Thèse soutenue

Modelisation et commande d'une chaîne de conversion d'énergie hydrolienne à base de machine synchrone à aimants permanents doublement saillante

FR
Auteur / Autrice : Hao Chen
Direction : Mohamed MachmoumMohammed El-Hadi ZaïmNadia Aït-Ahmed
Type : Thèse de doctorat
Discipline(s) : Electronique et génie électrique
Date : Soutenance en 2014
Etablissement(s) : Nantes
Partenaire(s) de recherche : Laboratoire : Institut de Recherche en Énergie Électrique de Nantes-Atlantique
autre partenaire : École polytechnique de l'Université de Nantes
Jury : Président / Présidente : Abdelmounaïm Tounzi
Examinateurs / Examinatrices : Mohamed Machmoum, Mohammed El-Hadi Zaïm, Nadia Aït-Ahmed, Abdelmounaïm Tounzi, Mohamed Benbouzid
Rapporteurs / Rapporteuses : Mohamed Benbouzid

Résumé

FR  |  
EN

Several techniques to extract and exploit ocean energy have been recently suggested. The most studied ones are: marine current energy, wave energy and ocean ̐thermal energy. This Ph. D. Thesis fits in this context and its main objective is to contribute on control and modelling of a Marine Current Energy Conversion System (MCECS). This requires multi-physics modelling from the hydrokinetic resource to the electricity grid, design and control of an innovative low speed non-conventional generator and its associated power electronic interfaces. At first, turbine concepts, relative projects and usual chain of tidal energy conversion are presented. Tidal current and turbine modelling are secondly addressed. The dynamic modelling of a low speed Double Salient Permanent Magnet Generator (DSPMG) based on finite element method and Park transformations is developed. Results are compared to classical Permanent Magnet Synchronous Generator (PMSG) to highlight advantages, originality, complexity and principal characteristics of the proposed structure. Suitable currents are then determined and tested by simulation in order to deliver a quasi-constant torque and minimise Joule losses. The mutual effect on the generator performances is detailed. Finally, several control strategies are applied to DSPMG associated to a bidirectional back-to-back converter and are analysed. The main results, based on the developed marine current turbine simulation tool, are presented and discussed with illustration by several realistic studies and Matlab/Simulink assessment.