Ultrafast electronic, acoustic and thermal properties of metal nanoparticles and clusters

par Tatjana Stoll

Thèse de doctorat en Physique

Sous la direction de Fabrice Vallée et de Natalia Del Fatti.

Soutenue le 12-12-2014

à Lyon 1 , dans le cadre de École doctorale de Physique et Astrophysique de Lyon , en partenariat avec Institut Lumière Matière (laboratoire) et de Institut Lumière Matière (laboratoire) .

Le président du jury était Patrice Melinon.

Le jury était composé de Francesco Banfi.

Les rapporteurs étaient Claude Henry, Arnaud Devos.

  • Titre traduit

    Propriétés ultrarapides à la fois électroniques, acoustiques et thermiques de nanoparticules et agrégats métalliques


  • Résumé

    Nous avons étudié par spectroscopie pompe-sonde résolue en temps la réponse optique ultrarapide d'agrégats de très petite taille (< 2 nm), pour lesquelles une transition d'un comportement de type solide à un comportement moléculaire est attendue. Les modifications des processus de thermalisation interne (interactions électrons-électrons et électrons phonons) avec la réduction de taille ont été étudiées dans des nanosphères d'argent triées en masse entourées de silice, et dans des échantillons d'or atomiquement définis stabilisées par des surfactants. Ces expériences ont mis en évidence les effets de confinement quantique des états électroniques sur la cinétique électronique. L'étude des vibrations acoustiques de nanoparticules dans le même régime de taille a été effectuée. Les vibrations observées dans les agrégats d'or sont dominées par leur mode de respiration radial avec une période proportionnelle à leur diamètre, an analogie avec les nanoparticules plus grandes. Le mode de respiration observé sur les nanoobjets bimétalliques de type cœur/couronne Pt-Au et Ni-Ag est en accord quantitatif avec les estimations du modèle élastique macroscopique, malgré une épaisseur de couronne monoatomique. La spectroscopie résolue en temps a également été utilisée pour étudier le transfert de chaleur à travers l'interface d'une nanoparticule sphérique. Dans ce but, l'évacuation de la chaleur dans des nanoparticules d'or, nues ou enrobées de silice, en solution colloïdale a été étudiée expérimentalement et modélisée de manière quantitative grâce à la prise en compte de la contribution de l'environnement (échauffement du solvant) au signal optique


  • Résumé

    We used ultrafast time-resolved pump-probe spectroscopy to experimentally investigate the optical response of small metal nano-objects in the few nanometer range (< 2 nm), where a transition from a small solid behaviour to a molecular one is expected. The modification of the intrinsic thermalization processes (electron-electron and electron-phonon interactions) has been studied both on glass-embedded mass-selected silver samples and chemically synthesized ligand-stabilized atomic-defined gold clusters. Electron gas internal thermalization and cooling with the lattice are shown to be affected by size reduction and the concomitant discretization of electronic states. The acoustic response in the same small size range has been investigated. Vibrations of gold clusters were characterized by a quasi-breathing mode scaling with their size, in analogy with larger nanoparticles. The breathing mode of bimetallic core/shell Pt-Au and Ni-Ag nanospheres appeared to be in good quantitative agreement with predictions of continuous elastic models, despite the monoatomic thickness of the layer shell. The same time-resolved approach was used to investigate heat transfer through the nanoparticles interfaces. In this context, heat evacuation of bare or silica-encapsulated gold


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.