Spectre étendu des opérateurs et applications

par Hasan Alkanjo

Thèse de doctorat en Mathématiques

Sous la direction de Gilles Cassier.

Soutenue le 10-12-2014

à Lyon 1 , dans le cadre de École doctorale en Informatique et Mathématiques de Lyon , en partenariat avec ICJ - Institut Camille Jordan (Villeurbanne, Rhône) (laboratoire) .

Le président du jury était Hervé Queffélec.

Le jury était composé de Thierry Fack.

Les rapporteurs étaient Alfonso Montes-Rodriguez, Mübariz Karaev.


  • Résumé

    Cette thèse s'articule autour d'une notion spectrale assez récente, appelée le spectre étendu des opérateurs. Dans la première partie nous fournissons des propriétés générales du spectre étendu d'un opérateur dans certains cas particuliers, tels que le cas de dimension finie et celui des opérateurs inversibles. Nous nous intéressons dans la deuxième partie à l'étude du spectre étendu de l'opérateur shift tronqué Su. En particulier, nous donnons une description complète des vecteurs propres étendus associes à chaque valeur propre étendue de Sb, ou b est un produit de Blaschke quelconque. Dans la troisième partie nous décrirons complètement le spectre étendu et les sous espaces propres étendus d'une classe d'opérateurs très importante : celle des opérateurs normaux. Nous commençons d'abord par la classe des opérateurs qui sont produits d'un opérateur positif par un autoadjoint. Ensuite, nous utilisons le théorème de Fuglede-Putnam pour déduire une description complète des valeurs et des vecteurs propres étendus des opérateurs normaux, en fonction de leur mesure spectrale. Dans la dernière partie, nous appliquons nos résultats des trois premières parties sur des exemples concrets. En particulier, nous traitons= le problème des sous espaces propres étendus des opérateurs définis dans un espace de dimension finie. Ensuite, nous montrons l'existence d'un opérateur compact quasinilpotent dont le spectre étendu est réduit au singleton {1}. Enfin, nous traitons deux opérateurs de Cesaro très importants dans les applications

  • Titre traduit

    Extended spectrum of operators and applications


  • Résumé

    This thesis is based on a relatively new spectral notion, called extended spectrum of operators. In the first part, we provide general properties of extended spectrum of an operator in some special cases, such as the case of finite dimension and the case of invertible operator. We focused in the second part on characterizing the extended spectrum of truncated shift operator Su. In particular, we give a complete description of the extended eigenvectors associated to each extended eigenvalue of Sb, where b is a Blaschke product. In the third part, we describe the extended spectrum and the extended eigenvectors of a very important class of operators , that is the normal operators. We first start by describing these last sets for the product of a positive and a self-adjoint operator which are both injective. After, we use the Fuglede-Putnam theorem to describe the same sets for normal operators, in terms of their spectral measure. In the last part, we apply our results from the last three parts on concrete examples. In particular, we address the problem of extended eigenvectors of operators defined in a finite dimension space. Next, we show the existence of a quasinilpotent compact operator whose extended spectrum is reduced to {1}. Finally, we study two Cesaro operators which are very important in applications


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.