Modélisation des réponses calciques de réseaux d'astrocytes : Relations entre topologie et dynamiques

par Jules Lallouette

Thèse de doctorat en Informatique

Sous la direction de Hugues Berry.

Soutenue le 04-12-2014

à Lyon, INSA , dans le cadre de École doctorale en Informatique et Mathématiques de Lyon , en partenariat avec LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône) (laboratoire) et de Laboratoire d'InfoRmatique en Images et Systèmes d'Information / LIRIS (laboratoire) .

Le président du jury était Laurent Venance.

Le jury était composé de Hugues Berry, Laurent Venance, Bruno Cessac, Marja-Leena Linne, Alain Destexhe, Aude Panatier, Hédi Soula.

Les rapporteurs étaient Bruno Cessac, Marja-Leena Linne.


  • Résumé

    Pendant les 20 dernières années, les astrocytes, un type de cellules cérébrales ayant été jusque là relativement ignoré des neuroscientifiques, ont peu à peu gagné en notoriété grâce à de multiples découvertes. Contrairement aux neurones, ces cellules ne transmettent pas de signaux électriques mais communiquent par des changements intracellulaires de leurs concentrations en calcium. Des découvertes récentes semblent indiquer que, loin d'agir en autarcie, les astrocytes répondent à l'activité neuronale et sembleraient, bien que cela soit plus débattu, moduler la transmission synaptique par le relargage de molécules spécifiques appelées `gliotransmetteurs' (en référence aux neurotransmetteurs). Comme les neurones, les astrocytes forment des réseaux et communiquent leur activité calcique par diffusion d'un astrocyte à l'autre, formant ainsi de véritables vagues de calcium intercellulaires. Deux réseaux, de neuronnes et d'astrocytes, cohabitent ainsi dans le cerveau ; mais, alors que les réseaux de neuronnes ont fait l'objet de recherches expérimentales et théoriques, les réseaux d'astrocytes restent encore mal connus. Ainsi, il n'a été découvert que très récement que la topologie de ces réseaux pourrait s'averer plus complexe que la vision qui dominait jusqu'alors : celle d'un syncitium astrocytaire dépourvu de spécificités topologiques. Les travaux présentés dans cette thèse portent principalement sur l'effet que ces différentes topologies pourraient avoir sur la signalisation calcique astrocytaire. En effet, autant au niveau subcellulaire qu'inter-cellulaire, les mécanismes gouvernant l'activité calcique des astrocytes restent mals connus. Même dans le cas le plus documenté de la réponse somatique des astrocytes à une stimulation neuronale, les caractéristiques précises que la stimulation doit avoir pour évoquer une réponse des astrocytes sont inconnues. Il en est de même pour la transmission de vagues de calcium dans des réseaux d'astrocytes : on ignore encore les possibles effets de la complexité récemment documentée des réseaux d'astrocytes sur la propagation de ces vagues. Enfin, au niveau subcelulaire, les astrocytes possèdent une morphologie ramifiée extrèmement complexe qui possède elle-même une activité calcique. Les travaux présentés dans cette thèse utilisent des outils de modélisation et de simulation afin de déterminer les répercussions que l'organisation en réseaux des astrocytes pourrait avoir sur leurs dynamiques calciques. En résumé, nous proposons que la topologie des réseaux d'astrocytes a (1) des répercussion au niveau cellulaire, modulant la réponse des astrocytes à des stimulations neuronales ; (2) contrôle la propagation de vagues de calcium inter-astrocytaire en la favorisant lorsque les réseau sont peu couplés ; (3) joue un rôle important dans l’apparition de phénomènes de résonance stochastique.

  • Titre traduit

    Modeling calcium responses in astrocyte networks : Relationships between topology and dynamics


  • Résumé

    Over the last 20 years, astrocytes, a hitherto under-investigated type of brain cells, have gradually rose to prominence owing to multiple experimental discoveries. In contrast with neurons, these cells do not propagate electrical signals but communicate instead through changes in their intracellular calcium concentration. Recent discoveries indicate that, far from being isolated cells, astrocytes respond to neuronal activity and, although this is still controversial, seem to modulate synaptic transmission through the release of `gliotransmitter' molecules (in reference to neurotransmitters). Like neurons, astrocyte are organized in networks and communicate their calcium activity by intercellular diffusion of second messengers, forming intercellular calcium waves. Two networks, one of neurons and the other of astrocytes, thus coexist in the brain; while neuronal networks have been the subject of intense experimental and theoretical investigations, astrocyte networks have been much less investigated. Notably, it was only discovered recently that astrocyte network topology could be more complex than what the hitherto dominant view held (astrocytes organized in a syncytium deprived of any topological specificities). The work presented in this thesis is mainly related to the effect that different network topologies could have on astrocyte calcium signaling. The mechanisms that drive calcium signaling in astrocytes are, at both subcellular and intercellular levels, still not completely understood. Even in the best documented case of astrocyte somatic response to neuronal stimulation, the precise characteristic required from the stimulation to elicit an astrocytic response are still unknown. Similarly, the mechanisms governing intercellular calcium wave propagation in astrocyte networks are not fully known; notably, the effects of the recently documented network heterogeneity on calcium wave propagation have not been investigated. Finally, at the subcellular level, astrocytes display an extremely ramified and complex morphology that also hosts calcium activity. The work presented in this thesis make use of modeling and simulation in order to determine the possible effects of astrocyte network organization on their calcium signaling. We propose that astrocyte network topology: (1) controls single-cell responses to neuronal stimulation; (2) drives the propagation of intercellular calcium waves by favoring it when networks are weakly coupled; (3) can determine the appearance of stochastic resonance phenomena; (4) can be modulated by neuronal activity.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?