Thèse soutenue

Structure et mécanisme d’élaboration de biomatériaux par complexation contrôlée de polysaccharides

FR  |  
EN
Auteur / Autrice : Marie Costalat
Direction : Thierry DelairLaurent David
Type : Thèse de doctorat
Discipline(s) : Matériaux innovants
Date : Soutenance le 03/12/2014
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : Ecole doctorale Matériaux de Lyon (Villeurbanne ; 1992?-....)
Partenaire(s) de recherche : Laboratoire : Ingénierie des Matériaux Polymères (Auvergne Rhône-Alpes ; 2007-....) - Ingénierie des Matériaux Polymères - Site Université Claude Bernard Lyon 1
Jury : Président / Présidente : Philippe Cassagnau
Examinateurs / Examinatrices : Christophe Schatz
Rapporteurs / Rapporteuses : Jean-François Berret, Didier Le Cerf

Résumé

FR  |  
EN

Nos travaux ont porté sur le développement d'une méthode contrôlée de complexation de polyélectrolytes. La complexation est un processus spontané, sous contrôle cinétique et irréversible dans le cas de polysaccharides tels que le chitosane et les polysulfates, essentiellement le sulfate de dextrane ou l'héparine. Une conséquence de ce contrôle cinétique est que l'obtention d'objets de taille colloïdale requiert de travailler à fortes dilutions. De plus, les nanovecteurs obtenus ne sont pas toujours compatibles avec des conditions d'utilisation dans des milieux physiologiques. Le contrôle de l'association de polysaccharides se fait par écrantage des interactions électrostatiques attractives en présence de chlorure de sodium à la concentration au moins égale à 2 mol.L-1. L'élimination du sel par dialyse induit la formation d'hydrogels dont les caractéristiques et les propriétés dépendent principalement du rapport de charges n+/n- et de la cinétique d'élimination du sel. Ainsi, l'on peut former des hydrogels massifs ou des systèmes dispersés à des concentrations en polymères jusqu'à 30 fois plus élevées que par les méthodes sous contrôle cinétique. De plus, cette technologie permet l'encapsulation des principes actifs dans les particules qui peuvent aussi être fonctionnalisées par des biomolécules d'adressage. Le résultat majeur de ce travail réside en la maîtrise des associations entre polysaccharides de charges opposées, permettant d'obtenir des systèmes colloïdaux et massifs à fort potentiels d'applications biomédicales