Étude théorique et modélisation par la méthode FDTD de nanostructures plasmoniques : application à la conception de biocapteurs

par Ophélie Saison-Francioso (Saison)

Thèse de doctorat en Micro et nanotechnologies, acoustique et télécommunications

Sous la direction de Abdellatif Akjouj et de Sabine Szunerits.


  • Résumé

    Ce travail de thèse est une contribution à l’étude des propriétés optiques de structures plasmoniques composées de nanoparticules métalliques. Il s’appuie sur diverses simulations numériques réalisées à l’aide de la méthode des différences finies dans le domaine temporel ou FDTD (Finite-Difference Time-Domain). La première partie de ce travail concerne l’étude d’un réseau périodique de nanofils d’or, de section droite rectangulaire, situé au sein d’un environnement diélectrique multi-couches. L’influence des paramètres géométriques des nanofils, de la période du réseau et de l’épaisseur de diélectrique recouvrant les nanofils sur la position spectrale de la résonance plasmonique a été explorée. Cette étude a démontré que la longueur d’onde de résonance oscille quand l’épaisseur du diélectrique recouvrant les nanofils varie. Un modèle analytique simple a été développé afin de mieux appréhender l’origine de ces oscillations. L’influence des indices de réfraction de la matrice diélectrique sur les paramètres de l’oscillation a également été analysée. La deuxième partie de ce travail a été consacrée à la détermination et à l’étude de facteurs contrôlant la sensibilité des capteurs à résonance de plasmons de surface localisés. Différentes formes de nanoparticules et différents types de nanofils ont été analysés. De plus, trois grands thèmes ont été abordés :- l’influence sur la sensibilité du substrat sur lequel sont déposées les nanoparticules,- l’influence sur la sensibilité du matériau recouvrant les nanoparticules et,- l’origine du lien existant entre la longueur d’onde de résonance plasmonique et la sensibilité des nanoparticules à un changement d’indice de réfraction.

  • Titre traduit

    Theoretical study of plasmonic nanostructures and numerical simulation by FDTD method : application to biosensors design


  • Résumé

    This thesis is a contribution to the optical properties study of plasmonic structures composed by metallic nanoparticles. This study is based on numerical simulation results obtained by the Finite-Difference Time-Domain method (FDTD).The first part of this work is related to the analysis of gold nanowires periodic arrays, which section is rectangular, placed in a multi-layered dielectric environment. The influence of the nanowires geometrical parameters, of the array period and of the dielectric thickness covering the nanowires on the Localized Surface Plasmon Resonance (LSPR) spectral position has been explored. This study especially demonstrated that the resonance wavelength oscillates when the dielectric thickness covering the nanowires is varying. A simple analytical model has been developed in order to better understand the oscillations origin. The influence of the refractive indexes of the dielectric matrix on the oscillation parameters has been analyzed too.The second part of this work concerns the determination and the study of factors controlling LSPR sensors sensitivity. Different shapes of nanoparticles and different kinds of nanowires have been considered. Moreover, three wide topics have been approached in this part:- the influence of the nanoparticles substrate on the sensitivity,- the influence of the material covering the nanoparticles on the sensitivity and,- the origin of the relationship between the LSPR wavelentgh and the refractive index sensitivity of the nanoparticles.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université des sciences et technologies de Lille. Service commun de la documentation. Bibliothèque virtuelle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.