La nouvelle approche hybride MAX-FEM pour la modélisation thermomécanique des couches minces

par Abderrazzaq Ifis

Thèse de doctorat en Mécanique et énergétique

Sous la direction de Mohammed Nouari et de François Bilteryst.

Le président du jury était Jean-François Ganghoffer.

Le jury était composé de Emmanuelle Rouhaud.

Les rapporteurs étaient Marie-Christine Baietto, Julien Yvonnet.


  • Résumé

    De cette thèse, une nouvelle méthode éléments finis hybride MAX-FEM dédiée à la modélisation thermomécanique des structures avec couches minces a été développée. Cette nouvelle approche se base sur un couplage analytique-numérique de deux méthodes : les Développements Asymptotiques Raccordés (MAE) et la Partition de l'Unité (PUM). Ce couplage consiste à construire l'enrichissement de la PUM par MAE est mène à une forme corrigée de la méthode des éléments finis classique (FEM). Cette correction est obtenue à travers des matrices de correction contenant les informations géométriques et caractéristiques du matériau de la couche mince. Les matrices introduites par l'approche MAX-FEM simplifient son implémentation numérique sous différents codes de calculs (MATLAB, ABAQUS, ...) et permettent l'obtention de la solution globale en un seul calcul. Les résultats obtenus par la MAX-FEM pour des applications 1D et 2D thermomécaniques montrent une très bonne précision avec un temps de calcul minimal et sans raffinement de maillage. De plus, la MAX-FEM surmonte les limitations de la MAE ainsi que celle de la PUM en termes de nombre de calculs, de la sensibilité aux propriétés des matériaux, des conditions aux limites ainsi que l'intégration numérique. Finalement, l'approche MAX-FEM est exploitée pour le développement d'un nouveau protocole expérimental dédié à la caractérisation thermique des couches minces. Ce protocole vise l'identification, de manière simple, de la conductivité thermique de la couche mince après son élaboration et sous les deux régimes transitoire et permanent. L'approche consiste à confronter la nature du transfert thermique d'une éprouvette homogène à une contenant une couche mince. La différence relevée est directement liée à la conductivité thermique de la couche mince. Les résultats obtenus, après réalisation du banc d'essais, montrent une bonne précision de l'approche avec une méthodologie de mesure simple à mettre en oeuvre

  • Titre traduit

    The new hybrid approach MAX-FEM for the thermomechanical modelling of thin layers


  • Résumé

    This work introduces a new simplified finite elements method MAX-FEM based on hybrid analytical-numerical coupling. This method is intended to the multi-scales analysis of transient thermomechanical behavior of mediums containing thin layers such as bounded and coated structures. The MAX-FEM consists in correcting the classical Finite Elements Method (FEM) by correction matrices taking into account the presence of thin layers without any mesh refinement. The proposed correction is based on the analytical approach of Matched Asymptotic Expansions (MAE) and the numerical method of Partition of Unity Method (PUM). The developed approach can easily implemented under different numerical codes (MATLAB, ABAQUS, ...) and can be used to perform mechanical, thermal and thermomechanical analyses of 1D and 2D bounded and coated structures. The obtained results show a good accuracy with short computation time, and without any required mesh refinement. Also, the developed method overcomes the limitation of the MAE and PUM methods by exploiting the advantages of their coupling. Finally, the MAX-FEM approach was also used to develop an experimental test bench intended to the thermal characterization of thin layers. Indeed, a simple confrontation between the heat transfer in an homogeneous structure and a second structure with thin layer allows identifying the thermal conductivity in both transient and stationary regimes. The test bench is simple to release and the obtained results for brazed structure show a good accuracy of the developed approach.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. BU Ingénieurs.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.