Représentations unitaires de U(5) p-adique

par Claudia Schoemann

Thèse de doctorat en Mathématiques et modélisation

Sous la direction de Alexandru Ioan Badulescu et de Ulrich Stuhler.

Le président du jury était Philippe Roche.

Le jury était composé de Alexandru Ioan Badulescu, Ulrich Stuhler, Philippe Roche, Marcela Hanzer, Ivan Matić, Louise Nyssen, Volker Heiermann.

Les rapporteurs étaient Marcela Hanzer, Ivan Matić.


  • Résumé

    Nous étudions les représentations complexes, induites par l'induction parabolique, du groupe U(5), défini sur un corps local non-archimedean de caractéristique 0. C'est Qp ou une extension finie de Qp .On parle des 'corps p-adiques'. Soit F un corps p-adique. Soit E : F une extension de corps de degré 2. Soit Gal(E : F ) = {id, σ}le groupe de Galois. On écrit σ(x) = overline{x} forall x ∈ E. Soit | |p la norme p-adique de E. Soient E* = E {0} et E 1 = {x ∈ E | xoverline{x}= 1} .U (5) a trois sous-groupes paraboliques propres. Soit P0 le sous-groupe parabolique minimal et soientP1 et P2 les deux sous-groupes paraboliques maximaux. Soient M0 , M1 et M2 les sous-groupes de Levi standards et soient N0 , N1 et N2 des sous-groupes unipotents de U (5). On a la décomposition de Levi Pi = Mi Ni , i ∈{0, 1, 2} .M0 = E* × E* × E 1 est le sous-groupe de Levi minimal, M1 = GL(2, E) × E 1 et M2 = E* × U(3) sont les sous-groupes de Levi maximaux.On considère les représentations des sous-groupes de Levi, et on les étend trivialement au sous-groupes unipotents pour obtenir des représentations des sous-groupes paraboliques. On exécute une procédure appelée 'l'induction parabolique' pour obtenir les représentations de U (5). Nous considérons les représentations de M0 , puis les représentations non-cuspidales, induites à partir de M1 et M2 . Cela veut dire que la représentation du facteur GL(2, E) de M1 est un sous-quotient propre d'une représentation induite de E* × E* à GL(2, E). La représentation du facteur U (3) de M2 est un sous-quotient propre d'une représentation induite de E* × E 1 à U(3). Un exemple pour M1 est | det |α χ(det) StGL2 * λ' , où α ∈ R, χ est un caractère unitaire de E* , StGL2 est la représentation Steinberg de GL(2, E) et λ' est un caractère de E 1 . Un exemple pour M2 est| |α χ λ (det) StU (3) , où α ∈ R, χ est un caractère unitaire de E* , λ' est un caractère unitaire de E 1et StU (3) est la représentation Steinberg de U(3). On remarque que λ' est unitaire.Ensuite on considère les représentations cuspidales de M1 .On détermine les droites et les points de réductibilité des représentations de U(5) et on détermine les sous-quotients irréductibles. Ensuite, sauf quelque cas particuliers, on détermine le dual unitaire de U(5)par rapport au quotients de Langlands. Les représentations complexes, paraboliquement induites, de U(3) sur un corps p-adique sont classifiées par Charles David Keys dans [Key84], les représentations complexes, paraboliquement induites, de U(4)sur un corps p-adique sont classifiées par Kazuko Konno dans [Kon01].

  • Titre traduit

    Unitary representations of p-adic U(5)


  • Résumé

    We study the parabolically induced complex representations of the unitary group in 5 variables - U(5)- defined over a non-archimedean local field of characteristic 0. This is Qp or a finite extension of Qp ,where p is a prime number. We speak of a 'p-adic field'.Let F be a p-adic field. Let E : F be a field extension of degree two. Let Gal(E : F ) = {id, σ}. We write σ(x) = overline{x} forall x ∈ E. Let | |p denote the p-adic norm on E. Let E* := E {0} and let E 1 := {x ∈ E | x overline{x} = 1} .U(5) has three proper parabolic subgroups. Let P0 denote the minimal parabolic subgroup and P1 andP2 the two maximal parabolic subgroups. Let M0 , M1 and M2 denote the standard Levi subgroups and let N0 , N1and N2 denote unipotent subgroups of U(5). One has the Levi decomposition Pi = Mi Ni , i ∈ {0, 1, 2} .M0 = E* × E* × E 1 is the minimal Levi subgroup, M1 = GL(2, E) × E 1 and M2 = E* × U (3) are the two maximal parabolic subgroups.We consider representations of the Levi subgroups and extend them trivially to the unipotent subgroups toobtain representations of the parabolic groups. One now performs a procedure called 'parabolic induction'to obtain representations of U (5).We consider representations of M0 , further we consider non-cuspidal, not fully-induced representationsof M1 and M2 . For M1 this means that the representation of the GL(2, E)− part is a proper subquotientof a representation induced from E* × E* to GL(2, E). For M2 this means that the representation of theU (3)− part of M2 is a proper subquotient of a representation induced from E* × E 1 to U (3).As an example for M1 , take | det |α χ(det) StGL2 * λ' , where α ∈ R, χ is a unitary character of E* , StGL2 is the Steinberg representation of GL(2, E) and λ' is a character of E 1 . As an example forM2 , take | |α χ λ' (det) StU (3) , where α ∈ R, χ is a unitary character of E* , λ' is a character of E 1 andStU (3) is the Steinberg representation of U (3). Note that λ' is unitary.Further we consider the cuspidal representations of M1 .We determine the points and lines of reducibility of the representations of U(5), and we determinethe irreducible subquotients. Further, except several particular cases, we determine the unitary dual ofU(5) in terms of Langlands-quotients.The parabolically induced complex representations of U(3) over a p-adic field have been classied byCharles David Keys in [Key84], the parabolically induced complex representations of U(4) over a p-adicfield have been classied by Kazuko Konno in [Kon01].An aim of further study is the classication of the induced complex representations of unitary groupsof higher rank, like U (6) or U (7). The structure of the Levi subgroups of U (6) resembles the structureof the Levi subgroups of U (4), the structure of the Levi groups of U (7) resembles those of U (3) and ofU (5).Another aim is the classication of the parabolically induced complex representatioins of U (n) over ap-adic field for arbitrary n. Especially one would like to determine the irreducible unitary representations.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?