Contrôle d'équations dispersives pour les ondes de surface

par Roberto De Almeida Capistrano Filho

Thèse de doctorat en Mathématiques

Sous la direction de Lionel Rosier et de Ademir Pazoto.

Le président du jury était Jaime Angulo.

Le jury était composé de Adan Corcho.

Les rapporteurs étaient Felipe Linares, Sorin Micu.


  • Résumé

    Dans cette thèse, nous prouvons des résultats concernant le contrôle et la stabilisation d'équations dispersives étudiées sur un intervalle borné. Pour commencer, nous étudions la stabilisation interne du système de Gear-Grimshaw, qui est un système de deux équations de Korteweg-de-Vries (KdV) couplées. Nous obtenons une décroissance exponentielle de l'énergie totale associée au modèle en introduisant une fonction de Lyapunov convenable. Nous prouvons aussi des résultats de contrôlabilité à zéro et exacte pour l'équation de Korteweg-de Vries avec un contrôle distribué à support dans un sous-intervalle du domaine. Pour la contrôlabilité à zéro du système linéarisé, nous utilisons l'approche classique basée sur la dualité qui ramène le problème à l'étude d'une inégalité d'observabilité qui, dans ce travail, est établie à l'aide d'une inégalité de Carleman. Ensuite, utilisant des fonctions plateau, nous prouvons un résultat de contrôlabilité exacte. Dans les deux cas, le résultat concernant le système non linéaire est obtenu à l'aide d'un argument de point fixe. Enfin, dans la lignée du résultat de contrôlabilité au bord obtenu par L. Rosier pour KdV, nous prouvons que le système linéaire de Boussinesq de type KdV-KdV est exactement contrôlable lorsque des contrôles sont appliqués au bord. Notre méthode repose sur l'utilisation de multiplicateurs et l'approche de la dualité mentionnée ci-dessus. Lorsqu'un mécanisme d'amortissement est introduit au bord, nous montrons que le système non linéaire est aussi exactement contrôlable et que l'énergie associée au modèle décroit exponentiellement

  • Titre traduit

    Control of dispersive equations for surface waves


  • Résumé

    This work is devoted to prove a series of results concerning the control and stabilization properties of dispersive models posed on a bounded interval. Initially, we study the internal stabilization of a coupled system of two Korteweg-de Vries equations (KdV), the so-called Gear-Grimshaw system. Defining a convenient Lyapunov function we obtain the exponential decay of the total energy associated to the model. We also prove results of null and exact controllability for the Korteweg-de Vries equation with a control acting internally on a subset of the domain. In the case of the null controllability for the linear model, we use a classical duality approach which reduces the problem to the study of an observability inequality that, in this work, is proved by means of a Carleman inequality. Then, making use of cut-off functions, the exact controllability is also investigated. In both cases, the result for the nonlinear system is obtained by means of fixed-point argument. Finally, in view of the result of the boundary controllability obtained by L. Rosier for the KdV equation, we prove that the linear Boussinesq system of KdV-KdV type is exactly controllable when the controls act in the boundary conditions. Our analysis is performed using multipliers and the duality approach mentioned above. Adding a damping mechanism in the boundary, it is proved that the nonlinear system is also exactly controllable and that the energy associated to the model decays exponentially


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?