculation of expected miss ratios in the independent

reference model. SIAM J. Comput., 7(3):288–297. 7

[35] A. Feldmann and W. Whitt. Fitting mixtures of exponentials to long-tail distributions to

analyze network performance models. In Proc. IEEE INFOCOM’97, Kobe, Japan, Apr. 1997.

67, 70, 74

[36] W. Feller. Generalization of a probability limit theorem of cramer. Transactions of the

American Mathematical Society, 54(3):pp. 361–372, 1943. 208

[37] J. A. Fill. Limits and rate of convergence for the distribution of search cost under the

move-to-front rule. Theoretical Computer Science, 176:185–206, 1996. 5, 7

[38] J. A. Fill and L. Holst. On the distribution of search cost for the move-to-front rule.

Random Structures Algorithms, 8(3):179–186, 1996. 16, 17, 50, 70, 74, 113, 128

[39] W. Fischer and K. Meier-Hellstern. The Markov-modulated Poisson process (MMPP) cook-

book. Performance Evaluation, 18:149–171, Jan. 1991. 44, 91

[40] P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox, coupon collectors, caching

algorithms and self-organizing search. Discrete Applied Mathematics, 39:207–229, 1992.

5, 6, 16

[41] C. Fricker, P. Robert, and J. Roberts. A versatile and accurate approximation for LRU cache

performance. CoRR, abs/1202.3974, 2012. 8, 16, 17, 18, 21, 23, 24, 26, 32, 35, 38, 39,

41, 42, 44, 131, 134, 136, 214

[42] M. Gallo, B. Kauffmann, L. Muscariello, A. Simonian, and C. Tanguy. Performance

of the random replacement policy for networks of caches. In Proc. ACM SIGMET-

RICS/PERFORMANCE’12, pages 395–396, London, England, UK, June 2012. 8, 9, 16,

24, 50, 113, 128, 214

[43] E. Gelenbe. A unified approach to the evaluation of a class of replacement algorithms.

IEEE Trans. Computers, 22(6), 1973. 7, 16, 143

[44] J. Gray and F. Putzolu. The 5-minute rule for trading memory for disc accesses and

the 5-byte rule for trading memory for CPU time. Technical Report TR 86.1, PN 87615,

TandemComputers, Sophia Antipolis, France, May 1985. 16

[45] K. Han and S. Choi. Performance analysis of sleep mode operation in IEEE 802.16e mobile

broadband wireless access systems. In Proc. of IEEE VTC 2006-Spring, volume 3, pages

1141–1145, Melbourne, Australia, May 2006. 9, 174

BIBLIOGRAPHY 227

[46] Q. He and H. Zhang. On matrix exponential distributions. Adv. in Applied Probability,

39:271–292, 2007. 67, 82

[47] W. J. Hendricks. The stationary distribution of an interesting markov chain. Journal of

Applied Probability, 9:231–233, 1972. 5, 16

[48] Y. Hong. On computing the distribution function for the poisson binomial distribution.

Journal Computational Statistics & Data Analysis, 59(0):41–51, Oct. 2012. 21

[49] G. Horváth. Matching marginal moments and lag autocorrelations with MAPs. In Proc.

ACM ValueTools’13, Torino, Italy, Dec. 2013. 127, 149

[50] Y. T. Hou, J. Pan, B. Li, and S. Panwar. On expiration-based hierarchical caching systems.

IEEE J. on Selected Areas in Communications, 22(1), Jan. 2004. 50, 102

[51] Y. T. Hou, J. Pan, K. Sohraby, and S. X. Shen. Coping miss synchronization in hierarchical

caching systems with nonlinear ttl functions. IEEE Communications Society, 2004. 101

[52] V. Isham. Dependent thinning of point processes. Journal of Applied Probability,

17(4):987–995, Dec. 1980. 57, 74, 127, 134, 144, 145, 146, 147, 216

[53] V. Jacobson, D. Smetters, J. Thorntorn, M. Plass, N. Briggs, and R. Braynard. Networking

named content. In Proc. ACM CoNEXT’09, Rome, Italy, Dec. 2009. 50, 66, 75, 128

[54] P. Jelenkovic. Asymptotic approximation of the move-to-front search cost distribution and

least-recently used caching fault probabilities. The Annals of Probability, 9(2):430–464,

1999. 5, 6, 16, 18, 41, 44

[55] P. Jelenkovic and A. Radovanovic. Least-recently used caching with dependent requests.

Theoretical Computer Science, 326:293–327, 2004. 6, 7, 16

[56] P. Jelenkovic, A. Radovanović, and M. Squillante. Critical sizing of lru caches with depen-

dent requests. Journal of Applied Probability, 43(4):1013–1027, Dec. 2006. 7, 16

[57] P. R. Jelenkovic and X. Kang. Characterizing the miss sequence of the lru cache. SIGMET-

RICS Perform. Eval., 36(4):119–121, Aug. 2008. 16, 17, 18, 50, 128, 129, 212

[58] S. Jin, X. Chen, D. Qiao, and S. Choi. Adaptive sleep mode management in IEEE 802.16m

wireless metropolitan area networks. Computer Networks, 55(16):3774–3783, November

2011. 9, 174

[59] J. Jung, A. W. Berger, and H. Balakrishnan. Modeling TTL-based internet caches. In Proc.

IEEE INFOCOM’03, San Francisco, CA, USA, Mar. 2003. 11, 16, 29, 50, 68, 70, 74, 102,

105, 110, 112, 114

228

[60] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS performance and the effectiveness

of caching. In Proc. ACM SIGCOMM Workshop on Internet Measurement (IMW ’01), New

York, NY, USA, Nov. 2001. 66, 102

[61] S. Karlin. Total positivity. 1, 1968. 67, 82

[62] W. F. King. Analysis of demand paging algorithms. Information Processing, 71:485–490,

1972. 5, 6, 16, 98

[63] T. Kolding, J. Wigard, and L. Dalsgaard. Balancing power saving and single user experi-

ence with discontinuous reception in LTE. In Proc. of IEEE ISWCS 2008, pages 713–717,

Reykjavik, Iceland, 2008. 175

[64] V. S. Korolyuk. Superposition of Markov renewal processes. Cybernetics and Systems

Analysis, 17(4):556–560, 1981. 57, 58, 59, 61

[65] V. G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall/CRC texts in

statistical science series, Taylor and Francis Group, Boca Raton, FL, USA, second edition,

Dec. 2009. 11, 152

[66] N. Laoutaris. A closed-form method for LRU replacement under generalized power-law

demand. CoRR, abs/0705.1970, May 2007. 17, 18, 21, 35, 134

[67] N. Laoutaris, S. Syntila, and I. Stavrakakis. Meta algorithms for hierarchical web caches.

In Proc. 23rd IEEE Intl. Performance Computing and Communications Conference IPCCC’04,

Phoenix, Arizona, USA, Apr. 2004. 68, 128, 131, 216

[68] I. Lassoued, A. Krifa, C. Barakat, and K. Avrachenkov. Network-wide monitoring through

self-configuring adapative system. In Proc. IEEE INFOCOM’11, Shanghai, China, Apr. 2011.

88

[69] A. T. Lawrence. Dependency of intervals between events in superposition processes. Jour-

nal of the Royal Statistical Society, Series B (Methodological), 35(2):306–315, 1973. 8, 67,

78, 86, 115, 120, 130, 152

[70] V. Mancuso and S. Alouf. Power save analysis of cellular networks with continuous con-

nectivity. In World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2011 IEEE

International Symposium on a, pages 1–9, 2011. 13

[71] O. Manor. Bernoulli thinning of a Markov renewal process. Applied Stochastic Models and

Data Analysis, 14(3):229–240, Jan. 1998. 57, 58, 59, 61, 144

BIBLIOGRAPHY 229

[72] V. Martina, M. Garetto, and E. Leonardi. A unified approach to the performance analysis

of caching systems. CoRR, abs/1307.6702, Sept. 2013. 7, 9, 12, 16, 17, 18, 24, 26, 35,

38, 44, 45, 50, 72, 73, 99, 110, 127, 128, 129, 130, 131, 134, 141, 143, 156, 216

[73] N. Choungmo Fofack and Sara Alouf. Modeling modern DNS caches. In Proc. ACM Value-

Tools’13, Torino, Italy, Dec. 2013. 13, 127, 128, 130, 135

[74] N. Choungmo Fofack and Sara Alouf. Non-renewal TTL-based cache replacement policy

and applications: Case of modern DNS hierarchy. Technical Report RR-8414, Inria, Sophia

Antipolis, France, Dec. 2013. 101, 135

[75] A. N. Nakonechnyi. A refinement of the Rényi Theorem. Cybernetics and Systems Analysis,

29(6), 1993. 25, 26, 27

[76] K. Neammanee. A refinement of Normal approximation to Poisson Binomial. International

Journal of Mathematics and Mathematical Sciences, 5:717–728, 2005. 23

[77] B. L. Nelson and I. Gerhardt. On the capturing dependence in point processes: Matching

moments and other techniques. Working Paper, Jan. 2010. 67, 70, 133

[78] Nujira Ltd. State of the art RF power technology for defense systems. white paper, Feb.

2009. http://www.nujira.
om/_uploads/whitepapers/State_of_the_Art_RF_Power_

Te
hnology_for_Defen
e_Systems_EU.pdf. 173

[79] P. Olivier and A. Simonian. Performance of a cache with random replacement and zipf

document popularity. In Proc. ACM ValueTools’13, Torino, Italy, Dec. 2013. 8, 24

[80] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and S. Seshan. On the responsiveness of

dns-based network control. In Proc. IMC’04, Taormina, Sicily, Italy, Oct. 2004. 101, 102,

105

[81] A. D. Polyanin and A. V. Manzhirov. Handbook of Integral Equations. CRC Press., Boca

Raton, first edition, 1998. 117

[82] E. Rosensweig, J. Kurose, and D. Towsley. Approximate models for general cache net-

works. In Proc. IEEE INFOCOM’10, San Diego, CA, USA, Mar. 2010. 8, 50, 66, 113, 127,

128, 129, 130, 131, 146, 156, 214

[83] E. J. Rosensweig, D. S. Menasche, and J. Kurose. On the steady-state of cache networks.

In Proc. IEEE INFOCOM’13, Torino, Italy, Apr. 2013. 50, 60

[84] S. M. Ross. Average delay in queues with non-stationary poisson arrivals. Journal of

Applied Probability, 15(3):602–609, 1978. 214

230

[85] A. Saltelli, S. Tarantola, and K. Chan. A quantitative model-independent method for global

sensitivity analysis of model output. Technometrics, 41(1):39–56, Feb. 1999. 190, 191

[86] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and M. Levy. An analysis of internet

content delivery systems. SIGOPS Operating System Review, 36:315–327, 2002. 50, 66

[87] J. Seo, S. Lee, N. Park, H. Lee, and C. Cho. Performance analysis of sleep mode operation

in IEEE 802.16e. In Proc. of IEEE VTC 2004-Fall, volume 2, pages 1169–1173, Los Angeles,

CA, USA, Sept. 2004. 9, 174

[88] I. G. Shevtsova. An improvement of the convergence rate estimates in the lyapunov theo-

rem. Doklady Mathematics, 82(3):862–864, 2010. 22

[89] A. D. Solov’ev. Asymptotic behavior of the arrival time of a rare event in a regenerative

process. Izv. Akad. Nauk SSSR, Tekhn. Kibern, (6):79–89, 1971. 25

[90] X. Tang, J. Xu, and W. Lee. Analysis of TTL-based consistency in unstructured peer-to-peer

networks. IEEE Transactions on Parallel and Distributed Systems, 19(12), Dec. 2008. 50

[91] K. Teerapabolarn. A non-uniform bound on poisson approximation for sums of bernoulli

random variables with small mean. Thai Journal of Mathematics, 4(1):179–196, 2006.

22, 23

[92] C. Y. Teresa Lam and J. P. Lehoczky. Superposition of renewal processes. Technical Report

TR-89-12, University of Michigan, Ann Arbor, MI 48109-2117, USA, oct 1990. 152

[93] M. Tortorella. Numerical solutions of renewal-type integral equations. INFORMS Journal

on Computing, 17:73–96, 2005. 116

[94] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and S. Niccolini. Temporal

locality in today’s content caching: Why it matters and how to model it. ACM Computer

Communication Review, 43(5), Oct. 2013. 18, 209, 213

[95] W. Whitt. Approximating a point process by a renewal process, I: Two basic methods.

Operations Research, 30(1), 1982. 11, 70, 105, 111, 112, 127, 132, 133, 145, 152, 155,

158, 202

[96] Y. Xiao. Performance analysis of an energy saving mechanism in the IEEE 802.16e wireless

MAN. In Proc. of IEEE CCNC 2006, volume 1, pages 406–410, Las Vegas, Nevada, USA,

Jan. 2006. 9, 174

[97] S. Yang and Y. Lin. Modeling UMTS discontinuous reception mechanism. IEEE Transac-

tions on Wireless Communications, 4(1):312–319, Jan. 2005. 9, 174

BIBLIOGRAPHY 231

[98] L. Zhou, H. Xu, H. Tian, Y. Gao, L. Du, and L. Chen. Performance analysis of power saving

mechanism with adjustable DRX cycles in 3GPP LTE. In IEEE VTC 2008-Fall, Calgary,

Alberta, Canada, Sept. 2008. 175

