MiRNA and co : methodologically exploring the world of small RNAs

par Susan Higashi

Thèse de doctorat en Bioinformatique

Soutenue le 26-11-2014

à Lyon 1 , dans le cadre de École Doctorale Evolution Ecosystèmes Microbiologie Modélisation , en partenariat avec Laboratoire de Biométrie et Biologie Evolutive (laboratoire) et de Laboratoire de Biométrie et Biologie Evolutive (laboratoire) .

Le président du jury était Hubert Charles.

Le jury était composé de Christine Gaspin.

Les rapporteurs étaient Hervé Seitz, Peter F. Stadler, Hélène Touzet.

  • Titre traduit

    MiARN et compagnie : une exploration méthodologique du monde des petits ARNs


  • Résumé

    La principale contribution de cette thèse est le développement d'une méthode fiable, robuste, et rapide pour la prédiction des pré-miARNs. Deux objectifs avaient été assignés : efficacité et flexibilité. L'efficacité a été rendue possible au moyen d'un algorithme quadratique. La flexibilité repose sur deux aspects, la nature des données expérimentales et la position taxonomique de l'organisme (en particulier plantes ou animaux). Mirinho accepte en entrée des séquences de génomes complets mais aussi les très nombreuses séquences résultant d'un séquençage massif de type NGS de “RNAseq”. “L'universalité” taxonomique est obtenu par la possibilité de modifier les contraintes sur les tailles de la tige (double hélice) et de la boule terminale. Dans le cas de la prédiction des miARN de plantes la plus grande longueur de leur pré-miARN conduit à des méthodes d'extraction de la structure secondaire en tige-boule moins précises. Mirinho prend en compte ce problème lui permettant de fournir des structures secondaires de pré-miARN plus semblables à celles de miRBase que les autres méthodes disponibles. Mirinho a été utilisé dans le cadre de deux questions biologiques précises l'une concernant des RNAseq l'autre de l'ADN génomique. La première question a conduit au traitement et l'analyse des données RNAseq de Acyrthosiphon pisum, le puceron du pois. L'objectif était d'identifier les miARN qui sont différentiellement exprimés au cours des quatre stades de développement de cette espèce et sont donc des candidats à la régulation des gènes au cours du développement. Pour cette analyse, nous avons développé un pipeline, appelé MirinhoPipe. La deuxieme question a permis d'aborder les problèmes liés à la prévision et l'analyse des ARN non-codants (ARNnc) dans la bactérie Mycoplasma hyopneumoniae. Alvinho a été développé pour la prédiction de cibles des miRNA autour d'une segmentation d'une séquence numérique et de la détection de la conservation des séquences entre ncRNA utilisant un graphe k-partite. Nous avons finalement abordé un problème lié à la recherche de motifs conservés dans un ensemble de séquences et pouvant ainsi correspondre à des éléments fonctionnels


  • Résumé

    The main contribution of this thesis is the development of a reliable, robust, and much faster method for the prediction of pre-miRNAs. With this method, we aimed mainly at two goals: efficiency and flexibility. Efficiency was made possible by means of a quadratic algorithm. Flexibility relies on two aspects, the input type and the organism clade. Mirinho can receive as input both a genome sequence and small RNA sequencing (sRNA-seq) data of both animal and plant species. To change from one clade to another, it suffices to change the lengths of the stem-arms and of the terminal loop. Concerning the prediction of plant miRNAs, because their pre-miRNAs are longer, the methods for extracting the hairpin secondary structure are not as accurate as for shorter sequences. With Mirinho, we also addressed this problem, which enabled to provide pre-miRNA secondary structures more similar to the ones in miRBase than the other available methods. Mirinho served as the basis to two other issues we addressed. The first issue led to the treatment and analysis of sRNA-seq data of Acyrthosiphon pisum, the pea aphid. The goal was to identify the miRNAs that are expressed during the four developmental stages of this species, allowing further biological conclusions concerning the regulatory system of such an organism. For this analysis, we developed a whole pipeline, called MirinhoPipe, at the end of which Mirinho was aggregated. We then moved on to the second issue, that involved problems related to the prediction and analysis of non-coding RNAs (ncRNAs) in the bacterium Mycoplasma hyopneumoniae. A method, called Alvinho, was thus developed for the prediction of targets in this bacterium, together with a pipeline for the segmentation of a numerical sequence and detection of conservation among ncRNA sequences using a kpartite graph. We finally addressed a problem related to motifs, that is to patterns, that may be composed of one or more parts, that appear conserved in a set of sequences and may correspond to functional elements.

Accéder en ligne

Par respect de la propriété intellectuelle des ayants droit, certains éléments de cette thèse ont été retirés.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?