Compréhension des écoulements et optimisation des transferts de chaleur et de masse au sein d’une structure capillaire

par Herbert Obame Mve

Thèse de doctorat en Thermique énergétique

Sous la direction de Philippe Haberschill.

Soutenue le 26-05-2014

à Lyon, INSA , dans le cadre de Ecole Doctorale Mecanique, Energetique, Genie Civil, Acoustique (MEGA) (Villeurbanne) , en partenariat avec CETHIL - Centre d'Energétique et de Thermique de Lyon (Villeurbanne, Rhône) (laboratoire) et de Centre de Thermique de Lyon / CETHIL (laboratoire) .

Le président du jury était Christophe Josserand.

Le jury était composé de Philippe Haberschill, Christophe Josserand, Marc Clausse, Benoît Stutz, Emmanuel Boudard, Romuald Rullière.

Les rapporteurs étaient Marc Clausse, Benoît Stutz.


  • Résumé

    La climatisation automobile est un enjeu majeur pour les constructeurs automobiles dans la mesure où elle occasionne un rejet de 10 g de CO2 par km, une surconsommation énergétique de près de 5 % et sera pris en compte dans le bilan MEVG à l'horizon 2020. Dans cette perspective, le constructeur automobile PSA Peugeot Citroën a développé un nouveau procédé : la climatisation par absorption de vapeur d'eau par une solution saline de bromure de lithium, qui marque la rupture avec le système classique à compression de vapeur. Le travail mené dans ce manuscrit s'est focalisé au niveau de l'organe principal du système, l'évaporateur/absorbeur où les deux fluides s'écoulent et sont confinés chacun entre deux grilles tissées par des effets capillaires. Les transferts de masse et de chaleur qui s'y produisent, ont lieu à l'interface liquide/vapeur formée par des ménisques de forme complexe qui constituent la surface de d'échange. L'objectif est d'intensifier les transferts de masse et de chaleur qui diffuse à travers l'interface. Un banc expérimental permettant la description tridimensionnelle de la forme des ménisques au moyen de la microscopie confocale a été développé. Le modèle « volume of fluid » a été utilisé pour la reconstruction numérique de l'interface liquide/ vapeur. La comparaison entre les données expérimentales et les simulations numériques a montré un bon accord. Ces simulations montrent que l'écoulement est influencé par la grille avec la création de zones mortes et des mouvements de vorticité. Une optimisation numérique a été menée avec comme fonction objectif le flux qui diffuse à travers l'interface. Celle-ci a permis de définir des paramètres optimales de la grille permettant d’atteindre un flux de chaleur de près de 2,5 fois supérieur à celui du cas de référence. Cette optimisation a permis l'identification d'une zone préférentielle dans laquelle les transferts de chaleur sont maxima. Le travail a aussi abordé l'influence de la forme des fils et de la forme des ménisques, montrant qu'il est préférable d’adopter des matériaux à caractère hydrophobe avec des fils à section circulaire.

  • Titre traduit

    Flow analysis and optimization of heat and mass transfers in a capillary struture


  • Résumé

    Abstract The automotive air conditioning is a major challenge for the automotive manufacturers insofar it causes a release of 10 g/CO2/km, engenders an extrafuel consumption of 5 % and will be taken into account in the balance sheet in 2020 MEVG. In this perspective, the automotives constructor PSA Peugeot Citroën has developed a new process, absorption air conditioning of water vapor by lithium bromide solution, which marks a break with the classic vapor-compression system. This manuscript is focused at the main body of the system, an innovative evaporator/absorber where both fluids are flowing down and confined between two finely meshed plastic wire screens and maintained between them by capillary effects. The heat and mass transfers in this system occur at the liquid/vapour interface formed by complex menisci that represent the surface of transfer. An experimental test bench allowing the description of three-dimensional shape of menisci using confocal microscopy has been carried. The volume of fluid model has been used for the numerical reconstruction of the liquid/vapour interface. The comparison between numerical and experimental data has shown a good agreement. Numerical simulations have shown that the flow is influenced by the geometry that promotes the creation of stagnant layer solution and vorticity zones. A numerical optimization has been carried with as objective function the heat rate that di uses through the interface. This one has allowed to get out the optimal parameters allowing to have an heat rate of more than 2.5 times higher compared to the reference case. This optimization has highlighted a preferential zone in which heat transfers are maximum. The work has also dealt with the e ect of the shape of the wires and the effect of the shape of menisci on the transfer, showing that it is preferable to work with hydrophobic materials and with cylindrical wires.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Institut national des sciences appliquées (Villeurbanne, Rhône). Service Commun de la Documentation Doc’INSA. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.