Capteurs résistifs de dihydrogène H2 à base d’assemblages de nanostructures discontinues organisées

par Khalil Rajoua

Thèse de doctorat en Chimie et physicochimie des matériaux

Sous la direction de Frédéric Favier.

Soutenue le 18-07-2014

à Montpellier 2 , dans le cadre de Sciences Chimiques (Montpellier ; École Doctorale ; ...-2014) , en partenariat avec Institut Charles Gerhardt (Montpellier) (laboratoire) .

Le jury était composé de Frédéric Favier, Jürgen Brugger, Nicola Pinna, Jerzy Zając.

Les rapporteurs étaient Jürgen Brugger, Nicola Pinna.


  • Résumé

    Les contextes mondiaux énergétiques, climatiques et économiques actuels évoluent de manières telles que le dihydrogène H2 prend une place de plus en plus importante en tant que combustible et vecteur énergétique. Le dihydrogène est un gaz incolore, inodore et non-toxique donc indécelable par les sens humains, mais il est extrêmement inflammable et explosif. De plus, H2 est caractérisé par un domaine d'explosivité très large, de 4 % à 75 % de H2 dans l'air. L'objet de ce travail de thèse a donc été de préparer des capteurs de sécurité ou de quantification originaux et ayant des performances accrues pour la détection de H2. Les capteurs préparés sont de types résistifs et les métaux sensibles utilisés sont le palladium et le platine. Afin d'améliorer les performances de détection de ces capteurs à dihydrogène, plusieurs morphologies de couches sensibles ont été conçues : des monocouches organisées à 2 dimensions de nanoparticules cœurs-coquilles Pd@Au et Pt@Au formées par la méthode de Langmuir-Blodgett ou immobilisés sur les substrats par un agent de couplage de type silane (mercaptopropyltrimethoxysilane), des dépôts physiques à 2 dimensions et des films de nanoparticules à 3 dimensions. Selon la morphologie de la couche préparée et le type de métal sensible utilisé, divers mécanismes de détection ont été mis en évidence et diverses performances de détection ont été observées (type et amplitude de réponse, gamme de détection, temps de réponse et de retour,...). Les modèles de Fuchs-Sondheimer et Mayadas-Shatzkes d'une part, et un modèle de percolation par la création de chemins de conduction d'autre part, ont permis d'expliquer les variations de résistivité électrique des couches sensibles à base respectivement de platine et de palladium lors de l'exposition à l'hydrogène.

  • Titre traduit

    Hydrogen Resistive Sensors based on Organized Nanostructures Assembles


  • Résumé

    Hydrogen takes is foreseen as a generalized fuel and energy carrier. It is a colorless, odorless and non-toxic gas, and therefore it is undetectable by the human senses. Hydrogen has a severe drawback as it is an extremely flammable and explosive gas. Moreover, H2 has a wide explosive range, from 4 to 75 % H2 in air. Therefore, the aim of this PhD work was to develop safety and concentration sensors with enhanced performances. Resistive sensing layers were designed on several morphologies and sensing materials : 2D Langmuir-Blodgett organized monolayers of core-shell Pd@Au or Pt@Au nanoparticles, immobilized Pd@Au monolayer grafted through a self assembled monolayer, evaporated 2D metal films of Pt or Pd, and 3D platinum nanoparticles arrays. According to the sensing layer morphology and sensing metal, numerous sensing mechanisms and performances were demonstrated (response type and amplitude, sensing range, response and recovery times,…). Fuchs-Sondheimer and Mayadas-Shatzkes models on the one hand, and a percolation model on the other, allowed the origin of electrical resistance changes to be pointed out, respectively for platinum and palladium sensing layers.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Bibliothèque interuniversitaire. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.