Tests d'hypothèses pour les processus de Poisson dans les cas non réguliers

par Lin Yang

Thèse de doctorat en Mathématiques

Sous la direction de Yury A. Kutoyants et de Sergueï Dachian.

Soutenue le 22-01-2014

à Le Mans , dans le cadre de École doctorale sciences et technologies de l'information et des matériaux (Nantes) , en partenariat avec Laboratoire manceau de mathématiques (laboratoire) et de LMM (laboratoire) .


  • Résumé

    Ce travail est consacré aux problèmes de testd’hypothèses pour les processus de Poisson nonhomogènes.L’objectif principal de ce travail est l’étude decomportement des différents tests dans le cas desmodèles statistiques singuliers. L’évolution de lasingularité de la fonction d'intensité est comme suit :régulière (l'information de Fisher finie), continue maisnon différentiable (singularité de type “cusp”),discontinue (singularité de type saut) et discontinueavec un saut de taille variable. Dans tous les cas ondécrit analytiquement les tests. Dans le cas d’un saut detaille variable, on présente également les propriétésasymptotiques des estimateurs.En particulier, on décrit les statistiques de tests, le choixdes seuils et le comportement des fonctions depuissance sous les alternatives locales. Le problèmeinitial est toujours le test d’une hypothèse simple contreune alternative unilatérale. La méthode principale est lathéorie de la convergence faible dans l’espace desfonctions discontinues. Cette théorie est appliquée àl’étude des processus de rapport de vraisemblancenormalisé dans les modèles singuliers considérés. Laconvergence faible du rapport de vraisemblance sousl’hypothèse et sous les alternatives vers les processuslimites correspondants nous permet de résoudre lesproblèmes mentionnés précédemment.Les résultats asymptotiques sont illustrés par dessimulations numériques contenant la construction destests, le choix des seuils et les fonctions de puissancessous les alternatives locales.

  • Titre traduit

    Hypotheses testing problems for inhomogeneous Poisson processes


  • Résumé

    This work is devoted to the hypotheses testing problems for inhomogeneous Poisson processes.The main object of the work is the study of the behaviour of different tests in the case of singular statistical models. The “evolution of singularity” of the intensity function is the following: regular (finite Fisherinformation), continuous but not differentiable (“cusp”type singularity), discontinuous (jump type singularity)and discontinuous with variable jump size. In all thecases we describe analytically the tests. In the case ofvariable jump size we present as well the asymptoticproperties of the estimators.In particular we describe the test statistics, the choice ofthresholds and the form of the power functions for thelocal alternatives. The initial problem is always the testof a simple hypothesis against a one-sided alternative.The main tool is the weak convergence theory in thespace of discontinuous functions. This theory is appliedto the study of the normalized likelihood ratio processesin the considered singular models. The weakconvergence of the likelihood ratio processes underhypothesis and under alternatives to the correspondinglimit processes allows us to solve the mentioned aboveproblems.The asymptotic results are illustrated by numericalsimulations which contain the construction of the tests,the choice of the thresholds, and the power functions forlocal alternatives.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Le Mans Université (Le Mans). Service commun de documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.