Bascules à impulsion robustes en technologie 28nm FDSOI pour circuits numériques basse consommation à très large gamme de tension d'alimentation

par Sébastien Bernard

Thèse de doctorat en Nanoélectronique et nanotechnologie

Le président du jury était Lionel Torres.

Le jury était composé de Marc Belleville, Jean-Didier Legat, Alexandre Valentian, David Bol.

Les rapporteurs étaient Andrei Vladimirescu, Wim Dehaene.


  • Résumé

    Avec l'explosion du marché des applications portables et le paradigme de l'Internet des objets, la demande pour les circuits à très haute efficacité énergétique ne cesse de croître. Afin de repousser les limites de la loi de Moore, une nouvelle technologie est apparue très récemment dans les procédés industriels afin de remplacer la technologie en substrat massif ; elle est nommée fully-depleted silicon on insulator ou FDSOI. Dans les circuits numériques synchrones modernes, une grande portion de la consommation totale du circuit provient de l'arbre d'horloge, et en particulier son extrémité : les bascules. Dès lors, l'architecture adéquate de bascules est un choix crucial pour atteindre les contraintes de vitesse et d'énergie des applications basse-consommation. Après un large aperçu de l'état de l'art, les bascules à impulsion explicite sont reconnues les plus prometteuses pour les systèmes demandant une haute performance et une basse consommation. Cependant, cette architecture est pour l'instant fortement utilisée dans les circuits à haute performance et pratiquement absente des circuits à basse tension d'alimentation, principalement à cause de sa faible robustesse face aux variations.Dans ce travail, la conception d'architecture de bascule à impulsion explicite est étudiée dans le but d'améliorer la robustesse et l'efficacité énergétique. Un large panel d'architectures de bascule, avec les fonctions reset et scan, a été comparé dans le domaine énergie-délais, à haute et basse tension d'alimentation, grâce à une méthodologie de dimensionnement des transistors. Il a été montré que la technique dite de « back bias », l'un des principaux avantages de la technologie FDSOI, permettait des meilleures performances en énergie et délais que la méthodologie de dimensionnement. Ensuite, comme le générateur d'impulsion est la principale raison de dysfonctionnement, nous avons proposé une nouvelle architecture qui permet un très bon compromis entre robustesse à faible tension et consommation énergétique. Une topologie de bascule à impulsion explicite a été choisie pour être implémentée dans un banc de registres et, comparé aux bascules maître-esclave, elle présente une plus grande vitesse, une plus faible consommation énergétique et une plus petite surface.

  • Titre traduit

    Robust and energy-efficient explicit pulse-triggered flip-flops in 28nm fdsoi technology for ultrawide voltage range and ultra-low power circuits


  • Résumé

    The explosion market of the mobile application and the paradigm of the Internet of Things lead to a huge demand for energy-efficient systems. To overcome the limit of Moore's law due to bulk technology, a new transistor technology has appeared recently in industrial process: the fully-depleted silicon on insulator, or FDSOI.In modern ASIC designs, a large portion of the total power consumption is due to the leaves of the clock tree: the flip-flops. Therefore, the appropriate flip-flop architecture is a major choice to reach the speed and energy constraints of mobile and ultra-low power applications. After a thorough overview of the literature, the explicit pulse-triggered flip-flop topology is pointed out as a very interesting flip-flop architecture for high-speed and low-power systems. However, it is today only used in high-performances circuits mainly because of its poor robustness at ultra-low voltage.In this work, explicit pulse-triggered flip-flops architecture design is developed and studied in order to improve their robustness and their energy-efficiency. A large comparison of resettable and scannable latch architecture is performed in the energy-delay domain by modifying the sizing of the transistors, both at nominal and ultra-low voltage. Then, it is shown that the back biasing technique allowed by the FDSOI technology provides better energy and delay performances than the sizing methodology. As the pulse generator is the main cause of functional failure, we proposed a new architecture which provides both a good robustness at ultra-low voltage and an energy efficiency. A selected topology of explicit pulse-triggered flip-flop was implemented in a 16x32b register file which exhibits better speed, energy consumption and area performances than a version with master-slave flip-flops, mainly thanks to the sharing of the pulse generator over several latches.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?