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Résumé — abstract

La modélisation des phénoménes physiologiques induits par un écoulement, tels que
I’écoulement sanguin au travers d’une sténose ou l’écoulement d’air lors de la production de
parole, repose souvent sur des théories quasi-unidimensionnelles ou bi-dimensionnelles. Cepen-
dant, il est établi que le développement des couches limites dépend de la section transversale.
Le but de cette thése est de modéliser, simuler et caractériser I'importance potentielle de la
section transversale sur les écoulements laminaires, contrélés en pression, en ’absence ou en
présence d’une constriction. Des coordonnées de translation sont utilisées pour obtenir des
solutions pour des écoulement visqueux au travers d’une section de forme arbitraire. Cette
paramétrisation est appliquée & la résolution des équations physiques pour des formes & deux
et & trois dimensions. Un modéle d’écoulement simplifié quasi-tridimensionnel, qui prend en
compte les pertes dissipatives par convection, la viscosité et la forme de la section est présenté
et appliqué & la description de I’écoulement le long d’une sténose. Des données expérimentales
et issues de simulations numériques sont collectées afin de caractériser I'influence de la forme
de la section transversale dans le cas d’une constriction. simulation numérique sont comparées.
Mots clés: écoulement; modele analytique; simulation numérique; sténose; parole

Abstract — abstract

Physical models of physiological flow-induced phenomena, such as blood flow through a steno-
sis or air flow during human speech production, often rely on a quasi-one-dimensional or
two-dimensional flow model, so that details of the cross section shape are neglected. Never-
theless, boundary layer development is known to depend on the cross section shape. The aim
of this thesis is to model, simulate and characterize the potential impact of the cross section
shape for pressure-driven laminar channel flow without and with constriction. Stretched co-
ordinates are introduced to obtain viscous flow solutions for channels with an arbitrary cross
section. The proposed cross section shape parametrization is applied to solve physical equa-
tions for two-dimensional and three-dimensional shapes. A simplified quasi-three-dimensional
flow model, which accounts for kinetic losses, viscosity and the cross section shape, is pre-
sented and applied to describe the flow through a stenosis. Finally, flow data are gathered
experimentally and numerically in order to characterize the influence of the cross section shape
in the case of a constricted channel. Modeled, experimental and numerical data are compared.
Keywords: laminar viscous flow; pressure-driven channel flow; analytical flow model; im-
mersed boundary method; stenosis; speech production

GIPSA Lab, BP 46, 11 rue des Mathematiques,
38402, Grenoble, France
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CHAPTER 1

Introduction

1.1 Formulation of the problem

Pressure—driven channel flow is associated with physiological flows for which constricted chan-
nel portions occur either naturally or are due to a pathology or an abnormality. Well known
examples are for instance airflow through the human lower (asthma) or upper airways (human
speech production, obstructive sleep apnea) and blood flow through a stenosis.

Consequently, efforts are made to model pressure—driven flow through constricted channels
in order to understand the mechanisms involved and to develop aiding tools for health care
workers such as surgeons, medical doctors, speech therapists, prosthesis designers (dental or
glottal), aerosol spray designers, etc. Due to the complexity of the human respiratory (Fig. 1.1)
and cardiovascular system, most studies severely simplify the physiological reality in order to
come up with a configuration depending on a limited number of meaningful physiological and
physical parameters [56, 117, 5, 98, 72, 112, 71, 8, 104, 74]. Such a simplification enhances
understanding of the ongoing physical phenomena and facilitates experimental validation of
the models accuracy [107, 15, 97, 70, 76, 25, 111].

In general, simplifications of the flow model through portions of the respiratory or car-
diovascular system are based on a non dimensional analysis of the governing Navier-Stokes
equations [9] while accounting for typical values of physiological, geometrical and flow char-
acteristics. From these observations relevant non-dimensional numbers (Mach number Ma,
Reynolds number Re, Strouhal number S and mean channel width-to-height ratio Ar) allow
one simplify the flow model. For instance, glottal flow during phonation can be assumed to
be incompressible (Ma? < 0.7), laminar inviscid (Re ~ O(10%)), quasi-steady (Sr < 1) and
two-dimensional (Ar > 4) |28, 51, 98, 110, 63, 120, 23]. The assumption of a two-dimensional
glottal flow implies a rectangular glottal cross section shape for which height h(z) varies along
main flow direction z, whereas glottal width w is fixed [56, 117, 5, 98, 72, 112, 71, 8, 64, 104,
74]. Theoretical flow models based on these assumptions result in a quasi-one-dimensional flow
description when accounting for kinetic losses as well as viscous losses [30, 25, 23]. Therefore,
quasi-one-dimensional (1D) or two-dimensional (2D) flow models have proven to be extremely
useful to grasp the underlying physics and are applied to mimic and predict ongoing phe-
nomena using few computational resources while allowing experimental validation on replicas
with different degrees of complexity [120, 23, 20]. Naturally, the assumption of a 1D or 2D
geometry implies that details of the cross section shape perpendicular to main flow direction

1
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Figure 1.1: The human airway system [1].

x are neglected.

Nevertheless, visualization of the auto-oscillation of deformable mechanical glottal repli-
cas [121] as well as observations of the glottal geometry during human speech production |37,
28, 91, 131, 31| revealed that the cross section shape defers from a rectangular shape. For
example, a "neutral" vowel (‘e’ as in taken or ‘i’ as in pencil) is defined as a vowel produced by
a vocal tract configuration that has uniform cross section area along its entire length in which
the vocal tract can be treated mathematically as a single uniform tube closed at one end (the
glottis). While in reality the configuration of the vocal tract during speech production is much
more complex. Fig 1.2a shows the derived medial section of a vocal tract during the produc-
tion of a high central spread-lipped vowel. The red line approximately represents the mid line
of the vocal tract during this gesture. Fig. 1.2b displays seven cross section shapes along the
vocal tract taken from the equivalently numbered locations in Fig. 1.2a. It can be seen that
the actual cross section shape of the vocal tract varies greatly along its length and this is the
case even during the production of a neutral vowel. Fig. 1.3 shows that the assumption of a
rectangular shape can be questioned even for non-pathological conditions. The same way a
large diversity of cross section shapes is observed for the cardiovascular system as illustrated
in Fig. 1.4.
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(a) (b)

Figure 1.2: a) X-ray derived vocal tract medial section during the articulation of a high central
spread-lipped vowel (/i/) spoken by an adult male. b) cross section shapes were determined
along the vocal tract at the cross section lines numbered 1 to 7 (see Fig. 1.2b) [37].

Figure 1.3: Still images of vibrating vocal folds (http://bastianmedicalmedia.com/photos/
vocal-fold-bowing/).

Since the cross section shape is known to affect boundary layer development [9], varying the
cross section shape might alter the viscous contribution to the pressure drop, the theoretical
flow models using the above mentioned simplifications can thus be questioned for normal as
well as pathological geometrical conditions.

Recently, Computational Fluid Dynamics (CFD) has been utilized to characterize the
fluid flow in human biological circulation models. Efforts have been made to understand the
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blood flow and related problems in cardiovascular system [116, 14, 60, 69, 17, 89, 115, 118,
123] using patience-specific computational model. Several authors [130, 103, 68, 79, 114, 128,
13, 57, 58, 93, 84, 92, 124, 67, 36| give important contributions to three-dimensional steady
and unsteady modeling of flow through bifurcating lung branches and realistic oropharynx
geometries with respect to quiet respiration. Experimental validation of flow simulations
through human upper airways is presented in [50, 90]. In order to assess systematic variation
of the constricted passage and flow conditions instead of quiet respiration three-dimensional
models of the impact of the geometry and flow circulation on the flow development with finite
element modeling are assessed in [19, 3, 132, 16]. In particular, automatic mesh adaptation,
as proposed in [19], is of interest considering modeling of the total fluid-structure interaction
involving varying geometrical configurations in space and time. Other studies propose large
eddy simulation (LES) of flow in simplified human airways [78, 59, 122, 22, 21]. Nevertheless,
the computational load of accurate three-dimensional modeling, requiring a large amount of
mesh points, should not be underestimated and seems at current date out of reach for clinical
applications [69].
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Figure 1.5: Overview of the thesis objectives.
1.2 Objectives and outline of the thesis

The aim of the current work is to assess the potential impact of a simple ‘quasi-three-
dimensional’ flow model — with low computational cost and which takes into account kinetic
losses, viscosity as well as the cross section shape — on the flow outcome. The flow model out-
come is analyzed with respect to the outcome of quasi-one-dimensional and two-dimensional
flow model, a three-dimensional flow model as well as experimental flow data. The proposed
model with low computational cost, is applied to phonation, biological circulation systems
and physical equations. An overview of the thesis objectives is presented in Fig. 1.5.

In the following chapter, Chap. 2, we consider pressure-driven viscous flow through uniform
channels with different, but constant cross section shape. We extend results for classical cross
section shapes to an arbitrary cross section shape for which the solution is obtained either
numerically using a pseudo-spectral approach or quasi-analytically.

Next, in Chap. 3, we exploit the proposed parametrization of an arbitrary cross section
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shape following the ‘superformula’ to physical equations such as the wave equation for two-
dimensional and three-dimensional geometries.

In Chap. 4, we integrate the cross section shape in a flow model which can be applied
to pressure-driven flow through a constricted channel with different cross section shape. The
flow model is used to estimate the influence of the cross section shape on a major phonation
parameter, i.e. the minimum phonation threshold pressure required to sustain vocal folds
auto-oscillation.

In order to assess the influence of the cross section shape of a constriction on the flow,
experimental and numerical data are gathered as reported in Chap. 5 and 6, respectively.
Besides the effect of the cross section shape on the flow, the influence of flow conditions
upstream from the constriction are experimentally assessed. Numerical data are simulated
using the Immersed Boundary (IB) method. In the current work the structure is fixed to
match the experimental and model geometry so that the accuracy of the flow model can
be evaluated. Notice that the Immersed Boundary method is suitable to capture the fluid-
structure interaction, which is of particular interest for the aimed biological applications. A
comparison is made between modeled, experimental and numerical data.

Finally, conclusions with respect to the influence of the cross section shape on the flow and
the ability of the different model approaches to capture its effect are presented in Chap. 7.
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Developed laminar viscous flow
through uniform channels
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In the current chapter we present quasi-analytical solutions for developed pressure-driven

laminar viscous flow through uniform channels of different, but constant cross section shape.

Fig. 2.1 illustrates the main geometrical characteristics for a channel of length L oriented in

the streamwise x direction with its entry at x = xg and a constant arbitrary cross section with
area A, perimeter P, and hydraulic diameter D defined as D = 4A/P,,. At first, a quasi-
analytical solution for a limited number of cross section shapes is presented. Next, a general

quasi-analytical solution for an arbitrary cross section shape is proposed and the solution is

compared to a numerical solution obtained using a pseudo-spectral approach.

2.1 Poisson equation in polar and Cartesian coordinates

We consider the Navier-Stokes equation
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Figure 2.1: Tllustration of a uniform channel geometry of length L with arbitrary but constant
cross section shape of area A, perimeter P, and hydraulic diameter D. The channel is oriented
along the streamwise direction = and the streamwise channel onset coordinate is denoted xg.
The spanwise direction y and transverse direction z are indicated.

0
p(al;—i—(u-V)u):—VP—FV-T—i—f, (2.1)

where u = (u,v,w) is the flow velocity, p is the fluid density, P is the pressure, T is the
(deviatoric) component of the total stress tensor, and f represents body forces (per unit
volume) acting on the fluid and V is the del operator.

Next, we consider conservation of mass expressed by the continuity equation

dp
— +V.-pu=0. 2.2
5 p (2.2)

If the flow is assumed to be incompressible with constant density p, then the continuity
equation simplifies to V - u = 0. Taking the incompressible flow assumption into account and
assuming constant dynamic viscosity p, the Navier-Stokes equation (2.1) will read, in vector
form:

0
p <altl + (u- V)u) = —VP + pAu+f. (2.3)

Now let us consider a straight duct of arbitrary but constant cross section shape of sufficient
length to obtain fully developed laminar channel flow. Ref. ([126]) shows that, regardless of
the cross section shape, the minimum channel length, entry length Ly, for laminar flow is
given as,

Ly~ (0.05Re +0.5)D, (2.4)

where D denotes the hydraulic diameter and Re denotes the flow’s Reynolds number based
on D'. Fig. 2.2 illustrates the relationship between entry length L ¢ and hydraulic diameter
D for typical range Reynolds number, Re < 0(10%), mentioned in the introduction.

'so Re = % with volume flow rate @, hydraulic diameter D, area A and kinematic viscosity of the fluid
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Figure 2.2: Illustration of the relationship between entry length L; and hydraulic diameter
D for different Reynolds numbers. The hydraulic diameter range and the Reynolds number
range is relevant for the aimed biological flow applications mentioned in Fig. 1.5.

When the streamwise coordinate x > Ly (or L > Ly with 29 = 0 ), the velocity becomes
purely axial and varies only with the lateral coordinate, thus v = w = 0 and u = u(y, 2).
The flow is then called fully developed. For fully developed pressure-driven flow through a
uniform channel with arbitrary but constant cross section shape, and under the assumptions
of laminar, incompressible, parallel and steady viscous flow, the streamwise component of
the momentum equation expressed in Cartesian coordinates (z,y, z) reduces to the following
Poisson equation [9, 126]?

1dP  0*u  0*u
=+, (2.5)
wdr Oy 0z

with driving pressure gradient dP/dzx, velocity u(y, z) and dynamic viscosity u. The spanwise
and transverse components of the momentum equation become,

oP oP
—0. =— =0 2.6
ay 9y 82’ J ( )
and the continuity equation yields,
ou
— =0. 2.7
Ox 0 27)

In cylindrical coordinates (r,6,z), and under the same assumptions, the Poisson equation
(2.5) becomes

v. Unless mentioned differently, we present results using air as a fluid with density p = 1.2kg/m?, dynamic
viscosity 4 = 1.8 x 107° Pa-s and kinematic viscosity v = 1.5 x 10™°m?/s.
2The gravitational force is neglected.
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1dP 10 ou 1 0%u
el (e — (2.8)
wdxr ror \ Or r2 062
while the spanwise and transverse components of the momentum equation become,
0P oP
=0, =— =0 2.9
or T 00 ’ (29)

and the continuity equation is still the one given in (2.7).

For uniform geometries and applying the no slip boundary condition u = 0 on the channel
walls, (2.5) can be rewritten as a classical Dirichlet problem which can be solved analytically
for simple geometries using e.g. separation of variables or conformal mapping [86, 11, 106, 48,
66]. Therefore exact solutions can be obtained for: local velocity u(y, z), local pressure P(z),
wall shear stress 7(x) and derived quantities such as volume flow rate @) and bulk Reynolds
number Re = %—5 again based on hydraulic diameter D. The local pressure P(z) can be
obtained by integrating (2.5) or (2.8). The wall shear stress is defined as 7 = :l:ug—Z]w or

j:,u%\w in plane coordinates and 7 = ﬂ:u%‘w in cylindrical coordinates, in which the symbol

depend on the positive normal direction of the boundary.

In the following quasi-analytical solutions are given for some cross section shapes defined
by geometrical parameters, denoted (a, b), of which some are validated on expressions reported
in literature [95, 126, 81, 101, 49, 11]. Analytical solutions of the volume flow rate can be
described in general by an expression of the form,

1 dp
= By(a,b)— | —— 2.10
Q=pfan; (-2). (2.10)
for which /3, depends on the cross section shape parameters (a,b). Consequently, the resulting
volume flow rate is proportional to the ratio of the driving pressure gradient dP/dz to the
dynamic viscosity p. Expression (2.10) also holds in the case of a quasi-one dimensional flow
model approach [25] for which the viscous contribution to the pressure drop is accounted for

by a Poiseuille term under the assumption of a rectangular cross section with fixed width w
and height h.

It is seen that besides the volume flow rate @ also the velocity distribution u(y,z) is
proportional to the ratio of the driving pressure gradient dP/dz and the dynamic viscosity p
so that the following holds using (2.10),

o (Y o et
u—ﬁu(a,b)u< dx) 0 u_Qﬁq(a,b)’ (2.11)

in which g, (a, b) expresses the influence of the cross section shape on the velocity distribution.
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The wall shear stress

= By(a,b) <j§> , (2.12)

depends on the driving pressure gradient dP/dx and the cross section shape [;(a,b).

From expression (2.10), it follows that the viscous contribution to the pressure drop is

T dx
o BQ(Q> b) "

APyisc(r) = —p@ (2.13)

with x¢ denotes the channel onset and z > x9. Consequently, AP,;s. varies linearly with
volume flow rate () and dynamic viscosity p and is reversed proportional to the cross
section shape factor ;. In the following section, expressions for 34, B, and j3; are derived
quasi-analytically for some particular cross section shapes.

2.1.1 Quasi-analytical solutions for particular cross section shapes

The uniform channel geometry is fully defined by the cross section shape. In order to use
the cross section shape in quasi-analytical models only shapes for which the geometry can be
expressed analytically using one or two geometrical parameters (a,b) are assessed: circle (cl),
rectangle (re), ellipse (el), eccentric annulus (ea), concentric annulus (ca), half moon (hm),
circular sector (cs), equilateral triangle (tr) and limacon (Im). Different cross section shapes
and associated geometrical parameters are illustrated in Fig. 2.3.

The chosen shapes have, although a severe idealization, some relevance to describe the
channel cross section shape in the case of normal as well as pathological geometrical conditions
of the human respiratory and cardiovascular systems. The circular, rectangular and elliptical
cross section shapes are idealized shapes assuming a perfect symmetry of the channel or the
constricted portion with respect to the spanwise y and transverse z directions. The eccentric
annulus, half moon and limacon are crude approximations to an asymmetrical shape due to e.g.
the presence of a polyp, a tumor, an asymmetrical stenosis or a vocal tract during articulation.
The circular sector and the equilateral triangle are approximations of asymmetrical cross
section shapes occurring e.g. at the glottis during normal respiration. Comparison between
different shapes is done by imposing either area A or hydraulic diameter D. Cross section
shapes which are defined using two instead of one geometrical parameter require an addition
condition for a geometrical quantity. Expressions for area A, hydraulic diameter D, total
width y¢r and perimeter P, as a function of geometrical parameters (a,b) for the shapes
shown in Fig. 2.3 are given in Table 2.1.

Quasi-analytical solutions for the cross section shapes shown in Fig. 2.3 are obtained as
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(hm) sector (cs) triangle (tr) (b<1)

Figure 2.3: cross section shapes with parameters (a,b) in the (y, z) plane. Note that for a
circular sector, b indicates an angle. As in Fig. 2.1, x denotes the streamwise, y the spanwise
and z the transverse direction.

detailed in Appendix A. From the obtained solutions for the volume flow rate @, velocity
profile u and wall shear stress 7 the terms depending on the cross section shapes are defined.
The term f,(a, b) needed to quantify the volume flow rate (2.10) is provided in Table 2.2. The
term Sy (a,b) of (2.11) describing velocity distribution u(y, z) for different cross section shapes
is given in Table 2.3. Table 2.4 lists the corresponding term f;(a,b) needed to quantify the
wall shear stress.

In the following the influence of the cross section shape on the model outcome is assessed
for developed laminar viscous flow through a uniform channel. The comparison between dif-
ferent cross section shapes is assessed by imposing either area A or hydraulic diameter D.
As mentioned the circle and equilateral triangle cross section shapes are fully described by
one parameter, ay and ay., whose value follows immediately from the imposed A or D. For
the remaining cross section shapes, an additional condition is necessary in order to obtain
the geometrical parameter set {a, b} illustrated in Fig. 2.3. Two different types of additional
conditions are considered. Firstly, an explicit condition requiring a parameter apqpe is intro-
duced scaling the cross section shape as: are = Qurelel, Gel = Qellcl, beqg = Qegleq; bes = Qes,
bhm = QpmGpm and by, = . Secondly, the required additional condition is obtained by im-
posing, besides area A or hydraulic diameter D, a fixed width w in the spanwise direction, ¢.e.
Yot = w. The relationship between the geometrical parameters and quantities was given in
Table 2.1. The influence of the cross section shape on the quasi-analytical velocity distribution
is considered by quantifying the velocity distribution as presented in the next section 2.1.2.
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Table 2.1: Geometrical quantities for different shapes as a function of the cross section pa-
rameters (a,b) defined in Fig. 2.3 [12].

shape A D Ytot P
circle ra’ 2a 2a 2ma
lipse(1:3) dab : 2 4B /1 — (2)2
ellipse wab (a+b)(1+%+g+2’fﬁ> a a ()
rectangle 4ab (%l; 2a 4(a +b)
il 1
equilatera §a2 ?a ?a -
triangle
circular
&b 74 a a(2+0)
sector
eccentric
annulus
m(a? — b?) 2(a —b) 2(a —b) 2m (a+b)
concentric
annulus
a? (m — 02 +  sin(265))
2
half moon(?) . #‘?MH)) a+acos(fz) | (m—63)(2a+0b)
—%(W — 65 — sin )
limacon ma? (1 + %) 4a Z;ii a(ll + b?l o2 (b* +4)
(72 — %)
_ (a=b)®
W h= (atb) "

(2) 9, = 2arcsin (

%)

®) B(z) = fog V1 — x2sin?tdt is the complete elliptic integral of the second kind.

2.1.2 Quasi-analytical velocity distribution

The ratio of maximum velocity g, and maximum velocity for a circular cross section shape

cl

umax

the cross section shape. The ratio Umqs/u

is assessed for an imposed area® A = 79 mm
is constant for a circle (=1) and equilateral

2

cl
max

in order to estimate the influence of

triangle (=0.8) since these shapes are fully determined by the imposed area and hence do not

3The imposed area A = 79 mm? corresponds to a circle with radius bmm, i.e. a, = bmm, which is relevant
to human airways and other biological circulation systems.
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Table 2.2: ,(a,b) of (2.10) for volume flow rate @ [95, 126, 101, 11].

Shape By(a,b)
] 4
circle mat
] 333
ellipse T8 be
o0
rectangle(!) % bh— % D mh(ﬁ%
n=1,3,...
equilateral Vit
320
triangle
circular T P i )
tor() ! * ™ A% 1 (n+2b/m)3(n—2b/m)
sector =13...
oo
T gt —pt — AeME g2 )2 S ne‘"(‘“”]
eccentric ° [ = =y Snh(n—ny)
annulus(!?) 0<c<a—b F=2at+e
M=VFT—&
11, F+M 11, FeetM
v =3IniHE, B =3 In F=
concentric . [04 y (aQ—bQ)Q}
8 Ing
annulus
L1963h + 2Lgb3) sin 01) + (a* — bt 9422 0,
half 7 o x
neon 01 = arccos(b/2a)
limacon §a4 (1 + 402 — 2b4)
Poiseuille(®) u%3

(1) infinite sum is limited to n < 60.
(2) ¢ yields the distance between inner and outer circle centers.

(3) quasi-one-dimensional approach: height h and fixed width w.

depend on the parameter «. For all other cross section shapes, the choice of the parameter
« does influence to some extent the velocity distribution as shown in Fig. 2.4 by considering
Umaz /Ul . as a function of a.

It is seen from Fig. 2.4a that varying the cross section shape by increasing « from 0
(corresponding to a circle) to 0.95 reduces the maximum velocity with 40% for a half moon
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Table 2.3: B,(a,b) of (2.11) for velocity distribution v [95, 126, 101, 81, 11] .

Shape Bu(a,b)
circle %(Cﬁ —7?)

. 212 2 2
ellipse %a%fzﬁ (1-% - %)

1 1(p2 _ .2 _ 3202 n=1 cosh(“gp") cos(“5*)
rectangle() 510 - o (=1) 2 cosh(nz{a) i
equilateral
o A2 - )2z - Vi)

riangle
circular _ﬂrz (1 Ccooss2b9 )
sector() 160202 ntl o cos (nmd/b)
T > (=172 (3) " seram oz
00 —ng . _n .
2 e coth Bsinh (n(n—=y))—e™ ™7 coth v sinh (n(n—_))
M=\ 5 (=1)" S (7(5—7))
eccentric cothy—coth 3 B(1—2coth v)—~(1—2 coth 3) coshn—cos &
annulus £ Co8 (n{) - 2(v—5B) + 4(v—B) " 4(coshn+cos§)
(1,2,3) 0<c é a— b, F = QQ_SZ—FCQ ’ M = m
11, F+M 11, F—c+M
y=3ln FJ—er f=3n F—iM
concentric
1.2 .2 2 _ 32yIn(a/r)
| L la? =2+ (0 - 0?) ]
annulus
half moon i (r? —b?) (LCTOSQ -1)
limacon®) @ 14266 + b2 — (€ + b(E2 — 12))% — (1 + 2b€n)?]
Poiseuille(®) —2(y* — hy)

(1) infinite sum is limited to n < 60.

(2) ¢ yields the distance between inner and outer circle centers.

(3) the mapping is y + iz = M tanh (£ +in) with 0 < £ <27, v <n < .

(4) the mapping is (y, z) = (a(& + b(&% — 1)), a(n + 2b€n)) on the circle (€2 + n?) < 1.

() quasi-one-dimensional approach: height h, 0 <y < h.

and with 5% for a limacon cross section shape. Fig. 2.4b shows that varying the cross section
shape by increasing « from \/m (corresponding to a square) for a rectangular and from
1 (corresponding to a circle) for an ellipse to 12 reduces the maximum velocity with 99%.
Fig. 2.4c illustatrates that for a circular sector increasing the angle b decreases the influence of
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Table 2.4: B;(a,b) of (2.12) for wall shear stress 7 [49, 11].

Shape Bi(a,b)

circle 5, (r=a)

: 22 Jy? 22 2P
ellipse — e \/ﬂ7 (+eE=1

00 n—1
w5 CRT o] - k)
1

rectangle(!) =15 cosh
oo n
% 3 (<17 tanh ()0 (2 = )
i=1,3,
equilateral —La(z— @a), (y = £3%22)
triangle 2
° 22— 9. (= %)
. _ | 142t 10’0 o i f=+2
circular T (I+2tana) + 5% X (nF 22)(n_22) , (0 =+3)
(1) n=1,3... ™ ™
sector ~
20 8 ntl (nm6/a) _
—3 (1_%)_7%”:123 (-1) 2 m} ,(r=a)
_M2 |: il (_1) n e~ ™8 coth B cosh (n(gi;}z)(ilf(;:’;;)coth'ycosh (n(n—p8))
eccentric

coth y—coth 8 sinh 7 cos £ _
annulus n.cos (ng) + 2v=B)  2(coshn+cos 5)2} (n=.0)

(1,25) 0<c<a-—b F= 7‘12_;’2“2 M =+VF?2—qa2
T T

2 2
concentric i {Zb + bln(bl/)a)} (r=1»)
annulus b?

[2 + aln(b/a)—‘ (T = a)
half moon 1(4acosf — 2b), (r = b)
—i(% —2acosf), (r =2acosb)

limacon —%(1 + 2bcos  + 2b?) cos 0, (0 < 6 < 2m)
Poiseuille(®) Y — %, (y=0,h)

(1) infinite sum is limited to n < 60.
(2) ¢ yields the distance between inner and outer circle centers.
(3) the mapping is y + iz = M tanh (¢ +in) with 0 < & < 2m, v <n < B.

(4) quasi-one-dimensional approach: height h, 0 <y < h.
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Figure 2.4: Illustration of the influence of geometrical parameter a on normalized maximum
velocity, Umaz /us ., for different cross section shapes and imposed area A = 79 mm?. Vertical
lines indicate values corresponding to default parameter set («y) and non-default parameter

cl

set () for which Umae/ul,,. ~ 1 and umqes/ul,, < 1, respectively.

viscosity at first until b ~ 85°. Further increasing the angle enforces the influence of viscosity,
so that the ratio Uyar /US,, decreases. Actually, this general tendency reflects the variation of
the hydraulic diameter D as a function of angle b. Since the minimum effect of viscosity near
b ~ 85° corresponds to a minimum perimeter P,, and hence a maximum hydraulic diameter D
(since the area A is fixed and D = %) which is illustrated in Fig. 2.5. Consequently, Fig. 2.4
shows that for a constant area A and cross section shape, the scaling parameter « influences
the effect of viscosity on the flow development since the variation of the ratio umaz /u,, Wwith
« is significant for all assessed cross section shapes.

In order to evaluate the impact of the cross section shape in more detail, two sets of
parameters a are selected, default parameter set (1) and non-default parameter set (aw),
resulting in Umae /U, ~ 1 and umaes /uc,, < 1, respectively. Default parameter set (o) is
defined as: aye = lag, aeg = 1.2a¢, beg = 0.2aeq, bes = 7/3, bpm = 0.2ap,, and by, = 0.2.
Non-default parameter set (ag) yields: ape = 10ay, aq = 10a¢, beq = 0.6aeq, bes = /6,
brm = 0.6ap,, and by, = 0.6. Both parameter sets are indicated in Fig. 2.4.

Three different cross section shapes are obtained by imposing area A=79mm? together
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Figure 2.5: Circular sector (cs) of fixed area and varying angle b: a) perimeter P,,(b) and b)
hydraulic diameter D(b).

with one of the following conditions:

e default parameter set (1),

e non-default parameter set (),

o fixed spanwise width w, i.e. yor = w.

The resulting velocity distribution w(y/a, z/ae) for a uniform channel with imposed area
A =179 mm? and pressure gradient dP/dz = 75 Pa is further illustrated in Fig. 2.6 for default
parameter set (o) and in Fig. 2.7 for non-default parameter set (a2) and fixed spanwise width

(Ytot = w).

From Fig. 2.6, obtained using default parameter set (aq), it is seen that in accordance
with Fig. 2.4 the maximum velocity for all cross section shapes varies between values observed
for a circular and an equilateral triangle cross section shape so that the maximum velocity
reduction compared to a circular cross section yields 20%. From Fig. 2.7 is seen that using
non-default parameter set (ag) or imposing a fixed width (w) reduces the velocity more (20%
up to 98%).

The influence of the cross section shape on the maximum velocity is further quantified in
Fig. 2.8 by imposing either area A = 79 mm? or the corresponding hydraulic diameter D = 10
mm in combination with default parameter set (1), non-default parameter set (ag) or fixed
width (w = 20mm).

Fig. 2.8a shows the maximum velocity normalized with respect to the maximum velocity of

re

a rectangular cross section shape *. As before, the variation from u’¢,

for default parameter
set (1) is small yielding less than 5% when imposing A and less than 15% when imposing D.

“The rectangular cross section shape is taken as a reference since the shape is related to the quasi-one-
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Figure 2.6: Velocity distribution u(y/ae,z/aq) for A = 79 mm? and dP/dx = 75 Pa/m for
airflow and geometrical default parameter set (ay) while ay = 5mm.
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w = 4 X ay while ag = 5mm.
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Figure 2.8: Tlustration of influence of cross section shapes (re: rectangle, el: ellipse, ea:
eccentric annulus, c¢s: circular sector) obtained from imposing different conditions (default
parameter set (o), non-default parameter set (a2) and fixed width (w = 20mm)) for imposed
area A = 79mm? or hydraulic diameter D = 10mm on the maximum velocity: a) with respect
to maximum velocities associated with a rectangular cross section and b) with respect to
maximum velocities associated with default parameter set. The dashed line corresponds to

paraml o
Umaz /umax =1

For fixed area A the variation from u/¢, . increases to 60% in the case of a fixed width w and to
more than 300% when non-default parameter set («s) is used. Imposing the hydraulic diameter
D instead of area A limits the velocity variation to 60% for both non-default parameter set
(a2) and fixed width (w).

Fig. 2.8b illustrates for each cross section shape the ratio of the maximum velocity of
default parameter set () to the maximum velocity obtained using non-default parameter set
(a2) or a fixed width (w). The relative difference between different parameter sets is limited
to 40% when the hydraulic diameter D is imposed. In the case where area A is imposed, the
velocity ratio varies from 40% up to >100%.

The mean wall shear stress on the boundary of the cross section shape as a function of
driving pressure gradient dP/dx is illustrated in Fig. 2.9. The normalized wall shear stress
increases as driving pressure gradient dP/dx decreases or as area A decreases.

dimensional model assumption of fixed width w (two-dimensional flow is assumed to take into account the
viscous contribution to the pressure drop) and is a case which occurs frequently when flow models are experi-
mentally validated. Note that in case a fixed width w is imposed its value is set to w = 20mm in accordance
with a common value in experimental studies.
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dP/dx [Pa/m]

Figure 2.9: Normalized wall shear stress 7 as a function of dP/dx, area A and cross section
shape (circular sector with b = 60°) with w4 indicating the bulk velocity in the case of a
circular cross section shape.

2.2 Poisson equation in stretched coordinates

2.2.1 Arbitrary cross section shape

In® the previous section 2.1.1 solutions are discussed for particular cross section shapes. Nev-
ertheless, given the variation and irregularity of cross section shapes observed for biological
circulation systems, it is important to introduce a general quasi-analytical solution for a chan-
nel with an arbitrary cross section shape. In the following, we introduce a general polar
equation, the so called "superformula" [39], in order to describe the boundary 9 of an arbi-
trary shape with 0 < 0 < 27

cos(mTQ) " sin(mT@)

T

a

ngq —1/n1
r(0) = g(0) [ ] =g(0)- f(0), m>0. (2.14)

This equation describes almost any closed curve based on the deformed circle, f(0) with
parameter set {m, n1, n2, n3, a, b}°. The function g(f) can be considered as a modifier factor
of the function f(6) for which parameters depend on the used function, for example, the
modifier with limacon shape g(6) = ngq + nscosf. Fig. 2.10 illustrates some of the particular
cross section shapes introduced previously in Fig 2.3. The shapes are generated using the
general polar equation (2.14) with the parameters listed in Table 2.5.

Now let us consider the (z,y) plane expressed in polar coordinates (p, 6)

x = pcosf, y=psinb, (2.15)

and assuming that the radius equation p on boundary 02

5In this section, the symbol p denotes the polar radius and not the fluid density.
5The method to estimate these parameters from empirical data is presented in Appendix B.
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Figure 2.10: Tllustration of some cross section shapes generated using the general polar equa-
tion (2.14) with the parameters listed in Table 2.5.

Table 2.5: Overview of parameter values used in (2.14) to generate the shapes show in Fig. 2.10.

shape m| n | ne | ng g(0) a, b
circle® 1 2 2 2 c a=b
ellipse™®) 41 2 | 2] 2 ¢ -
rectangle® | 4 | 100 | 100 | 100 c -
equilateral

3105 1 1 c a=b
triangle()
limacon(?) 4 2 2 -2 n4 + ng cos 6 a=b

(1) ¢ is an arbitrary constant scaling the channel cross section.

2) n4, N5 are arbitrary constants.

p=r(0), 0<60<2nr, (2.16)

where () € C?[0,27] and suppose the radius p > 0 so that 7(6) > 0 in the domain 2.

We introduce the stretched radius p* such that
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p=p'r(o), (2.17)

and in stretched coordinates (p*, @) the plane (x,y) is given as

x = pr(@)cosl, y=p*r()sind. (2.18)

Therefore, using the stretched coordinates, the domain € is transformed to the domain
0<o<2m, 0<p* <1

2.2.2 The Laplace equation in stretched coordinates

Now consider a C? function u(z,y) = u(pcos(f), psin(#)) = u(p,d) in the domain Q and the
Laplace equation in cylindrical coordinate

9%u @ B d*u  10u 1 0%u

Au=2" g 10w 10
“ 8x2+8y2 8p2+p8p+p2 002

(2.19)

Now we want to represent the general polar equation (2.8) in the new stretched coordinates
system (p*,0) using

U(p*,0) = u(p*r(0) cos(9), p*r(0) sin(h)) = u(p, §). (2.20)

Substituting this transformation into the Laplace equation (2.19) one finds that

1 2(0)\ 92U 1 2r2(0) — r(0)r"(0)\ U
A=) (1 * r%@)) o2 T () (1 * >

2’9 U N 1 09U
p*r3(0) 0p*d0 ~ p*2r2(0) 062’

with the boundary r(0) = p when p* = 1.

For convenience, the Laplace equation (2.21) on the boundary 052 is rewritten using the
transformation

p=r(0) = fy 00 <2 (2.22)
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With this transformation, the function U in stretched coordinates corresponding to u is
given as

U(p*,6) = u (p* cos(6)/R(6), p° sin(6)/R(6)) .

So that the Laplace equation (2.21) becomes

0*U 1 ouU
— (R*(0) + R(O)R" (0

8p*2+p*( (0) + R(6) ())8;)*

2 , o 0% R2(0) 0*U
+ SRORO) G o+ =5 o

Au = (32(9) + R’2(0)) .
2.23

Thus in stretched coordinates the Poisson equation (2.8) describing laminar viscous
pressure-driven flow through a uniform channel with an arbitrary cross section shape is given
as

U 1, , by OU
9 + o (R*(0) + R(O)R"(9)) o

2 , 0% RX() 0°U
+RORO) 0+ =5 o

iff; = (r20)+ R*(9))

(2.24)

2.3 Numerical solution for Poisson equation

In order to solve the Poisson equation (2.5) for arbitrary cross section shapes firstly a numerical
solution is considered. In the following the pseudo-spectral approach on the unit disc in polar
coordinate [18, 34, 55, 62, 82, 108, 113] is outlined and numerical results are presented.

Consider the classical Poisson equation (2.5)

vap _ ot | o

;dx = 37y2+ 922 (225)

This equation can be rewritten as a classical Dirichlet problem by introducing the following
dimensionless variables:

where h denotes some characteristic duct width.
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Note that the pressure gradient % < 0 is needed to hold in order to make u* a positive
quantity, u* > 0. So when substituting these variables and introducing the Laplace operator
A, the Poisson equation (2.25) becomes,

Au* = —1, (2.26)
subjected to u* = 0 for all points on the boundary 992 of the duct cross section €.

Recall the Laplace equation in stretched coordinates

’U 1 oU
Au= (R2(0) + R*(0)) 57 o (RO +ROR'E) 5
(2.27)
2 .o 02U RY(0) 0°U
+ ER(Q)R (H)Bp*ae p*2 002’
Using (2.27) the transformed Laplace equation (2.26) can be rewritten as
o*U* 1 oU*
At = (B0 + B2(0)) 5 0+ (R(0) + ROR'(0)) 5
(2.28)
2 oo 02U R%(0) 0°U*
il T
+ pE R(O)R (9)8,0*89 PR ,
For simplicity this is rewritten in the form
LU* = -1, (2.29)
with the operator L:
2 /2 s 1 2 7
L= (r0)+R*0)) 5y o (RO + ROR'0) 5 -
2.30
+ ZroreL 02 -
P* 8[)*69 P*2 002"

2.3.1 Pseudo-spectral method

Instead of the domain € used in section 2.2 with p* € [0,1] we employ the Chebyshev dis-
cretization for radius p* and Fourier discretization for angle 6 € [0, 27]. The domain {2 is then
discretized as

N\ g
(07,0;) = <cos (g) X;) i=0,.,N, j=1,.. M, (2.31)

with p* € [=1,1]. The nodes are only dense near the boundary of the unit disc but not in
the center. By choosing an odd number N for radial nodes the center of r = 0 is not a node
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and no condition is needed to avoid a singularity at » = 0. The angle is chosen 8 > 0 with
a shift of 2r/M so that overlap of nodes is avoided. The number M must be even in order
to capture the angle 2. So, we need to solve the Poisson equation on the domain 6 € [0, 27]
and p* € [—1,1]. In the following, the spectral derivatives are given in matrix notation. First
since we employ a Chebyshev expansion we obtain the following matrix

T = cos <k§$> i k=0,.., N. (2.32)

Further the differentiation matrix in the Chebyshev coefficient space is explicitly given by
D = (d; j) € RNTLN+L with

2 j=i+1,i+3,..,N

dij =
0 others

and

o 2 1=0
1l 1 others

Now we are able to write the first and second spectral derivative matrices D1 and Dy which
are explicitly given by

D, =TDT ! = Ev E
0 0 ’
oh (2.33)
Dy=TD*T ' =| 1 72
2 |: 0 0 )
Where
Ey=Digy sy xn) Br=Dip xay oy s,
Dl = D2(27 71\/;‘,»1)7(27.”7%)’ D2 = D2(2 7%)7(]\77 ’N;»S),
and

The first and second spectral derivatives Dé, Dg can be written in matrix form as respec-
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tively
- 0 ( 1)2M—1 cot ((M;Ud) —%cot %) -
—1cot(2) 0 S cot(%)
i 1 cot(&h) —1 cot(4) —1 cot(34)
0= )
—%cot(gz—d) %cot(%d)
: ( 1)]»171 cot ((M_l)d>
: 2 2
( 1)2M—1 cot <(M;1)d> 0
(2.34)
and
5%~ & Lesc?(9) 5% ese (511)
2
fadd) g}
—~ d d
| hee® e .
—% 0502(2—;) —% cs02(22d)
M %CSQC2(%)
e () ]
where d denotes the shift of angle d = 27 /M.
By representing the Kronecker product as
AR B= (Ab@j)m, (2.36)

and introducing identity matrix Ix u, we are able to write the spectral derivatives in 2D.
272
The first order partial derivatives are given by

0 I 0 0 I
=F E . 2.37
o 1®[01}+ 2®[10] (2.37)
The second order partial derivatives are given by
d? I0 0 I
— =D D
a=Dio g 7 |roe] ] o]
0’ 5 o (2.38)
=FE1®D;+FE,®D -
9p°00 1Q Dy + F2 @ Dy,
0? =
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The 2D spectral operators can be efficiently evaluated by fast Fourier transform (FFT).
Substituting the first and second order partial derivatives into (2.30) gives

I 0 0 I
L= (R3Dy +RiD))® [ 0 1 } + (R3Dy 4+ R2Dy) @ [ 1o ]
I 0 0 I
(RREE, + RR2E1) ® [ 0 7 } + (RR2Ey 4+ RRoEy) ® [ . ] (2.39)

9RRR1Ey @ D} + 2RRyR1 By ® D} + R2R2 @ D2,

where R is the diagonal matrix

R = diag(p*;'), 1<j < (N-1)/2,

and Rg, R1, Ro are the M x M diagonal matrix of the polar equation p(6), the first order
derivative p'(6) and the second order derivative p” () respectively.

Therefore, the non-dimensional solution of (2.29) is given as the solution of the linear
system of equations [119]

U* =L [ g bt (2.40)

Finally, the solution with dimensions can be obtained as

u(y, 2) = U;h2 <—C$> . (2.41)

2.3.2 Numerical results

The value at p* = 0 is not computed in order to avoid the singularity but it is substituted by
the averaged value of the surrounding points. In order to assess the accuracy of the method,
the numerical solution is validated for shapes for which the analytical solution was described
in section 2.1.2. The accuracy is estimated for the maximum velocity using the error measure:

max

ana U

max
uana

|u o

Ema:c =

(2.42)

with ug,w denoting the maximum velocity in the quasi-analytical solution and wjy** the

maximum velocity of numerical method.
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Fig. 2.11 illustrates the estimated maximum error F,,,, as a function of radial discretiza-
tion number N for shapes for which the stretched parameters are listed in Table 2.6. The
estimated error becomes constant when the radial number N > 40 and E,.; < 10%. For
shapes with smooth boundaries high accuracy (Ep.: < 1%) can be achieved for a smaller
radial number N < 40 while E,,.. < 4% for N > 73 when shapes are not smooth. Anyway,
the decreasing tendency of the estimated error E,,., as N increases show the convergence
of the numerical solution. Moreover, the estimated maximum error FE,,., as a function of
angular discretization number M for shapes is illustrated in Fig. 2.12. It is seen that this time
the error is stable for symmetric shapes but reaches a quasi-steady values for other shapes so
that depends on the cross section shape.

8
T 6
3
w4
2
10’
N
(a) circle (b) rectangle
8 ] 116
56 5 114
3 5112
wE4 ut
11
2
10.8
10’ 10’
N N
(c) ellipse (d) equilateral triangle

Figure 2.11: Illustration of the estimated maximum error E,,,, with function of radial number
N for shapes shown in Fig. 2.6 when M =72.

2.4 General analytical solution for Poisson equation

In the previous section 2.3 a Pseudo-spectral numerical method is presented. Lower accuracy
appears when the shapes are C! continuous on the boundary. In the current section, a general
analytical solution is proposed to avoid this problem. (2.8) is reduced to the Laplace equation,
which is a familiar partial differential equation and can be solved analytically.

In stretched coordinates the radius r is substituted by p as before. A reduced velocity u*
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Table 2.6: Overview the stretched parameters of shapes.

shape m| n | na | n3g | g0 a b

circle (Fig. 2.6a) 1] 2 2 2 1 5e-3 | 5e-3

rectangle (Fig. 2.6b) | 4 | 100 | 100 | 100 | 0.002 | 5.05 1

ellipse (Fig. 2.6¢) 4 | 2 2 2 1 0.006 | 0.0042

equilateral triangle
3105 1 1 | 0.0038 | 1.414 | 1.414

(Fig. 2.6g)
0.1467
0.1467
T 01467
50,1467
w
0.1467
0.1467
10’
M
(a) circle (b) rectangle
12:
0.1467
10
_ 0.1467° _
= S
50.1467 8
L w
0.1467 8
0.1467- ‘ 4
10’ 10’
M M
(c) ellipse (d) equilateral triangle

Figure 2.12: Illustration of the estimated maximum error FE,,, with function of angular
number N for shapes shown in Fig. 2.6 when N =41.

is introduced as

u=u"+-——-. (2.43)

Applying this transformation to (2.8) shows that the reduced velocity u* must satisfy the
following Laplace equation
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0%u* 1 0u* 1 0%u*
2 % _
C u = ap2 + ; ap + ;2 829 - 0, (244)

Then the no slip boundary condition u = 0 can be expressed as

w =t = L on Q. (2.45)

Here, the suffix ¢ denotes the value of a point on the duct boundary 0€2. Now the flow
problem is transformed to a Dirichlet problem for the Laplace equation with slip condition for
reduced velocity ©* and thus has a unique solution.

Using separation of variables, let us look for a solution of the form P(p)®(#). Substituting
this into the (2.23) it follows that the functions P(p), ®(#) must satisfy the following equations

p*P"(p) + pP'(p) — N2P(p) = 0,
{ " (0) + A2®(9) = 0. (2.46)

Consider the periodicity of the function ®(#) one finds that

®(0) = c1 cos(mb) + ca sin(mb), (2.47)

where A = m is an integer number.

Let us now solve the equation for P(p). Since the equation is a Cauchy-Euler equation
and the solutions of the Cauchy-Euler equation are known to be of the form p™ and p~. So
the general solution is of the form

P(p) = dip™ +dap™™. (2.48)
This means that we have found the elementary solutions for the Laplace equation (2.44)

u*(p,0) = (c1 cos(mb) + cosin(mb))(d1p™ + dop™™),

2.49
m=20,1,2... ( )

For the interior problem one needs to require do = 0 to make sure that «* < oo, then

u*(p,0) = Z (@, cos(mb) + by, sin(mb))p™. (2.50)

m=0
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Actually as coefficient by = 0, (2.50) then can be rewritten as follows

u*(p,0) = ao + Y _ (am cos(mb) + by, sin(mf))p™, (2.51)

m=1

where the coefficients ag, a,, and b,, are arbitrary constants that can be determined by
imposing the boundary condition.

In order to get the unknown coefficients the general solution (2.51) can be represented by
the partial sum of N polynomials

N
un(p,0) =ap+ Z P (am cos(mb) + by, sin(mf)). (2.52)

m=1

Applying the boundary condition (2.45), thus

r2 dP
. 0,) + by, sin(mf;)) = — 2 2.
ap + Z (@ cos(mb;) + by, sin(méb;)) 1 dr (2.53)

This equation includes the total L = 2N + 1 unknown coefficients a,, and b,,. The values
r; and 6; are provided with L points on the boundary 0f) so that L equations are available to
get the unknown coefficients. Finally combining (2.43) and (2.52) the solution for the velocity
distribution is obtained as

N
m . p dP
N(p,0) =ao+ Y p™ (am cos(mb) + by sin(mb)) + L (2.54)

m=1

To assess the performance of the proposed method in terms of numerical accuracy, as the
maximum error will occur at the boundary points, the root mean square error (Egasg) on the
boundary values has been thus evaluated as follows

n

1 . r dP
Erms = £| — E ap + E (am cos(mb;) + by, sin(mb;)) + @% , (2.55)
=1

FEnaz s computed to determine the degree of precision for the velocity profile and in addition,
the accuracy is assessed as before with respect to the analytical solutions in case the no slip
condition is applied as in (2.42) with:
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maxr __ , max |
|u(ma u

max
uana

Ema:t =

: (2.56)

where u'%" denotes as before the maximum velocity on the quasi-analytical solution given in

section 2.42.

2.4.1 Numerical results

Firstly, the solution for the cross section shapes shown in Fig. 2.6 and Fig. 2.7 with no slip
condition is investigated. Fig. 2.13 illustrates the velocity distribution for the same shapes
with parameters listed in Table 2.6.

1 [mis] |25 [m/s] I
20
0.5 20 0.5 |
& 15 & 1o
%ﬁ o Lo %ﬁ 0 10
05 I5 -0.5] I5
4 70 -1 0 10
yiag H yiay H
(a) circle (N=2) (b) rectangle (N=10)
1 [m/s] I I20
1 [m/s]
20
0.5 05 15
o 15 =
F o 50 10
N 10 N
05 05 '5
5
1 -1 o
A 0 70 A 0 1
yiag Il Yiag -l
(c) ellipse (N=2) (d) equilateral triangle
(N=10)

Figure 2.13: Illustration of the velocity distribution for the cross section shapes shown in
Fig. 2.6a, Fig. 2.6b, Fig. 2.6c and Fig. 2.6g.

Fig. 2.14 and Fig. 2.15 illustrate the estimated root mean square error and the maximum
error as a function of the sum truncation number N. It is seen that the solution for a circular
shape matches the one analytical described in section 2.1 for N = 2. For all assessed shapes
good accuracies are achieved (Erys < 0.5% and Epq, < 0.03% ) for N > 6. In particular, for
shapes without a sharp corner results with high accuracy can be obtained using a very small
sum truncation number N. Table 2.7 illustrates the comparison errors E,,4,- High accuracy
of the presented solution is found for all assessed cross section shapes so that the accuracy of
the approach is validated.
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Figure 2.14: Tlustration of the estimated root mean square error Erjrs with function of sum
truncation number N for shapes shown in Fig. 2.6b, Fig. 2.6¢ and Fig. 2.6g.
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Figure 2.15: Illustration of the estimated maximum error E,,4; as a function of sum truncation
number N for shapes shown in Fig. 2.6b, Fig. 2.6c and Fig. 2.6g.

Table 2.7: Comparison of error Ei,,4, for the general analytical and numerical pseudo-spectral
approach. Examples of Fig. 2.6a, Fig. 2.6b, Fig. 2.6c and Fig. 2.6g are assessed.

equilateral
Approach circle  rectangle ellipse
triangle
present %]
0 0.393 1.44e-14 0.479

(N >6)
numerical [%]

0.046 0.046 4.09 10.69

(N > 40)

2.5 Summary

In the current chapter, analytical solutions for laminar viscous pressure-driven flow through
a uniform channel of an arbitrary cross section shape are presented so that the influence
of cross section shape on the viscous flow is accounted for. A wide range of cross section
shapes is considered. The transformed Poisson equation with stretched coordinates provides
an analytical solution for an arbitrary cross section shape, avoiding the use of conformal
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mapping.

Next, a pseudo-spectral approach is assessed to solve the Poisson problem for an arbitrary
cross section shape based on stretched coordinates. The presented numerical results show good
performance of the approach but lower accuracy when shapes have no continuous boundary.
Finally, the proposed general analytical method avoid this problem and improves the accuracy
for all assessed cross section shapes at a low computational cost.
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Application to physical equations
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In this chapter, we exploit the proposed parametrization of an arbitrary cross section
shape using stretched coordinates following the "superformula" (2.14) described in chapter 2.
Previously, solutions of the Poisson equation for two-dimensional shapes were presented. In
this chapter, we focus on solutions in terms of stretched coordinates for physical equations in
case of two-dimensional (2D) as well as three-dimensional (3D) parametrized shapes. In the
following, solutions of the Laplace, Helmholtz and wave equation are formulated and numerical
results are presented.

3.1 Two-dimensional shapes

3.1.1 Laplace equation

Firstly, consider the interior Dirichlet problem for the Laplace equation with a domain €2,
whose boundary is described by the polar equation p = r(6)

P44+04=0 in 0
u= f(x,y) on 0N

37
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Recall the coordinate transform from plane (x,y) to stretched (p*, 8) coordinates and the
derivation process described in section 2.4 of the previous chapter 2. The same way, we get

U(p*,0) = Z (@, cos(mB) + by, sin(mb)) [p*r(0)]™ , (3.2)
m=0

with u(z,y) = u(pcosf, psinf) = U(p*,0) and the domain 2 is transformed to 0 < 6 < 27,
0<p*<1.

In order to determine the coefficients a,, by, the boundary condition (p* = 1, thus p =
r(0)) can be rewritten as

F(0) = f(r(6)cos(#),r(9)sin(f)) = Z (@, cos(mB) + by, sin(mB)) r(0)™. (3.3)
m=0

Now consider the Fourier method and the solution to be of the form

Z ayy, cos(ml) + By, sin(mb)) , (3.4)
m=0

where the Fourier coefficients o, and 5, are constants

Clearly F'(0) is a periodic function with period 27 since the right hand side of (3.4) has this

property. By considering the orthogonality of the functions cos(m#) and sin(mf) we deduce
that

{omh=g [Tro{ oo b .

where ¢,,, denoting the Neumann symbol, so
1, m=0
€ =
" 2, m#0.

Thus the coefficients a,, and b, are obtained by solving the following system

o0

- [am 27 1(0)"™ cos(mB) cos(k0)dO + by, [2 7(0)™ sin(m) cos(ka)de} — o,
s [am 27 1(0)™ cos(m) sin(k0)d0 + by, [27 7 (

m=0

6)™ sin(m0) sin(k;e)de} — B,

k=0,1,2,.. (3.6)
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3.1.2 Helmholtz equation

Next, let us consider the interior Dirichlet problem for the Helmholtz equation in a domain

2 _ .
{Au—i—auo in Q (37)

u= f(x,y) on 0N

in which the boundary defined by the polar equation p = () and the propagation coefficient
a > 0. We use separation of variables to search for a solution of the form u(p,0) = U(p*,0) =
Py (p)P(6). Substituting this form into (3.7) it follows that the functions P;(p), P2(0) must
satisfy the following equations

{ pQP{,(p) + pPll(p) + (a2 - )‘Q)Pl(p) =0, (3 8)
Py (0) + N2Py(0) = 0, A\ = const. '

In order to assure that the function u(z,y) has a single value at any point, the parameter
A is selected to satisfy A = m € Ny and we find that

P5(0) = ¢, cos(mb) + dy, sin(mé), (3.9)

where Cp,,d,, € R are unknown arbitrary constants. Therefore the radial function P;(p)
satisfies

P*Py (p) + pPi(p) + (a® = m*)Pi(p) = 0. (3.10)

Let s = ap and let P3 be the function of variable s defined by P3(s) = Pi(s/a). With this
transformation of variable (3.10) becomes a Bessel’s equation

$2Py (s) 4 sPs(s) + (s> — m?)P3(s) = 0. (3.11)

The general solution of Bessel’s equation (3.11) is [2]

Ps(s) = amdm(s) + bmYm(s) = amIm(hp) + b Y (hp), (3.12)

where J,,, Y,, are the Bessel function of the first and second kind with order m respectively.
Notice that the Bessel functions of the second kind Y, (s) has a singularity at p = 0. To avoid
this singularity, we have to assume b, = 0 due to the boundedness of the solution. Thus the
solution of (3.10) has the form
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Pi(p) = Ps(s) = amJu(hp). (3.13)

Finally, the general solution of the problem (3.7) is of the form

+oo
=" Jm(ap*r(0)) (Cm cos(mb) + Dy, sin(m0)). (3.14)

The coefficients Cy,, D, are determined by imposing the boundary condition, i.e., assum-
ing p* = 1 and therefore putting p = r(0),

F(0) =U(1,6) = _ Jin(ar(6)) (Cm cos(mb) + Dy, sin(mb)). (3.15)

By using Fourier method, and thus following the same process as described in section 3.1.1,
we substitute (3.15) into (3.5) and it follows that the sought coefficients are obtained by solving
the following equations

:E’“ [C’m f% JIm(ar(9)) cos(mb) cos(kB)db + D, f m(ar(0)) sin(m@) cos(k@)d@} = ag,
[C I )) cos(m) sin(k0)d6 + Dy [2 Jn(ar(8)) sin(mé) sm(ke)de} — By

mf

k=0,1,2,... (3.16)

with € denoting the Neumann symbol, so

o _[ L k=0
T 2, k0

3.1.3 Wave Equation

Finally, let us consider the interior Dirichlet problem for the wave equation with constant
propagation speed a in a domain . Assume the displacement of the boundary is equal to
zero at all times ¢t and we define the initial displacement and velocity distribution by continuous
functions f1(z,y) and fo(z,y) respectively. Thus the system is of the form

g—;u(x,y, t) = a®Au(z,y,t), in Q
u(zx,y,t) =0, on 0N
u(z,y,0) = fi(z,y),

(@, y,0) = folz,y).

(3.17)
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The domain 2 is transformed to a unit circle using stretched coordinates and reconsider
separation of variables to assume that the elementary solution of the system has the form

u(m,y,t) = u(p,@,t) = U(,O 0 t) ( )PQ(Q)PS(t) (318)

Substituting into the wave equation and considering two separation variables A and s, one
finds that the functions P, P», P53 have to satisfy the following equations

P*P1 (p) + pPy(p) + (AQ/J2 —s) Pi(p) =0,
PQ( ) + 5> P2 (6)
Py (t) + a® 2 Ps(t

= (3.19)
) =

Due to the reason of periodicity and single-value for 6 the constant variable s = m € Z so
that

P5(0) = ap, cos(mb) + by, sin(mé), (3.20)

with undetermined arbitrary constants a,,, b,,. Let p = Ap and let Py be the function of p
defined by Py(u) = Pi(p/A). With this transformation, the equation of radial function P
turns into a Bessel’s equation

PPy (1) + nPy(u) + (4 — m?) Py(u) = 0. (3.21)

Due to the boundedness, the general solution of this Bessel’s equation is of the form
Pl(p) = Cme(M) = Cme(/\p)' (3'22)
For the equation of function Ps one finds that
P3(8) = dy cos(aAt) + ey sin aAt. (3.23)
Thus the general solution of (3.17) is of the form

U(p*,0,t) Z Z T (Ap*1(0)) [Am \ cos(mb) cos(at) + By, x cos(mb) sin(aAt)
m=0 X

+C 2 sin(ml) cos(adt) + Dy, x sin(m@) sin(aAt)].

(3.24)
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Imposing the boundary condition u(r(6),0,t) = 0 results in J,,,(Ar(8)) = 0 so that A(0) =
gm/7(0) with unknown coefficients g,,. Denote g} is the kth positive root of the Bessel
function of the first kind with order m, then A = g¢;/r(6), k € N. Therefore the general
solution of (3.24) becomes

—+00 +o00

't it
U(p*,0,t) Z Z Im [ m.k €os(mP) cos((jzz) ) + By, cos(mb) sin(ig(’;) )
m=0 k=1 (3.25)
. agp't i . agpt
D
+Chy 1 sin(m) cos( 0 ) + Dy 1 sin(mé) sin( -(0) )1,
and this gives
+oo +o00
Ui(p*,0,1) 7 Z ng m(gE ")
m=0 k=1
. agy't agy't (3.26)
—A B
[ m.k €0s(m@) sin( (0) ) + B, cos(mB) cos( (0) )
_ . . agp't _ agi't
Chn i sin(m#) sin( (0) ) + Dy, i, sin(mé) cos( 0) )
Using the initial conditions and let them have the forms

+oo
Fi(p*,0) = fi(pcos(8), psin(f)) = Z (@, cos(mb) + By, sin(mb)) , (3.27)

m=0

a <X
Fy(p*,0) = fa(pcos(d), psin(0)) = =) (Mm, cos(ml) + v sin(m#)) , (3.28)

m=0

where the coefficients oy, Bm, m and 7, can be found using Fourier method

(oY= [ [ o { i) Yoo 520
{ }_ o /zﬂ/ Fa(p*, 0)r { COS(( Z; }d9d¢, (3.30)

with Neumann symbol €,,, so

[ 1, m=0
m = 2, m=o.

Consider the orthogonality of the Bessel functions of first kind
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% [Jm+1(912n)]27 n==k

4 otk (3.31)

1
/0 Tn(g0") T (g% P dp" = {

and (3.25) « (3.30), the coefficients Ay, k, Bk, Cmke and Dy, i finally can be obtained by
solving the following system

{ é‘:: }_ M/Ol Jm(g?p*){ g:((z; }p*dﬁ (3.32)

R R e

m=1,2,3,.., k=1,23,..

3.1.4 Numerical results
In the following examples the boundary 0f is described by the called "superformula™ [39].

cos(™3f) " sin(22)

b

a

nz1 —1/n1
r(0) = g(9) [ ] =g(0).f(0), m > 0. (3.34)

In order to assess the numerical accuracy of the applications, the relative boundary errors
for Laplace (L), Helmholtz (H) and wave (W)! equations have been evaluated as follows

L _ Uy = FEO)

= 3.35
N E (339
iy _ UK = FH o)
= 3.36
LS 2O (339
2 (0] 1E27 (0]
in which || - || denotes the L? norm. The solutions of these boundary value problems are

represented by the truncated sum with order N in Fourier series expansion, which listed as
follows, respectively.

N
UL(p*,0) = ap + Z (@, cos(mB) + by, sin(mh)) (p*0)™ , (3.38)

m=1

! Numerical results are in preparation.
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N
UH(p*,0) Z Im(ap*8) (Cy, cos(mb) + Dy, sin(m#)), (3.39)
m=0
MoK ag;'t agi*t
U]\V}/’K(p*, 0,t) = Z Z Im (g p") [Amyk cos(mB) cos( r(’;) ) + By i, cos(m8) sin( r(];) )
m=0 k=1
. agy't : . agy’
+Cy 1 sin(m@) cos( (0) ) + Dy, i, sin(m@) sin( -(0) )|

(3.40)

The shape shown in Fig. 3.1 with the stretched parameters listed in Table 3.1 is assessed
and the domain 2 is given as 0 < 0§ < 27 and 0 < p* < 1.

Table 3.1: Overview of the parameters of (2.14) for the symmetrical shape depicted in Fig. 3.1.

shape m|mny | ny|ng|gl)alb
symmetrical
518141 4 1 111
shape
1,
0.5
E o
-0.5
A

-1 0.5 0 0.5 1
x [m]

Figure 3.1: Symmetrical shape obtained from (2.14) with the parameters listed in Table 3.1.

For the Laplace equation, we take f(x,y) = sinh(zy) + log(2? + y? + 1) as the function
to describe the Dirichlet boundary condition. The relative boundary error erry, plotted in
Fig. 3.2a, shows us the convergence of the series expansion function U]%, (3.38). Tt is seen that
the expansion with order N =9 gives a accurate (errp < 2%) estimate of the boundary data
and modeled and imposed boundary values are shown to match.

Let fH(z,y) = x+3y+cos(z +2y) be the boundary condition for the Dirichlet problem of
the Helmholtz equation. Fig. 3.3 illustrates the relative boundary error erry as a function of
the truncated sum number N in the series expansion (3.39). From Fig. 3.3 and Fig. 3.4a is seen
that a good (erry < 2%) estimation of the initial condition can be observed for the Fourier
expansion solution with order N = 7 and modeled and imposed boundary values matches well.
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Figure 3.2: (a) The relative boundary error errk as a function of truncated sum number N

for Dirichlet problem of Laplace equation. (b) The series expansion function U ]%, with order
N =9. The shape with stretched parameters (Table 3.1) is assessed in domain §.

In addition, the interior domain solution for N = 7 which matches the boundary condition, is
shown in Fig. 3.4b.

0.2

0.15

errH

0.1

0.05

Zh-

Figure 3.3: Hlustration of relative boundary error errﬁ as a function of truncated sum number

N for Dirichlet problem of Helmholtz equation. The shape with stretched parameters (Ta-
ble 3.1) is assessed in domain .

3.2 Three-dimensional shapes

Now, we consider the physical equations for three-dimensional shapes and hence we need a
three-dimensional coordinate system. Firstly, we introduce the ordinary spherical coordinates
system to describe domain 2

x = pcososing, y=pcospcosh, z= pcosb, (3.41)

with the boundary condition p = r(6,¢), 0 < 0 < 7, 0 < ¢ < 2m. We introduce again a
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Figure 3.4: (a) Comparison of the boundary value between the initial condition and the derived
truncated sum UL when the order N = 7 for the Helmholtz equation. (b) Distribution of the
solution represented by the truncated sum for N =7 (3.39).

stretched radius p* with p = p*r(6, ¢) and thus the space in stretched coordinates becomes

x = p*r(0,¢)cospsing, y = p*r(f,¢)cospcosh, z = p*r(f,¢)cosb, (3.42)
with domain 2 given as 0 <0 <7, 0 < ¢ <27 and 0 < p* < 1.
Now, we consider the Laplace operator in spherical coordinates [29]

o 2
Au:@ 2 Ou 1 0 <sin96u> 1 0“u

o, -~ 9 _— 4
dp? + pOp + p?sin 6 00 o0 p? sin?  0¢? (3.43)

By setting U(p*,0,¢) = u(p,0,¢) in the new stretched coordinates system (p*, 6, ¢) and
substituting this transform into (3.43), one finds that

1 2 2 2
Au:<1+m+ i >8U

r2 r2 " r2sin20 ) 0p*2
1 ro? r¢2 1 ) oU
o147 4 o ) _Z ( t6 ) 3.44
+ prr2 [ ( Tt 2ainZg y oo T rocotit oy op* (3.44)
B 2rg O*U 2rg 92U 1 02U  cotoU 1 o*U

3 8p 90 prr3sin® 6 Op* ¢ + p*2r2 00?2 + o*r2 96 + p*212sin% § O¢?’

with the boundary r(, ¢) = p when p* = 1.

For convenience, we rewrite the boundary condition 9 as



3.2. Three-dimensional shapes 47

p= T(97¢) =

1
,0<0<m, 0< 7 < 2. 3.45
R{6,9) (345)

Substituting this equation into the Laplace equation (3.44) results in

Ay — <R2+R92+ Ry ) 92U R

R ou

— (2R + Rycot 0 + Ry? + —22

sin?6 ) 9p*? * p* < g ottt B A sin29> dp*

2RRy U | 2RR, 0°U RO  RPeotOU B U
p* Op*00  p*sin®fOp*dp  p*? 062 p*2 00 p2sin?6 0p2

(3.46)

3.2.1 Laplace equation

Firstly, consider the interior Dirichlet problem for the Laplace equation with on a domain (2,
whose boundary is described by the polar equation p = (6, ¢).

{ Au(p,0,¢) =0 in Q (3.47)

u(p,0,¢) = f(0,¢) on 0OQ.

Consider the method of separation of variables, search for a solution with the form
u(p,0,¢) =U(p*,0,¢) = Pi(p)P2(0)P3(¢). Substituting this form into (3.47) gives

/! Pl /! P” 1 P”
2+ 1 1 2 2 3
il S Pl SR Nl 2 -3
Pp TP TR, Py | sin26 P

—0. (3.48)

Now the first two terms are dependent only on p so that it must be constant and we choose
n(n + 1) as the separation constant which gives

p2P. +2pP, — n(n+1)P; = 0. (3.49)

Setting ¢t = In p, (3.49) becomes

P, (t) 4+ P(t) —n(n+ 1)Pi(t) = 0. (3.50)

So, the general solution of (3.50) has the form

Py = Ape™ + Bpe—(n+ 1)t = App" + Bnp_("'H). (3.51)

Then the remainder of (3.48) is
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Py sin20 P, P,
2 OBTID L 4 1)sin2 6+ 23 = 0. (3.52)

<2
0
SO 2 P Py

The first three terms and the last term of (3.52) depend on each other, and we can assume

P, sin20 P} P

Sin29?22—|—%?22—|—n(n+1)sin20: —?3; =m?, (3.53)
which gives
Py +m?Ps =0, (3.54)
/7 i 26 /1
sin2 0P + P + [n(n + 1)sin® 0 — m2] Py = 0. (3.55)
From (3.54) it is seen that

Py = Cy, cos(me) + Dy, sin(me). (3.56)

It follows from periodicity that m is an integer number. For (3.55) and introducing w =
cos(f) we have

m2

1 —w?

d?Ps(0) dP»(6)
2 2(0) p)
(1 —w?) T2 2w T

+ [n(n +1)— } Py(6) =0, (3.57)

which is the associated Legendre equation. The solution of this equation is known as the
associated Legendre polynomials, P)*(w) [2]. Therefore, the elementary solution of (3.47) is

Up*.0,6) = (An(p™r(0,9))" + Ba(p'r(6,9))~"*1)
P (cosB) (Cy, cos(me) + Dy, sin(mo)) , (3.58)
n=0,1,2,..., m=0.1,...,n.

For the interior problem one needs to require U < oo so B, = 0. Then, we get

U(p*,0,8) = [0"1(6, )" P (c0s 6) (A cos(m) + B sin(m))

n=20,1,2,..., m=0.1,...,n.

(3.59)

So, the general solution is given as,
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+o0o n

U(p*,0,6) =>_ > [p"r( P™(cos6) (Apm cos(mo) + By sin(me)), (3.60)

n=0m=0

The coefficients A" and B)" can be determined by imposing the boundary condition
(p* = 1) and thus

+o0o n

f0,0)=U(1,60,9) = Z Z " P (cos0) (Apm cos(me) + By, msin(mae)).  (3.61)

n=0m=0

Consider the solution of (3.61) to be a Fourier series

400 n

F0.6) =" Pr(cosh) (ommcos(me) + Bmsin(me)). (3.62)

n=0m=0

Utilize the orthogonality of trigonometric function and Legendre polynomials, multi-
ply (3.62) by PF(cosf) cos(k¢)sin @ and integral to obtain

2 1 271'
= f* - -m) / £(8, ) P™ (cos ) cos(ma) sin 0d6ds, (3.63)
n m

with Neumann symbol €,,, so
A 1, m=0
2, m#A0.

Similarly, we get

9 1 2
Brm = ém( z:;-—i_ ) (n Tt Z / f(0,0)P(cos 0) sin(me) sin 0dOd . (3.64)

Finally the coeflicients A} and B]* are obtained by solving the following equations

Zo Z_ 2 2h+1) (hJFIZ)T [ nm 0 " Lo (r(0,8))" P (cos 0) Pf(cos 6) cos(me) cos(ke) sin §dfde
+Bpm 0 "o (r(0,9))" P (cos H)PAC (cos 0) sin(me) cos(k¢) sin 9d0d¢} = apk,
nZO ng €k if:rl) EZ+Z), [ nm 0 " Jo (r(0,9))" P (cos 0) P (cos 0) cos(m¢) sin(k¢) sin dfde
+Bn,m 0 "o (r(6,9))" P (cos H)P}’f (cos 0) sin(me) sin(k¢) sin Hdedgb} = Bhk,
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h=0,1,2.., k=0,1,..,h. (3.65)

3.2.2 Helmholtz equation

Next, let us consider the interior Dirichlet problem for the Helmholtz equation in a domain

Au(p, 6, ¢) + a*u(p,0,¢) =0 in Q
{ u(p.0,6) = £(6,9) on 99 (3.66)

in which the boundary defined by the polar equation p = (6, ¢) and the propagation coefficient
a > 0.

Similarity, the elementary solution of problem (3.66) can be searched by separation of
variables imposing the form u(p,0,¢) = U(p*,0,¢) = Pi(p)P2(0)Ps(¢). Substituting this
form into (3.66) it is seen that the functions P;(p), P2(#) and P3(¢) must satisfy the following
equations respectively:

d?pP dP
2 1 1 2 2 2
20— — AP =0 3.67
pdp2+pdp+(ap )P1 =0, (3.67)
d2P2 dPQ 2 /Lz
—= t0—= NM——— | P =0 3.68
a2 " +< snZg) 2T (3.68)
P, = .

The parameters A and p are separation constants. From the same derivation as detailed in
section 3.2.1, we have = m € Z, A2 = n(n + 1), n € Ny and

Po(0) = gon P (co30), (3.70)
Ps(¢) = Cp, cos(me) + Dy, sin(me), (3.71)

where Cyp,, Dy, gn,m are unknown constants and FP*(-) is the associated Legendre function of
the first kind with orders (n,m). In order to solve the radial function Pj(p) of (3.67), we set

Pi(p) = (ap)? Pi(p), (3.72)

with this transformation (3.67) becomes

d2P dP, 1
2 4 4 2 2 2

P . 7
P 2+p—|—[ap (n—l— )] 4—0 (3 3)

Let s = ap and Ps(s) = P4(2), (3.73) turns into a Bessel’s equation

s
a
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d’Ps  dPs
5 T
ds ds

- [ —(n+ ;)2} Ps = 0. (3.74)

Due to the boundedness at p = 0 the solution of function Pj(p) can be expressed as a
function of spherical Bessel functions of the first kind [2]

Py (P) = An]n(hp)7 (375>

where j,(z) = /5, 1 1 is the Bessel function of the first kind with order (n + 3).
Therefore, the general solutlon of the Helmholtz problem (3.66) is of the form

+o00 n

U(p*,0,9) = Z Z Jn(ap™r(8,9)) P, (cos 0)(Ap,m cos(me) + By, m sin(me)). (3.76)

n=0 m=0

In order to identify the coefficients A, ,,, By m, imposing the boundary condition

+oo n
0 0 n (hr( 0
F(6,6) =U(1,0,0) = Z;;oj r(0,)) Py (cos0) 577)
(Ap,m cos(me@) + By, m sin(me)).
Using the Fourier method we have
+oo n
=Y ) P*(cosh) (anm cos(m) + Bm sin(me)). (3.78)
n=0m=0

Consider the orthogonality of trigonometric function and Legendre polynomials one can
find that

Gnm | _ en@nt 1) (n—ml /" cos(mo) | _
{ B } A (n+m)! / f( cos@){ <in(mo) }smﬁd@dqﬁ, (3.79)

with Neumann symbol ¢,

A 1, m=0
™ 2, m#0.

Finally the coefficients A, ,,, Bnm can be obtained by solving the following equations
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io Zn: Votmad Wommi | [ Anm ] _ [ Uk ]
i L Vamar Wamki Bnm Bhk
k:071)2)°-'7 lzo,l,...7k}, (380)

where

Vs = SO [ [ ar(0.0) P cos) Pl cos0)coslmo)
{ :fj((llj)) }sin 0dodo,

Wi = O [ [ ar.60) P2 o) Pl cos ) sin(mo)
{ Z?;((zli)) }sin 0dods.

3.2.3 Wave equation

Finally, let us consider the interior Dirichlet problem for the wave equation with constant
propagation speed a in a domain 2. Assume the displacement of the boundary is equal to
zero at all times ¢ and we define the initial displacement and velocity distribution by continuous
functions f1(p, 0, ¢) and fa(p, 0, @) respectively. Thus the system is of the form

%u(p,@,@ t) = a®Au(p,0,0,t), in
u(p,8,0,t) =0, on 0N
u(p,8,¢,0) = fi(p,0,9),

Gu(p,0,6,0) = fa(p, 0, 6).

(3.81)

Reconsider the method of separation of variables and assume that the elementary solution
of the system is of the form

U(p, 07 (bv t) = U(p*a 07 d)v t) = Pl(p)PQ(e)P3(¢)P4(t) (382)

Substituting into the wave equation and introducing two separation variables A, s, it is
seen that the functions Pj(p), P>(0), P3(¢) and Py(t) have to satisfy the following equations
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P2 P (p) +20Pi(p) + (K* Q—Az) Pi(p) =0,
Pl (8) + cot OP(6) + <)\2 ) Py(6) =0,

By (
Py (6) + p* P3(9) =
( )+ a?k2Py(t) = 0

SlI’l

(3.83)

Due to the periodicity and a single value for 8, the constant variable 4 = m € Z so that

Py(0) = ay, cos(mb) + by, sin(md), (3.84)

with unknown arbitrary constants a,,, b,,. For the equation of function P, one finds that

Py(t) = ¢, cos(akt) + di sin(akt). (3.85)

Using the same process as detailed in section 3.2.2, we have

Pl(p) = enjn(kp) (386)
P5(0) = gnm Py (cosb), (3.87)

where j,(-) is the spherical Bessel function of the first kind with order n and PJ*(-) is the
associated Legendre function of the first kind with orders (n,m).

Thus the general solution of (3.81) has the form

+oo n

U(p*,0,¢,t) ZZP (cosf) Z]nkpr
n=0m=0 (3.88)
[A;, i cos(mo) cos(ak:t) + By i; cos(mo) sin(akt)

+Co i sin(me) cos(akt) + Dy, i, sin(me) sin(akt)].

Imposing the boundary condition p* = 1, and thus u(r(6,¢),60,¢,t) = 0, results in
Jn(kr(0,¢)) = 0 so that k(0,¢) = &,/r(0,¢) with unknown coefficients &,. Denote & is
the kth positive root of the spherical Bessel function of the first kind with order n so that
k=¢&!/r(0,9¢), j € N. Therefore the general solution (3.88) becomes

+o0o0 n 400

U(p*,0,0,t) ZZZ]” &L p* )P (cosb)-

n=0m=0 k=1

[A””””“ cos(m) cos <r?§k;)) + By i cos(mgs) sin < atit > (3.89)

agpt . . ag't
(0, ¢)> + Dy, sin(me) sin < )] ,

+Cp m i Sin(me) cos (
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and this gives

+oo0 n  +oo

Ui, 6,6,1) (607 P (cos ).
n=0m=0 k=1
: a&jit a&l't
A k B, i (3.90)
[ m,k cos(me) sin (r(9,¢)) + By m, i cos(me) cos (7’(9,(;5))
) ) a&i't . al't
_Cnm . Dnm —k .
m,k sin(me) sin (7”(97 ¢)> + Dy, . sin(me) cos <r(9,¢))]
Using the initial displacement and velocity conditions and assuming them to be of the
form
+oo n
Fi(p*,0,9) = fi(p,0,9) = Z Z P’ (cos ) - (on,m cos(mB) + Br.m sin(mb)),
n=0m=0
e (3.91)
Fy(p*,0,9) = fa(p,0,¢) = (cos 0) - (Nn,m cos(mB) + vpm sin(mb)),
n=0m=0

where the coefficients o, m, Bnm, Mn,m and vy, are obtained using Fourier’s method

27 pm
{ An.m } _ Gm(zn + 1) (n — m)' / F1(p*,9, ¢)P771(COS 9)
0 0

" nom (3.92)
cos(me) } : '
{ sin(ma) sin 0dde,
Mm | €m(2n+1) (n—m)! [?" [T
{ Tn,m } dma (n+m)!/0 /0 (0, ¢)Fa(p*,0,p) P (cosb)- o
cos(mo) | . -
{ sin(me) }sm 0dode,
with
_J 1, m=0
o { 2, m#0.

Finally, consider the orthogonality of the Bessel function of the first kind

1 1, 712 y
J R R (3.94)
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and (3.89) v (3.93), so that the coefficients Ay, y k, Bnm k, Cnm,k and Dy, 5, 1 can be obtained
by solving the following system

Avmie L2 e {an,mw) } 249
{ Onim }_ [jnﬂ(fg)}?/o I Bty J7 (3.95)

B 2 L . * .
wmk ) & D] Jo Tnm (")
n=0,1,2,..., m=1,2,...n, k=1,2,3,...

3.3 Summary

In this chapter the proposed parametrization of an arbitrary cross section shape following
the "superformula" described in previous chapter 2 is exploited to solve quasi-analytically the
physical equations for two-dimensional and three-dimensional arbitrary shapes. Concretely,
solutions for the interior Dirichlet problem for the Laplace, Helmholtz and wave equation are
presented. The numerical solution is presented and the accuracy is validated for the Laplace
and Helmholtz equations of two-dimensional shapes.






CHAPTER 4

Application to biological flows
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In chapter 2, we modeled and discussed the impact of the cross section shape on developed
viscous flow through a uniform channel. Since pressure-driven flow in constricted channels is
an important issue for physiological flows during normal as well as pathological health con-
ditions (stenosis), in the following section 4.1 a simple quasi-three-dimensional flow model is
formulated for steady flow which accounts for kinetic losses, viscosity as well as the cross sec-
tion shape [127]!. In the introduction, it was argued that simplified flow models favor model
analysis for biological applications due to their interpretation in terms of significant physio-
logical parameters as well as due to their low computational cost which facilitates parameter
space analysis. In order to illustrate these points, in section 4.2, we apply the quasi-three-
dimensional flow model, proposed in section 4.1, to the stability analysis of a physical model
of human phonation, i.e. vocal folds auto-oscillation during voiced sound production. We
discuss the potential impact of the flow model taking into account the cross section shape on
the predicted minimum pressure required to sustain phonation.

4.1 Stenosis

In this section we consider constricted channels due to their relevance for physiological flows
during normal as well as pathological health conditions (stenosis). We propose a simple ‘quasi-
three-dimensional’ (quasi-3D) flow model which accounts for kinetic losses, viscosity as well

!The quasi-three-dimensional model for unsteady flow is presented in Appendix G.

o7
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as the cross section shape [127]. The influence of the cross section shape on the pressure
distribution is discussed since the pressure distribution will determine the forces exerted by
the flow on the enveloping walls and is therefore a major quantity for biological applications.
The outcome of the ‘quasi-three-dimensional’ flow model is compared to the outcome of a
‘quasi-one-dimensional’ flow model for which details of the cross section shape are neglected.
Biological stenosis occur for different fluids. In the following, we consider blood flow and
air flow since these fluids occur in major circulatory systems, ¢.e. the cardiovascular and
respiratory system. Characteristic fluid properties are summarized in Table 4.1.

Table 4.1: Overview of major fluid properties.

dynamic viscosity p [Pa-s] | density p [kg/m?]
blood 3.5 x1073 1060
air 1.8 x107° 1.2
ratio! 194 883

() ratio of blood property to air property.

4.1.1 A quasi-three-dimensional flow model

Based on a non-dimensional analysis of the governing Navier-Stokes equations for pressure-
driven, steady, laminar and incompressible flow through a channel with varying streamwise
area A(z) involving a constricted portion as illustrated in Fig. 4.1. The degree of stenosis is
quantified by the ratio R. = Anin/Ao, the streamwise extent of the stenosis is given by L
and the streamwise extent of the constriction with minimum area is denoted L.. In case of a
severe stenosis (R. < 1), both flow inertia, i.e. kinetic losses (subscript ‘ber’) ; and viscosity
(subscript ‘visc’) need to be accounted for [126, 9.

Therefore, the streamwise momentum equation of the governing Navier-Stokes equation is
approximated using volume flow rate conservation d@/dz = 0, as:

2 2 2
Q° dA 1dP_V<8u 6u>’ (41)

“Wdr T pdr U\og T o2

with driving pressure gradient dP/dz, local velocity u(z, y, z), volume flow rate @, fluid density
p and kinematic viscosity v = u/p. The spanwise and transverse components of the momentum
equation are described by (2.6). The flow model expressed in (4.1) accounts for viscosity (right
hand term) as well as flow inertia (first source term at the left hand side) and depends therefore
on the area as well as on the shape of the cross section. It is seen that for a uniform channel,
so that dA/dx = 0 holds, (4.1) reduces to purely viscous flow described by (2.5). The same
way, it is seen that when viscosity is neglected, i.e. ¥ = 0 as for an ideal (symbol B) inviscid
flow, (4.1) reduces to Euler’s equation flow,
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Figure 4.1: Schematic overview of a constricted channel, representing a stenosis, oriented along
the streamwise x direction: varying streamwise channel area A(z), unconstricted inlet area
Ap and minimum area A,,;,. The degree of stenosis is expressed by ratio R. = Apin/Ao and
its streamwise extent by Ls. The streamwise extent of the minimum constriction is denoted
Le.

du 1dP
f— — — 4.2
Y pdx’ (42)

with local bulk velocity u(z) so that volume flow rate @ = A(x)u(z). The contribution of
kinetic losses to the pressure drop is then:

APy () = 22 [ - jo] | (13)

where Ay denotes the unconstricted channel area at the channel inlet.

Depending on driving pressure, fluid and geometry — in particular the minimum streamwise
channel area A,,;, — viscous boundary layer development will affect the flow development and
a viscosity needs to be accounted for. When (4.1) is used a three-dimensional aspect is added
to the flow model accounting for the viscous term. Classical simplified low models rely either
on a two-dimensional flow assumption by neglecting the spanwise dimension {120, 23, 20] or
fully reduce the problem to a one-dimensional model for which the right hand side of (4.1) is
reduced to a flow resistance term characterized by a constant [107, 97, 111].

In the following, a constricted channel with a smooth or an abrupt diverging area portion
is accounted for, as depicted in Fig. 4.2. For an abrupt expansion characterized by a sharp
trailing edge, the streamwise position of flow separation x4 is fixed and coincides with the
trailing end of the constriction, so that x; = w3 as depicted in Fig. 4.2b. In the case of
a smooth expansion, the flow separation position depends on the channel geometry as well
as on the imposed driving pressure gradient dP/dz, so that x3 < zs < x4 as illustrated in
Fig. 4.2a and the position of flow separation needs to be determined.

The separation position © = x4 corresponds to the position along the diverging portion
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Figure 4.2: Schematic overview of flow within a converging-diverging channel geometry (z; <
x < z4) with upstream area Ay and minimum area A, (z2 < z < x3) (see Fig. 4.1) for a)
a smooth and b) an abrupt expansion. Flow separation and jet formation occurs for z = .
P,y denotes the upstream pressure and P; the downstream pressure.

where the area yields A(xs) = ¢s X Apmin With ¢ = 1.2, This ad-hoc criterion is commonly used
and validated for a quasi-one-dimensional flow model approach [120, 23, 74]. The pressure
downstream from the flow separation point is assumed to be zero so that P; = 0 holds for
x > xs and the model outcome remains constant for x > x,. Consequently, imposing the
upstream pressure Py allows to impose the total driving pressure difference.

Therefore, the same way as for a quasi-one-dimensional flow model [25, 120] (symbol BP),
firstly the volume flow rate @ can be estimated from the imposed pressure gradient using (4.1).
Next, the streamwise distribution of other flow quantities such as the pressure distribution up
to flow separation can be derived since from (4.1), it follows that,

PO - Pd = APvisc + A-Pberv (44)

holds with AP,;sc and APy, as defined in (2.13) and (4.3).

In the following, we model the pressure distribution using the proposed quasi-three-
dimensional flow model for a smooth and an abrupt constricted channel with different cross
section shapes? for air flow (section 4.1.2) and blood flow (section 4.1.3). Different stenosis con-
figurations are considered by varying some of the geometrical parameters depicted in Fig. 4.1:
stenosis degree R., minimum area A,,;,, and streamwise extent of minimum constriction L..
The possible impact of cross section details on the pressure distribution is assessed applying
default parameter set (o), non-default parameter set (a3) and fixed width (y; = w) to each
cross section shape, the same way as was defined previously in section 2.1.2.

2The cross section shapes are abbreviated as depicted in Fig. 2.3: circle (cl), rectangle (re), ellipse (el),
eccentric annulus (ea), half moon (hm), circular sector (cs), equilateral triangle (tr) and limacon (lm).
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4.1.2 Pressure distribution: air flow

Fig. 4.3 and Fig. 4.4 illustrate the pressure distribution for a smooth and an abrupt expansion,
as depicted in Fig. 4.2, for the different parameter sets — default parameter set (a7 ), non-default
parameter set (ag) and fixed width (y;,¢r = w) — applied to each of the cross section shapes.
The stenosis parameters are set as minimum area A,,;, = 79mm?, R, = 30% and L. /D¢ = 6.
The upstream pressure is set to Py = 75Pa. For the each of the cross section shapes the
pressure distribution is modeled using the quasi-three-dimensional flow model presented in
the previous section 4.1.1. For completeness, the pressure distributions associated with a
quasi-one-dimensional model (BP)? and an ideal flow (B) are indicated as well.

It is seen that, in agreement with the findings outlined in section 2.1.2, the influence of the
cross section shape on the model outcome is less pronounced using default parameter set oy
than using non-default parameter set oy or fixed width y;os = w. Pressure distributions ob-
tained for all cross section shapes using default parameter set a; approximate the distribution
of an ideal (B) fluid for which AP,;sc = 0 so that the quasi-one-dimensional (BP) approxi-
mation results in a severe underestimation of the pressure drop along the constricted portion.
On the other hand, it is seen that for non-default parameter set «o and fixed width yior = w
the magnitude of the pressure drop varies significantly so that, depending on the cross section
shape, the quasi-one-dimensional (BP) approximation results in an overestimation, an under-
estimation or an accurate estimation of the pressure drop within the constriction. Note that
a rectangular cross section yields the smallest pressure drop using non-default parameter set
g and an annulus using fixed width v+ = w. Moreover, it is observed that imposing a fixed
width yr = w results in a match between the quasi-one-dimensional (BP) approximation and
the pressure distribution obtained using a rectangular cross section (re).

Fig. 4.5 quantifies the normalized pressure P/Py at position x = xg, corresponding to the
onset of the minimum area as defined in Fig. 4.2, and at position x = x,, corresponding to
the position of minimum pressure within the constriction. In the case of an abrupt expansion
the minimum pressure equals zero regardless the cross section shape, whereas variations in the
cross section shape increases the pressure at x = x9 by up to <60%. In the case of a smooth
expansion the impact of the cross section shape is more pronounced. At x = x,,, the minimum
pressure P/ Py is negative and varying the cross section shape induces a variation by as much as
<40%. At the onset of the constriction x = x9 the influence is even more prominent since the
pressure variation increases to 100%. As for an abrupt expansion, the quasi-one-dimensional
model accounting for viscosity (BP) results in a significant underestimation or overestimation
of the pressure at z = xo (>15%) as well as at = z,,, (<25%) depending on the cross section
shape.

3Details are presented in Appendix. C.1
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P/P,

P/P,

(b) abrupt expansion («;)

Figure 4.3: Illustration of normalized pressure distribution P(x)/Py using the quasi-three-
dimensional model for air flow and imposed area A, = 79mm?, Py = 75Pa, R. = 30% and
L./D. = 6 for different cross section shapes obtained for a) smooth expansion and default
parameter set (1) b) an abrupt expansion and default parameter set (o). For completeness
also the pressure distribution associated with a quasi-one-dimensional model (BP) and an ideal
flow (B) are indicated. The normalized geometry is indicated in gray shade and the streamwise
x direction is normalized as xy = x/D,;. As a reference and following the notation in Fig. 4.2,
the constriction onset xzo and flow separation position x, are indicated.
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Figure 4.4: Tllustration of normalized pressure distribution P(x)/Py using the quasi-three-
dimensional model for air flow and imposed area A, = 79mm?, Py = 75Pa, R, = 30% and
L./D. = 6 for different cross section shapes obtained for a) non-default parameter set (a2)
and b) fixed width (yiot = w). For completeness also the pressure distribution associated with
a quasi-one-dimensional model (BP) and an ideal flow (B) are indicated. The normalized
geometry is indicated in gray shade and the streamwise x direction is normalized as xy =
x/Dg. As a reference and following the notation in Fig. 4.2, the constriction onset xo and
flow separation position xs are indicated.
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Figure 4.5: Normalized pressure values P/Py sampled from Fig. 4.3 at the onset of the mini-
mum constriction xo and the position of minimum pressure z,, for air flow for an ideal fluid
(B), a quasi-one-dimensional model (BP) and a quasi-three-dimensional model for different
cross section shapes and parameter sets «; and ag for a) abrupt expansion and b) smooth
expansion. Recall that the stenosis parameters are set to minimum area A,;, = 79mm?,
Py =1000Pa, R. = 30% and L./D. = 6.

4.1.3 Pressure distribution: blood flow

In order to illustrate the impact of the fluid on the flow, the velocity distributions of developed
flow through a uniform channel of area A = 79mm? are illustrated in Fig. 4.6 blood flow and
air flow for a circular (cl) cross section shape and for a circular sector (cs) cross section shape.
The maximum velocities are summarized in Table 4.2.

Table 4.2: Overview of maximum velocities from the distributions shown in Fig. 4.6 .

Upag [00/5] Upnae M/
blood 0.1339 0.1151
air 26.29 22.59
ratio! | 5.1 x 1073 5.2 x 1073

() ratio of maximum velocity between blood and air flow.

From Table 4.2, it is seen that the ratio of maximum velocity for blood blow and air flow
approximates ~ 5 x 10™3 which yields the inverse of the ratio of their dynamics viscosities
listed in Table 4.1. For the circular sector the maximum velocity reduction compared to the
circular cross section yields 15%.

Next, we apply the quasi-three-dimensional flow model proposed in section 4.1 to blood
fluid through constricted channels of different cross section shape. The pressure distribution for
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Figure 4.6: Velocity distributions u(y/ac;, z/aq) for a uniform channel with area A = 79mm?
and driving pressure dP/dx = 75Pa/m for blood flow and air flow. The cross section shapes
are defined using geometrical default parameter set a;.

a smooth and an abrupt expansion with minimum area A,,;, = 79mm? and default parameter
set « is illustrated in Fig. 4.7 for the same stenosis parameters as used for air flow and the
upstream pressure is set to Py = 75Pa. It is seen that the same conclusions described for air
flow in section 4.1.2 hold in the case of blood flow. The quasi-one-dimensional flow model
(BP) severely underestimates the pressure drop compared to the quasi-three-dimensional flow
model taking into account the cross section shape. The influence of the cross section shape
on the model outcome becomes more prominent using the non-default parameter set (as)
or imposing a fixed width (y4 = w) since the difference between the pressure distributions
between cross section shapes increases compared to the use of default parameter set («1). The
quasi-one-dimensional flow model (BP) either overestimates or underestimates the pressure
drop for all the cross section shapes except for the rectangular shape, which is reassuring since
obviously the rectangular cross section shape and the two-dimensional flow assumption result
in a similar cross section shape.

Comparing results for air flow shown in Fig. 4.3 and for blood flow in Fig. 4.7 and Fig. 4.8,
it is observed that the pressure drop at the onset of minimum area xz9 are decreased for blood
flow by at least 25% using the default parameter set a;. This is particular the case for a quasi-
one-dimensional (BP) flow model for which a 50% decrease is found. The average between
different cross section shapes are increased from 5% to 10%. For non-default parameter set
(a2) and fixed width (40 = w) the same observations can be made as a result of the difference
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P/P,

P/P,

(b) abrupt expansion («;)

Figure 4.7: Illustration of normalized pressure distribution P(x)/Py using the quasi-three-
dimensional model for blood flow and imposed area A, = 79mm?, Py = 75Pa, R. = 30%
and L./ D = 6 for different cross section shapes obtained for a) smooth expansion and default
parameter set (1) b) abrupt expansion and default parameter set («1). For completeness also
the pressure distribution associated with a quasi-one-dimensional model (BP) and an ideal flow
(B) are indicated. The normalized geometry is indicated in gray shade and the streamwise z
direction is normalized as xy = x/D. As a reference and following the notation in Fig. 4.2,
the constriction onset xzo and flow separation position x, are indicated.
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P/P,

P/P,

(b) smooth expansion (Yt = w)

Figure 4.8: Illustration of normalized pressure distribution P(x)/Py using the quasi-three-
dimensional model for blood flow and imposed area A,,;, = 79mm?, Py = 75Pa, R. = 30%
and L./D. = 6 for different cross section shapes obtained for a) non-default parameter set
(a2) and b) fixed width (y4or = w). For completeness also the pressure distribution associated
with a quasi-one-dimensional model (BP) and an ideal flow (B) are indicated. The normalized
geometry is indicated in gray shade and the streamwise x direction is normalized as xny =
x/Dg. As a reference and following the notation in Fig. 4.2, the constriction onset xo and
flow separation position xs are indicated.
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in dynamic viscosity of the fluids. Indeed since for the same geometries the higher the speed
is, the lower the viscosity is. In blood flow the speed is just 0.5% of the one in air flow which
will obviously decrease the influence of viscosity. The comparison is further discussed in the
next section.

4.1.4 Comparison of modeled results

In the following the influence of flow, fluid and geometrical variables - cross section shape,
stenosis parameters, dynamic viscosity, upstream pressure and imposed parameter (A or D)
- on the pressure distribution is quantified by considering (, defined as the ratio of the slope
of the normalized pressure drop within the constriction applying the quasi-three-dimensional
flow model and the slope obtained assuming a quasi-one-dimensional (BP) model:

C: ’szn_P(x2)|
| Prin — P(z2)|BP’

(4.5)

where P,,;, denotes the minimum pressure and x2 as before the onset of the minimum area.
The value ¢ = 1 indicates that the quasi-one-dimensional (BP) model provides an accurate
estimate of viscous effects, ( = 0 corresponds to an inviscid fluid, ¢ < 1 indicates an over-
estimation of viscous effects and ¢ > 1 shows that the quasi-one-dimensional (BP) model
results in an underestimation of viscous effects. Values of ( using default parameter set aq,
non-default parameter set as and fixed width y; = w are illustrated in Fig. 4.9 and Fig. 4.10.

R_=30%, L =30, p=p
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(a) smooth expansion (b) abrupt expansion

Figure 4.9: Illustration of ¢ (4.5) for a stenosis with minimum area A,,;, = 79 mm? and
upstream pressure Py = 75 Pa. The influence for different cross section shapes is assessed
for default parameter set «y (+4), non-default parameter set as (>), fixed width g = w (0).
Different degrees of stenosis and different fluids are assessed as indicated.

Different configurations for stenosis degree R, (30% or 6%), streamwise constriction extent
L./D (6 or 30), dynamic viscosity p (air or blood), expansion geometry (smooth or abrupt),
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(a) A =79mm?, Py = 1000Pa (b) D = 10mm, Py = 75Pa

Figure 4.10: Tlustration of ¢ for a smooth expansion and default parameter set (+), non-
default parameter set (>), fixed width (o) for different geometrical, fluid and flow configura-
tions. For subplots in Fig. 4.10a and Fig. 4.10b values of R, L./D. and p are the same as
indicated in Fig. 4.9a.

upstream pressure Py (75Pa or 1000Pa) and imposed variable (minimum area A, = 79 mm?

or hydraulic diameter D = 10mm) are assessed.

Fig. 4.9a shows that when the minimum area A,,;, of a smooth expansion is imposed, the
quasi-one-dimensional (BP) model results in either an overestimation (such as for the default
parameter set «q) or underestimation (such as for non-default parameter set o) for a rectan-
gular (re), elliptical (el), concentric annulus (ca) or eccentric annulus (ea) cross section. The
magnitude of the over- and in particular the underestimation depends on the configuration. In
general, it is observed that the underestimation reduces and even disappears for configurations
favoring viscous effects such as increasing stenosis length L./Dy (L./Dy = 30), decreasing
stenosis degree R, (R. = 6%) or yet increasing dynamic viscosity p (pt = fpiood)- The overesti-
mation appears to be less sensitive to the exact configuration, including the cross section shape
as observed for default parameter set a1. This is also observed for a circular sector or limacon
cross section shape, which is in accordance with previous findings illustrated in Fig. 2.4 or
Fig. 4.3. Imposing the minimum area A,,;, for an abrupt instead of a smooth expansion does
not alter the observations with respect to the lack of accuracy of the quasi-one-dimensional
(BP) model as illustrated in Fig. 4.9b.

Increasing upstream pressure Py reduces the impact of viscosity on the flow so that in
accordance with the previous findings applying the quasi-one-dimensional (BP) model results
in an overestimation or a severe underestimation (600%) of the viscous flow effects. This is
illustrated in Fig. 4.10a. Results shown in Fig. 4.9a confirm that the underestimation with the
quasi-one-dimensional (BP) model reduces as the geometrical or fluid parameters are altered so
that the contribution of viscosity to the pressure distribution within the constriction increases.
Moreover, it is seen from Fig. 4.9a, Fig. 4.9b and Fig. 4.10a that the quasi-one-dimensional
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(BP) model matches the outcome obtained in the case of a rectangular cross section shape.

In case the hydraulic diameter D is imposed, Fig. 4.10b illustrates that the quasi-one-
dimensional (BP) model overestimates viscous effects, for all assessed configurations. More-
over, the variation of the model outcome for different configurations is small compared to the
variation obtained when the minimum area A;,;, is imposed.

4.2 Phonation

In section 4.1 a simple quasi-three-dimensional flow model was formulated which accounts for
kinetic losses, viscosity as well as the cross section shape [127]. It was shown that varying the
cross section shape alters the pressure distribution within a constricted channel significantly,
20% up to 100% when comparing to the quasi-one-dimensional (BP) flow solution [127]. This
amounts to the same order of magnitude as well-studied flow events such as the position of flow
separation along a convergent-divergent channel constriction [120, 23, 109]. Such a constricted
channel is relevant to the glottis during human phonation. Therefore, applying a flow model
for which the viscous contribution depends on the cross section shape potentially affects the
outcome of physical or mathematical models of human phonation, i.e. vocal folds auto-
oscillation during voiced sound production. In this section, we focus on the prediction of the
phonation onset pressure threshold Pon, ¢.e. the minimum upstream pressure to sustain the
auto-oscillation. A schematic overview of the main flow, geometrical and acoustic quantities
characterizing human phonation is given in Fig. 4.11.

trachea glottis (vocal folds) vocal tract

L

Sp = Lks

uo

1s
Y

Figure 4.11: Schematic overview of main flow (blue), geometrical (green) and acoustic (red)
quantities to determine non-dimensional numbers motivating simplified flow descriptions ap-
plied in phonation models. Upstream pressure Py, downstream pressure Py, volume flow rate
@, inlet cross section area Ag, minimal glottal area A,,;,, streamwise varying area A(x), glottal
streamwise length Lg, acoustic auto-oscillation frequency f, inlet bulk velocity @g, Reynolds
number Re, based on hydraulic diameter D and Strouhal number Sr. Note that, the channel
has arbitrary cross section shape and hence the width w (in gray shade) is only relevant with
respect to the particular case of a rectangular channel with fixed w.

The aim of this section is to assess the potential impact of the quasi-three-dimensional
flow model, which takes into account the cross section shape, on the outcome of a physical
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phonation model in comparison with a quasi-one-dimensional (BP) flow model. We focus on
cross section shapes relevant for the glottal constriction: rectangular (re), elliptical (el) and
circular sector (cs) as illustrated in Fig. 4.12.

E— w
z
h/2I
w/2
x rectangle (re) ellipse (el) circular
sector (cs)
Are = hpe - w A = %hel cw Acs = w? arcsin %

Figure 4.12: cross section shapes in the (y, z) plane (perpendicular to the main flow direction
x) defined by two geometrical parameters — width w and height h., with - = re, el, cs — from
which geometrical quantities, such as area A., can be derived.

In order to provide a fair comparison with the quasi-one-dimensional (BP) model approach
width w is fixed regardless of the cross section shape to w = 20mm, which is within the range
observed on human speakers (15 up to 25mm [28, 23]) and mechanical glottal replicas (20 up
to 25mm [104, 24]). All cross section shapes illustrated in Fig. 4.12 are fully defined by two
geometrical parameters, such as width w and height h, from which the area can be derived as
shown in Table 2.1.

4.2.1 Stability analysis of a physical phonation model

The symmetrical two-mass model is used to represent the vocal folds during phonation. Each
of the vocal folds is modeled as a reduced spring-mass-damper system with two degrees of
freedom driven by the pressure difference, AP = Py — Py, across the masses as illustrated
in Fig. 4.13 [24]. The applied models for glottal airflow, vocal folds mechanics and acoustic
interaction with a upstream and downstream pipe, representing the trachea upstream from
the glottis and the vocal tract downstream from the glottis, are severe simplifications of the
fluid-structure interaction in the larynx during human voiced sound production.

In section 4.1 a three-dimensional aspect is added to the flow model, which is lacking
in classically applied flow models for which the anterior-posterior y-dimension is neglected.
This results in the common quasi-one-dimensional flow model (labeled BP) assuming a fixed
glottal width w and streamwise variable glottal height h(x,t) so that App(x,t) = w X h(z,t).
Flow separation along the diverging portion of the glottis is taken into account as Ag(t) =
1.2 x min(A(z,t)) defining the position of flow separation z, with 21 < s < 3. From (2.13)
and (4.7) the pressure distribution P(z,t) for zop < x < z is written as a quadratic equation
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Figure 4.13: Schematic representation of a deformable vocal fold structure modeled as a
symmetrical reduced two mass model [24]. The cross section shape is added to the set of
input parameters.

of volume flow rate ®:

1 1 1
P(x,t) =Py = 5pQ” ( A2(x,t) A2(xo))

T dx
+ uQ _— if xg <2< x4, 4.6
" oy Blx,0) ’ (46)
P(z,t) =Py, if © > xs, (4.7

with upstream pressure Py, downstream pressure P;, dynamic viscosity of air y = 1.8 x
10~°Pa-s, 3 depending on the cross section shape as given in Table 4.3 and volume flow rate
P estimated as:

Q=

. T odx N <M v dx >2 N
o 5('r7t) o 6(1‘,t) (4.8)
2Py — Pa)p (1/A2 = 1/4%(20)) }'7%] x [ (1/42 = 1/4%(20))] !

The vocal folds mechanics is modeled as a symmetrical low order model in which each vocal
fold is represented by two identical masses m. The two mass model describes the movement
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Table 4.3: [ as a function of width w and area A for cross section shapes depicted in
Fig. 4.12 [127].

Shape B(w,A)
rectangle(® wfs i _ 9w i tanh(nmA/2w?)
8 6 | 2w 7o - nd
n=1,3,...
1 w?A?
ellipse et 1 1640
w* [tan24/w? — 24 /w?
circular o 1 —
(a) o
sector &A‘l Z )
Owd ~ n2(n + 4A/7Tw2)2(n _ 4A/7rw2)
BP0 -
12w?

(@) infinite sum is limited to n < 60.

(®) quasi-one-dimensional flow model.

of the two masses perpendicular to the flow direction. The cross section shape is given and
assumed not to vary within the glottis. The mechanical model is further expressed as a
function of fixed width w and varying area A(z,t) using the relationship A = f(w, h.) given in
Fig. 4.12. The main parameters required in the mechanical model are mass m, spring stiffness
K, coupling stiffness K. = 7K between the two masses, damping R and critical glottal area
threshold A..;; triggering vocal folds collision when A, < A, with minimum glottal area
A. = min(A;, Az). Whenever collision is detected the values of K and R are increased to
K = 4K and R = R+ 2V Km. The two masses have the same mechanical parameters K, R
and m as depicted in Fig. 4.13. With these notations the mechanical model is written as two
coupled equations:

md*A;  RdA;  K(1+7) vK

ry P’y Al — —Ay = F1 (A1, As, Py, P, 4.
2 dt? 2 dt + 92 1 2 2 1( 1,42, 170, d)7 ( 9)
md?*Ay  RdAy K(1+7) K

"y Py Ay — — Ay = F5(A1, A, Py, P, 4.1
2 di2? 2 dt + 2 2 9 1 2( 1,42, 170, d)a ( O)

with F7 o the force exerted by the fluid on the first and second mass respectively. The me-
chanical equations at equilibrium reduces to:
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L S 10T o W T} (4.11)
K(l;w 1y — gih = Fy(Ay, Ay, Py, Py = 0), (4.12)

from which the equilibrium positions for a given upstream pressure P are derived by a fixed
point method. Assuming a small perturbation (a1, agz,po,pq) of the quantities around the
equilibrium values eq = (A1, Az, Py, Py = 0) as:

Aq :/_11+a1, As :A2+02, (4.13)
Py = Py + po, Py = pa, (4.14)

results in the following set of equations:

md?a;  Rda; K(1+7) vK

2 a2 dt g T
oF, OF o oOF,
_ o on 415
94, eth1 + 94, eqaz + op eqpo + op, equ, ( )
md?ay  Rday K(1+7) ~vK
— ——t ————"ay — —ay
2 dt? 2 dt 2 2
6I§ 81@2 81?3 8}@
= — — — — . (4.16
OA, eqa1 + 9y eqaz + 9P eqp0+ op, equ ( )

Acoustical coupling between the vocal folds and a uniform upstream tube with length
L, representing the trachea and/or a uniform downstream tube with length Ly representing
the vocal tract is important when the acoustical resonance frequencies of the pipe and the
auto-oscillation frequency are close [24, 73|. The acoustic set of equations is given as

d*hg  wa dipg o _ Zawd

— 4.17

21 —i—Qd 7 + wyg 0 o, (4.17)
d2¢0 wo dipg 9 Zowo

= — , 4.18

th +Qd dt +WO QO (25 ( )

with 0t 4/0t = poq the acoustic pressure and ¢ the unsteady portion of the volume flow
velocity, wp 4 the acoustical pipe resonance pulsations, Qg4 the quality factor and Zj 4 the
peak value of the acoustical impedance. As for the mechanical equations assuming small
variations around equilibrium results in:
d? wq d
Ya L Wi Ya | o

wytha

_ Zawg
2t Qg dt +wWata =

Qa

2Q
X (8/11

oQ
al+67A2

oQ
a2+87P0

oQ
p0+aipd

). wn

eq eq €q
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d*o  wo dibo o Zowo
2t T opa TH= g,
20 20 20 20
—_— —_— _— —_— . (4.2
X <8A1 eqal + 0, eqaz + P, eqpo+ or, equ (4.20)

Consequently, assuming small variations around equilibrium results in a coupled set of
equations obtained from (4.15), (4.16), (4.19) and (4.20). The system can be expressed in
state-space form as

X=MX (4.21)

A|B
with X = [al, az, Yo, Ya, day /dt, dag/dt, d”l/)()/dt, d”l/)d/dt] and M = [7‘? with null matrix
A = 04,4, identity matrix B = I; and matrices C' and D defined as:

OF OF .
K(1+’Y)_ ﬁ eq 7K+2ﬁ eq 0 0
- m m
OF. OF.
7K+2ﬁ ‘eq _ KO+~ ﬁ eq 0 0
C = m m (4.22)
Zgwg 0Q Zgwg 0Q 0 w2
Qq 0A1 eq Qq 0As eq d
_ Zowo 0Q _ Zpwo 0Q —w2 0
Qo 0A; eq Qo 0A2 eq 0 ]
and
[_ R 0 201 2 9Fy 1
m m 0Py m 0P,
€q €q
0o & 2 0Fy 2 0Fy
m m 0Py eq m 0P, eq
D = . (4.23)
0 0 Zgwg 9Q _wa 4 Zgwg 99
Qa 9B |, d Qa 9Pa|g,
0 0 —wo _ Zowo 9Q _ Zowp 0Q
L Qa Qo 9P|, Qo 9P|,

The system will become in-stable, corresponding to the onset of auto-oscillation, when the

real portion of an eigenvalue of M is positive.

4.2.2 Results

We search the influence of the cross section shapes, depicted in Fig. 4.12, on the predicted auto-
oscillation onset by assessing the onset pressure threshold Pon. Therefore, a linear stability
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analysis is performed by considering the real portion of the eigenvalues of M for increasing
upstream pressure Py for different cross section shapes and for different initial constriction
degrees 1 — A% /Ag, with A'0 denotes the initial minimum area in absence of flow. Concretely,
the constriction degree is varied from 50% up to 90% whereas the width w is fixed. The
resulting aspect ratios yield 1 < w/h!? < 9 and depend on the cross section shape as illustrated
in Fig. 4.14. For fixed width w the aspect ratios of the quasi-one-dimensional geometry and
the rectangular cross section shape match since A9 = w x hlY holds in both cases. Besides the
constriction degree and the cross section shape the other model parameters are taken constant
with values derived from [24] as: geometry [z 1 x2 x3] = [0 1 4 5jmm, width w = 20mm,
upstream area Apq = 400mm?, masses m = 0.2g, spring stiffness K = 131N-m~2, coupling
spring stiffness K, = 65N-m~2, damping R = 0.006N-s-m~2 and collision threshold A..; =
0.4mm?, upstream pipe lengths Ly = Ocm and downstream pipe length Ly = 17cm, acoustic
pipe resonance pulsations wp=0 and wg = 2965Hz, quality factors Qo9 = 0 and Q4 = 51, and
acoustic impedance peaks Zy = 0 and Zg = 54MPa-ssm~3). Simulated results for phonation
onset, pressure threshold P, are illustrated in Fig. 4.15a as a function of constriction degree
1 — A/ Ay which is independent from the cross section shape and in Fig. 4.15b as a function
of aspect ratio Ar!% = w /A, which depends on the cross section shape.

Fre |
@

Ol /
o 8 DEP
T ow A
c 6 . B
p=} ] /(Z)
o a® 2 o
24 a® o &
Q :: O
® g@F 50° o
©, g;gf’i'i 6099 o9

600000 %Y
60 70 80 90

constriction degree, 1-A1°/A0 [%]
(a) Ar10(1 — A0 /A,) for - =re,el, BPcs

Figure 4.14: Aspect ratio Arlo = u;/h10 as a function of initial constriction degree 1 — AlO/Ao
for cross section shapes (rectangle — re, ellipse — el, quasi-one-dimensional — BP and circular
sector — cs) with fixed width w = 20mm.

For large constriction degrees (greater than 75% in Fig. 4.15a) the cross section shape can
be neglected. For medium or small constriction degrees (smaller than 75% in Fig. 4.15a) the
predicted phonation onset threshold pressure Pon depends on the cross section shape since
less pressure is required to sustain oscillation for a circular sector cross section shape than
for a rectangular or elliptical cross section shape. The discrepancy between Pon estimations
belonging to different cross section shapes increases as the constriction degree (Fig. 4.15a) or
aspect ratio (Fig. 4.15b) decreases. Moreover, it is observed that for the assessed range of
constriction degrees and associated aspect ratios (from 2 up to 9 illustrated in Fig. 4.14), a
rectangular geometry can be modeled using a quasi-one-dimensional (BP) flow approximation.
The simulated phonation onset threshold pressures Pon suggest that for large constriction
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Figure 4.15: (a,b) Modeled onset pressure threshold Pon as a function of constriction degree
1 — A'%/Aj (a) and as a function of aspect ratio Ar!Y.

degrees (greater than 75% in Fig. 4.15a) the model outcome depends on an accurate value of
the constricted area A'° as a model input parameter. This finding is a consequence of the small
discrepancy found in the predicted flow quantities when viscosity dominates the flow behavior
and flow inertia effects become less pronounced and so the influence of the cross section shape.
For medium or smaller constriction degrees (smaller than 75% in Fig. 4.15a) it is necessary to
quantify the constricted area A' as well as to obtain information on the cross section shape
in order to capture the impact of the cross section shape on the viscous losses in the flow
model. When the aspect ratio Ar'® is used as model input parameter (Fig. 4.15b) additional
information on the cross section shape is required as a model input parameter for all aspect
ratios. Experimental studies aiming to validate the modeled influence of the cross section
shape on the phonation onset pressure should account for the necessary input parameters.
In addition, given the severe influence of the cross section shape on the predicted phonation
onset, pressure Pon, it is of interest to extent the current model approach to an arbitrary cross
section shape. This seems important in order to enlarge the relevance of simplified physical
phonation models for applications such as vocal folds pathologies affecting the cross section
shape of the glottis during phonation.

4.3 Summary

The current chapter deals with flow through constricted channels with different cross section
shape and its application to a stenosis for air flow or blood flow. A simplified quasi-three-
dimensional flow model is proposed which accounts for flow inertia, viscosity as well as cross
section shape. The model outcome is quantified and compared with respect to a quasi-one-
dimensional (BP) model. It is seen that in case the area is imposed the pressure distribution
within the constriction varies to a large extent so that the quasi-one-dimensional (BP) model
outcome yields either an overestimation or an underestimation of the viscous effects depending
on the cross section shape. Nevertheless, it is observed that in general the accuracy of a quasi-
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one-dimensional (BP) model improves as the imposed geometrical (stenosis degree, constric-
tion length), fluid (dynamic viscosity) and flow (imposed pressure difference) conditions favor
the viscous contribution to the flow development. Note that all those parameters can be al-
tered due to pathologies. In case the hydraulic diameter is imposed the quasi-one-dimensional
(BP) model yields an overestimation of viscous effects regardless the configuration.

Next, the proposed quasi-three-dimensional flow model is applied to a theoretical sym-
metrical two-mass model assuming different cross section shapes as schematically depicted in
Fig. 4.13. A stability analysis is performed in order to quantify the impact of the cross section
shape on the minimum pressure required to sustain phonation. For large constriction degrees
(greater than 75%) the cross section shape can be neglected and the quasi-one-dimensional
flow model is capable to describe the flow. For medium and small constriction degrees on
the other hand, a discrepancy appears between cross section shapes which increases as the
constriction degree decreases.

Consequently, accounting for the cross section shape improves the model accuracy in partic-
ular for flow and geometrical configurations which are not completely dominated by viscosity.
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In chapter 4, the influence of the cross section shape on flow through a constricted channel
is shown for the outcome of a quasi-three-dimensional flow model. In the current chapter,

it is sought to assess the possible impact of the cross section shape of a constriction on flow

properties experimentally. In addition, the quasi-three-dimensional flow model outcome can

be validated on experimental data.

The flow field is quantified by temporal and spatial sampling of the pressure and velocity
field. In order to fully characterize the flow field, upstream flow conditions are varied. A

spatial overview of the flow field is presented using flow visualization.

5.1 Experimental configuration

5.1.1 Constricted channel cross section shapes

Eight constricted channel portions with different cross section shapes', previously assessed in
chapter 2 and chapter 4, are considered. The constricted channel portions and the different

ICircular (cl), square (sq), elliptical (el), rectangular (re), equilateral triangular (tr), isosceles triangular

(ntr), small circular sector (scs) and large circular sector (lcs)

79
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cross section shapes are illustrated in Fig. 5.1 and detailed in Appendix D. The geometri-
cal characteristics (hydraulic diameter D, width? w along the y-direction and height h along
the z-direction) are summarized in Table 5.1. The cross section shapes have constant area
A, = 79mm? and constant length L, = 25mm along the streamwise z direction. Each con-
striction can be screwed to an upstream and downstream channel with the screwthread along
the outer walls in order to obtain a constricted channel portion. In the current work, unless
stated differently, the upstream or downstream channel is a uniform circular channel with inner
diameter 25mm, fitting the outer diameter of the constricted portion, so that the constric-
tion inlet and outlet makes a sharp angle with the upstream and downstream unconstricted
channel®>. One or two pressure taps of diameter 0.5mm are positioned at the center of the
constriction?, corresponding to L./2. Measured pressures at these positions are labeled P;
for one and P; o for two pressure taps. The position of the pressure taps and their labels is
depicted in Fig. 5.1. It is seen that depending on the symmetry of the cross section shape one
or two pressure taps can be used.

cl: circle sq: square el: ellipse re: rectangle

tr: equilaterél
triangle

(a) transverse view (b) streamwise view

Figure 5.1: Mlustration of experimentally assessed uniform cross section shapes and position
of the pressure taps Py (full arrow) and P, (dashed arrow): a) front view of the cross section
shapes along the (y,z) plane. As an example, total width w and height h, summarized
in Table 5.1, is indicated for the rectangular cross section shape. b) streamwise view of the
constricted portion with length L.. Screwthread is present at the outer edges of the constricted
channel portion. The positions of the pressure taps is pointed out. The geometry is further
detailed in Appendix D.

2The total width w was denoted y:0: in Table 2.1. The geometrical parameters were previously defined in
Table 2.1 and illustrated in Fig. 2.3 and Fig. 4.12.

3The sharp angle at the outlet of the constriction results in flow separation at the constriction exit, so that
its position is known and does not influence the measured or modeled flow outcome. On the other hand, the
choice of sharp inlet angle can be criticized since complex flow phenomena might occur at the inlet.

“The pressure sensors are screwed in the pressure holes shown in Fig. 5.1b. The pressure tap itself is situated
at the bottom of the pressure hole and has a diameter of 0.4mm.
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Table 5.1: Overview of geometrical parameters for the constriction cross section shapes illus-
trated in Fig. 5.1: hydraulic diameter D, width w, height h, cross section area A., constriction
length L. and ratios of geometrical parameters.

H c  sq les tr scs  ntr el re

D |mm] || 10 89 84 78 72 70 6.7 6.6
w [mm]| 10 89 122 11.7 173 171 224 198
h [mm] 10 89 122 135 9.0 92 45 40
w/h [-] 1 1 1 09 19 19 50 50
w/D [] 1 09 15 17 24 25 33 3.0
L./DJ|| 25 28 30 32 35 36 37 338
A, = 79mm?, L. = 25mm

5.1.2 Experimental setup and flow conditioning
5.1.2.1 Experimental setup

Flow facility and pressure measurements The setup consists of an air compressor (Atlas
Copco GAT), followed by a pressure regulator (Norgren type 11-818-987) providing an airflow
at constant pressure. A general overview of the experimental setup is depicted in Fig. 5.2.
The volume flow rate is controlled by a manual valve placed downstream from the pressure
regulator. The volume flow rate is measured by a thermal mass flow meter (Model 4043 TSI)
with an accuracy of 2% of its reading. To homogenize the flow, a settling chamber is used,
with dimensions 0.25mx0.3mx0.35m, to which a series of 3 perforated plates with holes of
diameter 1.5mm are added. The walls of the settling chamber are tapered with acoustic foam
(SE50-AL-ML Elastomeres Solutions) in order to avoid acoustic resonances. The influence
of the cross section shape on the flow development is assessed experimentally by adding one
of the constricted channel portions, illustrated in Fig. 5.1, to a uniform circular tube, with
unconstricted internal diameter 25mm. The flow channel is mounted to the settling chamber
by means of a converging nozzle. The used nozzle and resulting nozzle flow is detailed in [41].
An acoustic source, pressure driver unit (KU 916T), upstream from the constriction can be
used to create unsteady flow®. Pressure sensors (Kulite XCS-093) can be positioned in pressure
taps of diameter 0.5mm upstream from (FP), in the middle of (P; and P) and downstream
(Ps3) from the constricted portion illustrated in Fig. 5.1. The used pressure taps depend on
the value of the length of the channel upstream from the constriction L,, and the length of the
channel downstream from the constriction Ly. Two omni directional microphones (B&K 4192)
with associated pre-amplifier (B&K 4165) and additional amplifier and power supply (B&K
5935L) are positioned downstream from the flow channel in order to analyze the acoustic
signal®. Except for the air compressor, the whole setup is placed in a confined room in
order to avoid flow disturbances. Electrical signals are amplified and conditioned using a pre-
amplifier /conditioning board (National Instruments SXCI-1121) connected to a PC through

SExamples of unsteady measurements are presented in Appendix G.
5In the current chapter, the acoustic signals are not analyzed since we focus on characterizing the flow field.
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a National Instruments BNC-2080 and a National Instruments PCI-MIO-16XE acquisition
card. The acquired data are processed using LabView 7 software (National Instruments).

Volume flow rate @Q is sampled at 500Hz. Pressure sensors P and microphone M are
sampled at 10kHz or 24kHz. Statistical quantities, such as mean values, are derived on 5s of
steady signal as shown in Fig. 5.2¢ for the measured volume flow rate Q(¢) and pressure signal
P(t). In general, flow experiments are performed for volume rates within the range 0 < @ <
2001/min. The increment is 51/min for < 80l/min, 10l/min for 90]/min< ¢ < 100l/min
and 251/min for @ > 1251/min.

Tz -1.25, 1125
0 z [cm)]
' /4 : ). Ly > 50cm
S| RPI(F) Py M, M,
Q 1 — |
]
x % 24cm
A7 Lu Zsem La | y7em
<l 1
Y settling grid  nozzle Source  constriction
chamber (4.5¢m) inlet condition (sharp edge,...)
(a) schematic overview
Qmean i
\
5 10 15

t[s]

(b) photograph (c) statistics on bs of signal

Figure 5.2: a) Schematic overview of the experimental setup indicating the position of pressure
taps (upstream from the constriction Py, within the constriction P (P») and downstream from
the constriction Ps), the position of microphones M; and My at a distance Ljp; = 50cm or
Ly = 1m. The length of the unconstricted upstream L, and downstream channel L, is varied
as well as the inlet condition immediately upstream from the constriction. b) Photograph
and c) Measured volume flow rate Q(¢) and pressure P(¢) indicating the 5s interval used to
determine the steady values.

Velocity measurements The flow velocity downstream of the constriction is measured for
different cross section shapes by hot film anemometry for L, = 100cm, a sharp constriction
inlet condition and in absence of a downstream channel, i.e. Ly = 0, as illustrated in Fig. 5.4.
Note that the flow facility is the same as described for the pressure measurements. The hot
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film (TSI 1201-20), for which the working principle and calibration is detailed in Appendix E.2,
is mounted to a home-made positioning system providing a positioning accuracy of 0.1mm.
The positioning system is illustrated in Fig. E.7 of Appendix E.2. The probe displacement
is controlled by a user-defined matrix implemented in LabView (National Instruments). At
each spatial measurement position, the hot-film output voltage is sampled at 10kHz during
40s (the number of samples is sufficient to provide a statistical analysis of the mean and
root mean square velocity). The voltage is collected by a constant temperature anemometer
system (TSI IFA 300) and corrected for drifts in temperature following the procedure outlined
in Appendix E.2.

Transverse velocity profiles are gathered by positioning the hot film at a distance < 1mm
downstream from the center of the nozzle exit” and displacing the hot film with a transverse
step of 0.5mm parallel to the cross section exit plane across the directions shown in Fig. 5.3a.
Longitudinal velocity profiles in the near field downstream from the constriction are obtained
by positioning the hot film at a distance < lmm downstream from the center of the nozzle
exit and displacing the hot film with streamwise steps of Imm up to lem downstream from
its initial position followed by streamwise step of 5mm up to 8cm from its initial position.
The streamwise extent of the longitudinal velocity profile is denoted Lyr = 8cm. The ratio
of this extent to hydraulic diameter for the assessed cross section shapes Lyp/D is listed in
Table. 5.2 in order to characterize the assessed near field region for each cross section shape.

cl: circle sq: square

el: ellipse re: rectangle cl: circle sq: square el: ellipse re: rectangle

tr: equilateral ntr: isosceles scs: small
circular sectc r sector triangle triangle

tr: equilateral ntr: isosceles scs: small
triangle triangle

S

(a) transverse velocity profiles (b) flow visualization sheets

Figure 5.3: Experimentally assessed directions along the major axis (full arrow) and along the
minor axis (dashed arrow): a) transverse velocity profiles and b) visualization sheets. Note
that except for the squared cross section shape all transverse profiles are taken along the sheets
used for flow visualization.

Flow visualization A spatial overview of the impact of the cross section shape on the flow
field immediately downstream from the constricted portion is obtained by applying flow visu-
alization. Therefore, the constricted channel is attached to a settling chamber, of dimensions

"<1mm corresponds to (z — L.)/D < 0.15.
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Table 5.2: Near field region assessed by the longitudinal velocity profile characterized by the
ratio Lyp/D with Lyp denoting the extent of the longitudinal velocity profile and D the
hydraulic diameter for the cross section shapes shown in Fig. 5.1.

cd sq les tr scs  ntr el re
D [mm]| 10 89 84 78 72 70 6.7 6.6

Lyp/D |80 9.0 95 103 111 114 11.9 121
LHF=8Omm

0 8cm
—
hot film
O ~— -
ac 100cm 2.5cml67cm
Yy settling IFA-300 ! counstriction .
chamber sharp edge positioning

single grid plate (ogp) system

(a) schematic overview

(b) hot film (TSI 1201-20) (¢) photograph

Figure 5.4: Ilustration of hot film anemometry setup. a) Schematic overview of the setup and
configuration used to assess the influence of the different cross section shapes of the constricted
portion on the velocity field immediately downstream from the constriction. Transverse and
longitudinal velocity profiles are assessed. The spatial range of the longitudinal velocity profile
is indicated. b) Hot film. ¢) Photograph of hot film positioning.

0.38m x0.38m x0.48m, to which smoke can be injected. Smoke is generated by a smoke ma-
chine (Fog-1200E KOOL). Two-dimensional illumination of the flow field is applied with a
two-dimensional laser light beam (class IIIb). The illuminated smoke pattern is recorded at
300fps (Casio EXILIM Pro EX-F1) which ensures good freezing of the flow development. For
each flow condition between 600 and 900 images are gathered corresponding to an acquisition
time of 2s up to 3s. An overview of the flow visualization setup is given in Fig. 5.5. The dig-
itized two-dimensional images are 512 x 384 data matrices. Spatial calibration of the images
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is performed using the grid illustrated in Fig. E.2 of Appendix E. The streamwise extent of
the visualized flow field yields L, = 21cm. The visualized near field region downstream form
the constriction is characterized by its ratio with the hydraulic diameter of the cross section
shape L, /D for which values are listed in Table 5.3. Concretely, two visualization planes are
considered: one along the major axis and one along the minor axis of the cross section shapes
as illustrated in Fig 5.3b.

Table 5.3: Visualized near field characterized by the ratio L, /D with L, denoting the stream-
wise extent of the visualized area and D the hydraulic diameter of the cross section shapes
shown in Fig. 5.1.

cd  sq les tr scs  ntr el re
D [mm] 0 89 84 78 72 7.0 67 66

L,/D[mm] |21 236 25 269 292 30 313 318

L, = 210mm.
z
air '
1o 47cm
' @)
smok¢ | '“ 1 - ]
B O Var 60cm  2.5¢m] 28cm
Y | constriction !
chamber | ,
sharp edge camera laser

(a) schematic overview

(b) photograph

Figure 5.5: Nllustration of the experimental setup used for flow visualization.
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5.1.2.2 Flow conditioning

The impact of the constriction cross section shapes illustrated in Fig. 5.1 on the flow field is
assessed for different upstream flow conditions. Different upstream conditions are generated
by varying the length L, of the channel upstream from the constriction, by varying the inlet
condition immediately upstream from the constriction and by varying the length L, of the
channel downstream from the constriction. In addition, a free and confined jet configuration
downstream from the constriction considered for Ly = Ocm or Ly = 15¢m, respectively.

The nozzle flow exiting the settling chamber approximates a top hat profile, characterized
by an almost uniform velocity profile [41], so that increasing L,, will result in a more developed
flow profile. Concretely, L, is set to either 2cm, 35cm or 1m. Note that for L, = 1m the
length-to-diameter ratio L, /D, of the unconstricted upstream channel yields L, /D, = 40,
with D, = 25mm, so that, depending on the applied volume flow rate, the flow is expected to
be fully or almost fully developed. For L, = 35cm, the length-to-diameter yields L, /D, = 14
so that the flow is developing. For L, = 2cm the length-to-diameter ratio L, /D, < 1 so that
velocity profile is imprinted by the almost uniform nozzle profile. Therefore, the upstream
profile is either characterized by boundary layer limited to the near wall region for L, = 2cm
or by boundary layers occupying almost the entire flow channel.

Since the constriction is uniform regardless of the cross section shape, it follows that
the inlet condition a the constriction is defined by sharp edges. Sharp edges might cause a
vena contracta to occur at the inlet of the constriction, which will influence the downstream
flow field and moreover can not be captured with the simplified quasi-three-dimensional flow
model proposed in chapter 4. Therefore, flow mixing at the inlet is altered by putting a flow
mixing element immediately upstream from the constriction. Concretely three different mixing
elements are introduced, which are illustrated in Fig. 5.6. The transverse dimension fit the
diameter D, of the unconstricted upstream channel and the length of the mixing element is
either 3cm in case the mixing element consists of two grid plates containing pipes of diameter
0.65cm (tgph) or steel wool (tgps) or Imm in case a single grid plate (ogp) is considered.
The grid plate is characterized by regular circular holes of diameter 0.15¢cm equally spaced
at 0.08cm. The cross section shapes with the single grid plate at their inlet® is illustrated in
Fig. 5.7

Two additional upstream flow conditioning conditions are assessed for the constriction with
circular cross section shape in order to be able to observe the effect of flow development in
absence of shape edges at the constriction inlet. Firstly, a converging cone with angle 26 is
used to provide a smooth transition between the diameter of the unconstricted upstream pipe
D, = 25mm and the diameter of the constriction with circular cross section shape D = 10mm.
The geometry of the converging cone is detailed in Fig. 5.8. Secondly, as a reference, a circular
constriction with diameter D = 10mm is considered for which the length upstream from the
pressure tap P; is extended from 12.5mm (L. = 25mm) to 1000mm (or L. ~ 1lm so that

8The area ratio of the area covered by the holes in the single grid plate to the area of the cross section
shape is estimated between 50% to 60%.
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(a) ogp (b) tgph (c) tgps (d) length

Figure 5.6: Illustration of mixing elements. a) one grid plate (ogp), b) two grid plates contain-
ing pipes (tgph), ¢) two grid plates containing steel wool (tgps) and d) length of the mixing
element for cases (tgph) and (tgps). Dimensions of the grid plate and pipes are indicated.

/

(f) ntr (g) scs (h) les

Figure 5.7: Front view of different cross section shapes shown in Fig. 5.1 with one grid plate
(ogp) placed at the inlet of the constricted portion.

L./D = 100) in order to compare the flow field resulting from the previous outlined upstream
flow conditioning with the flow field observed for fully developed flow.

5.1.2.3 Assessed configurations

The assessed geometrical configurations for each of the constriction shapes shown in Fig. 5.1
result from the described combination of different flow conditioning conditions described in
section 5.1.2.2. An overview of the assessed configurations is given in Table 5.4. In this chap-
ter we will focus on steady flow through for 0 < @ < 2001/min (Re < 25000). Measured flow
quantities are indicated: used pressure taps along the constricted channel, hot-film anemom-
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~—10.0——==—10.0——==—10.0——

(a) photograph (b) schedule

Figure 5.8: Tllustration of the geometry and dimensions [mm]| of the cone with converging angle
21° mounted immediately upstream from the constriction with circular cross section shape in
order obtain a smooth inlet condition for the circular constriction with diameter 10mm.

etry and flow visualization. Note that flow visualization is done using the setup shown in
Fig. 5.5 so that the upstream channel length yields 60cm instead of 1m.

An overview of the assessed configurations for concrete values of the inlet conditions —
upstream channel length L, and downstream channel length Ly —is given in Fig. 5.9 for the
inlet condition corresponding to sharp edges and in Fig. 5.10 in presence of a mixing element.
Consequently, the configurations A, B and C depicted in Fig. 5.9 focus on the impact of flow
development for the flow through each constriction shape, whereas the configurations D, E and
F depicted in Fig. 5.10 focus on the impact of mixing for the flow through each constriction
shape.

5.2 Experimental results

5.2.1 Pressure measurements
5.2.1.1 Influence of flow development

The influence of flow development on the measured pressures within the constriction P; is
assessed for all cross section shapes for constriction with sharp edges at its inlet with and
without downstream pipe using the setups depicted in Fig. 5.9 showing the conditions la-
beled A, B and C in Table 5.4. The measured pressures P; and normalized pressures P;/Py
are shown in Fig. 5.11. It is seen that the general tendency of the pressure dynamics with
increasing upstream pressure is imposed by the presence (or absence) of a downstream pipe
(Lg) enveloping the jet downstream from the constriction since its presence ensures negative
pressures within the constriction for all cross section shapes. Nevertheless, the impact of
the downstream pipe depends on the cross section shape since it is most pronounced for a
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Table 5.4: Overview experimental conditions assessed for the constriction shapes shown in
Fig. 5.1 indicating the used flow conditioning. In case no flow conditioning is mentioned sharp
inlet edges are assessed. The measured flow quantities are indicated: pressure taps defined in
Fig. 5.2a, transverse and longitudinal velocity profiles using hot-film anemometry (HF) and
flow visualization (FV).

Label H L, Ly Pressure sensors(!)  Flow field®3) Comment H
Inlet condition: sharp edges (Fig. 5.9) — flow development
Ocm Py, Pi(P) free jet
A 2
e 15cm Py, Pi(Ps), P confined jet
Ocm Py, Pi(P2) free jet
B 35 &
o 15ecm Py, Pi(P2), Ps confined jet f
Ocm Py, P (P) HF, TV free jet 5
C 1m . !
15cm Py, Pi(P), Ps confined jet || 3
Inlet condition: use of mixing element (Fig. 5.10) — flow mixing
Ocm Py, P (P) HF free jet
D
35em (08P) s By, P(PY), Py confined jet
Ocm Py, Pi(P) HF free jet
E h
svem (teph) o p Pi(Py), P confined jet
Ocm Py, P (P) HF free jet =3
F t
35em (180S) 4500 By Pi(PY), Py confined jet | £
Inlet condition: no sharp edges (Fig. 5.8) — flow development §
Ocm Py, Pi(P) HF free jet S
G 35¢m (cone) 15cm Py, Pi(P), Ps confined jet 3
H Im (dlcm) HF free jet

(1) Steady flow for 0 < @ < 2001/min or Re < 25000.
(2) Steady flow for 0 < @ < 1001/min or Re < 15000.
(3) In hot-film anemometry the upstream channel length yields 1m.

rectangular and circular cross section shape. In addition, it is seen that the effect becomes
more prominent as the upstream length increases and hence as flow development increases.
When expressing the measured normalized pressure ratio P;/Py as a function of Reynolds
number, a minimum value is observed for all cross section shapes for 2000 < Re < 4000
immediately followed by a maximum. The exact position of the minimum depends on the
Reynolds number. Measured values clearly show the impact of the cross section shape on the
flow field for a constriction with sharp inlet edges and incoming flow with different degree of
development. Shown results suggest that the main flow dynamics is imposed by sharp edges
at the constriction inlet rather than by the degree of flow development.

To gain more insight in the flow development, we briefly consider the root mean square
pressure values P/™* for L, = 2cm presented in Fig. 5.12. It is observed that for Reynolds
numbers Re > 5000 the root mean square pressure increases quickly, although its growth
rate depends on the cross section shape (e.g. values for the isosceles triangle are much larger
than values for the circular cross section shape), so that it is an indication that the flows
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Figure 5.9: Schematic overview of assessed configurations for all cross section shapes shown
in Fig. 5.1 for the values of L,, L; and sharp edges at the inlet of constriction (so no use
of a mixing element) for the configurations labeled A, B and C listed in Table 5.4: without
downstream pipe (Lg = Ocm) or with downstream pipe (Lg = 15cm).
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Figure 5.10: Schematic overview of assessed configurations for all cross section shapes shown
in Fig. 5.1 for the values of L, = 3bcm, Ly and with the used of a mixing element for the
configurations labeled D, E and F listed in Table 5.4: without downstream pipe (Lg = Ocm)
or with downstream pipe (Lg = 15cm).
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Figure 5.11: Measured mean pressures within the constriction as a function of upstream
pressure P;(Py) and normalized pressure measured within the constriction as a function of
Reynolds number P;/Py(Re) for different constriction shapes with sharp inlet edge with (Lg =
15cm) and without (Lg = Ocm) downstream pipe: L, = 2cm or label A (left) , L, = 35cm or
label B (middle) and L, = 1m or label C (right).
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becomes turbulent. Consequently, the range of Reynolds numbers for which the minimum
and subsequent maximum is found for the pressure ratio P,/Py(Re) (Fig. 5.11) is probably
associated with the transition regime and passing of vortices triggered somehow by the sharp
edged inlet at the constriction inlet. The flow dynamics needs to be sought in more detail
in order to inform on the transition mechanism, nevertheless the presence of flow structures

might be confirmed (or not) from the flow visualization further in this chapter as well as from
an analysis of the measured velocity profiles.
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Figure 5.12: Measured root mean pressure values within the constriction P{"** for L, = 2cm
(label A in Table 5.4).

Finally, Fig. 5.13 illustrates the impact of the position of the pressure tap on the measured
pressure for cross section shapes for which two pressure taps are present as shown in Fig. 5.1.

Obviously, the position of the pressure tap influences the measured values and the position is
more relevant for asymmetrical cross section shapes.

0
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(a) Ly, = 2cm and Lg = Om (b) L, = 2cm and Ly = 15cm

Figure 5.13: Pressure within the constriction measured at positions P; and P; indicated in
Fig. 5.1 for L, = 2cm and a sharp inlet edge to the constriction (label A in Table 5.4).
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5.2.1.2 Influence of flow mixing

The influence of flow mixing on the measured pressures within the constriction P; is assessed
for all cross section shapes by using a mixing element immediately downstream from the
constriction with and without downstream pipe using the setups depicted in Fig. 5.10 showing
the conditions labeled D, E and F in Table 5.4. The measured pressures P; and normalized
pressures P;/Py are shown in Fig. 5.14. The same way as for flow development, It is seen
that the general tendency of the pressure dynamics with increasing upstream pressure is again
imposed by the presence (or absence) of a downstream pipe (L4) enveloping the jet downstream
from the constriction since its presence ensures negative pressures within the constriction for
all cross section shapes. Nevertheless — and this was also observed for flow development — the
impact of the downstream pipe depends on the cross section shape since it is most pronounced
for a rectangular and circular cross section shape. It is noted that the using the mixing element
increases the pressure difference between upstream pressure Py and the pressure within the
constriction P;.

When expressing the measured normalized pressure ratio P; /Py as a function of Reynolds
number, the influence of upstream flow conditioning becomes apparent when comparing the
measurements plotted in Fig. 5.11 and in Fig. 5.14. Indeed, the pronounced minimum observed
for different degree of upstream flow development in presence of sharp edges, is no longer
observed for most cross section shapes when a mixing element is used. Instead, a maximum
value is observed in the range 2000 < Re < 4000 for which the position depends on the cross
section shape. To which extent the presence of the flow dynamics is altered due to flow mixing
is partly the aim of the flow visualization further in this chapter as well as from an analysis
of the measured velocity profiles.

Measured values show the impact of the cross section shape on the flow field for a con-
striction using a mixing element at its inlet.

5.2.1.3 Influence of the cross sections shape: flow development and mixing

The previous sections outlined the influence of the cross section shape of the constriction on
the measured mean pressures within the constriction for different upstream flow conditions
either due to flow development or due to flow mixing?. In this section, we compare and
quantify the impact of the cross section section shape on the pressure values measured within
the constriction. Measured pressures for different flow conditions, labeled from A to G in
Table 5.4, are plotted in Fig. 5.15 in the case of a circular constriction. The figure illustrates the
severe impact of upstream flow conditioning on the measured pressures within the constriction.
Nevertheless, it is interesting to notice that measured values for L, = 1m (label C) and the
use of a converging cone (label G) follow the same tendencies. Since besides the cross section
shape and upstream flow conditions, the flow dynamics is determined by the applied upstream

9For all cases, the flow dynamics merits a more profound analysis.
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Figure 5.14: Measured mean pressures within the constriction as a function of upstream
pressure P;(Py) and normalized pressure measured within the constriction as a function of
Reynolds number P;/Py(Re) for different constriction shapes using a mixing element with
(Lg = 15cm) and without (Lg = Ocm) downstream pipe: a single grid is placed immediately
upstream from the constriction or label D.

pressure (or Reynolds number) the ranges'® AP;(FPy) and A(P;/Py)(Re) due to changing the
cross section shape will change when their value is taken for different upstream pressures P
or associated Reynolds numbers Re. Nevertheless, in order to quantify the influence of the
overall impact of the cross section shape on the pressure measured within the constriction the
relative value of the range AP;/Py and the range of A(P;/Py) are quantified for particular
values of the upstream pressure Py or Reynolds number Re. When the overall impact is sought
for multiple cross section shapes (CSS) and a single upstream flow condition, the impact is
quantified by evaluating the following expressions at the chosen Py value or Re values (Re
values are chosen either within (Re ~ 3600) or well above (Re ~ 17500) the expected laminar-

oNote that AP (Py) = 0 and A(P1/Po)(Re) = 0 holds in case the shape of the constriction does not
influence the pressure measurements and hence can be neglected.
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turbulent transition regime),

APy |max (Py(V CSS)) — min(P;(V CSS))|
Py Py ’

A (g) _ ‘max (g(v css>> _ min <g(v css>> ‘ . (5.2)

When the overall impact is sought for multiple upstream flow conditions (labeled in Table 5.4)

(5.1)

for a single cross section shape (circular), the impact is quantified by evaluating the following
expressions at the chosen Py value or Re value,

AP _ |max (P1(V A to G)) —min(Py(V A to G))|
P, Py ’
A (g) = ‘max <]]Zl(v A to G)> — min <]]Zl(v A to G)> ’ . (5.4)

0 0

(5.3)

The resulting overall impact of the cross section shape on the mean pressure within the con-
striction is summarized in Table 5.5. It is observed that both measures, APy /Py or A(P1/Py),
of the impact of the cross section shape on the measured pressure within the constriction
express the same tendencies from the following observations:

e observations when varying either the cross section shape (impact of the cross section
shape) or the flow conditioning (impact of flow conditioning):

— the order of magnitude of the impact amounts from 10% up to 30% of the upstream
pressure. This finding illustrates that, at least for the used Py or Re, details of the
cross section shape or details of the flow facility are equally important.

— in general the impact is greater in presence of a channel downstream from the
constriction (confined jet at the exit of the constriction) than in absence of such a
downstream channel (free jet at the exit of the constriction).

e observations when varying the cross section shape (impact of the cross section shape):

— the impact of the cross section shapes reduces (from ~25% to ~10%) as the up-
stream flow conditioning favors flow development (L, increases ) or as a mixing
element is used (ogp).

— increasing the upstream pressure or Reynolds number does not significantly in-
creases the impact of the cross section shape. This suggests that due to dissipation
and turbulence development, the flow field looses the identity or imprint of the
geometry by means of the flow structures characterizing the cross section shape.
Flow visualization and flow velocity analysis can possibly offer a confirmation for
this point.

e observations when varying the flow conditioning (impact of flow conditioning):

— the impact of the flow conditioning in presence of an upstream channel (confined
jet) is less sensible to an increase of the Reynolds number than in absence of an
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upstream channel (free jet for which the impact reduces with more than half its
magnitude as Re is increased) so that the upstream channel has a memory effect of
the upstream flow conditions even for Reynolds numbers well above the transition
regime. Note that no such pronounced memory effect (or flow imprint) is found for

the cross section shape!!.
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1.5
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Re[] x 10° Re ] x 10°
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Figure 5.15: Measured mean pressures within the constriction as a function of upstream
pressure Pj(Py) and normalized pressure measured within the constriction as a function of
Reynolds number P; /Py(Re) for different constriction shapes for different degrees of upstream
flow development and sharp inlet edges (label A, B and C in Table 5.4) and for different mixing
elements upstream from the constriction (label D, E and F in Table 5.4) with (Lg = 15cm)
and without (Lg = Ocm) downstream pipe: L, = 2cm or label A (0m) , L, = 35cm or label B
(35cm) and L, = 1m or label C (1m), one grid plate or label D (ogp), pipes or label E (tgph),
steel wool or label F (tgps) and converging cone or label G (cone).

5.2.2 Velocity measurements and flow visualization

In the previous section, the impact of the cross section shape and flow conditioning on the
pressure within a constricted channel, with and without a channel downstream from the

"1t is of interest to further search the spatial extent of the flow memory for steady flow.
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Table 5.5: Overall impact of the constriction cross section shape (Fig. 5.1) on the range
of ratios AP, /Py and A(Py/Fy) for a particular upstream pressure or Reynolds number for
different upstream flow conditions (labeled following Table 5.4). Overall impact of the flow
conditioning on the range of ratios AP; /Py and A(P;/Py) for a particular upstream pressure
or Reynolds number for the constriction with circular shape. Results in absence (Lg = Ocm)
and presence (Lg = 15c¢m) of a channel downstream from the constriction.

AP /Py %) A(P1/Py) [%]

Ly=0cm | Lg=15cm | Ly = 0cm Ly = 15cm

Overall impact of cross section shapes: Eq. (5.1) and Eq. (5.2)

33%3) 25%3)
A (L, =2cm) 21% M 27% (1)

20% %) 27%4)

18%3) 27%(3)
B (L, =35cm) 18% (1) 23%1)

17% 4 21%4)

13%3) 18%3)
C (L, =1m) 16%1) 19%M

15%® 19%®

11%G) 11%3)
D (ogp) 10%) 9%(2) % %

10%® 7% @)

Overall impact of flow conditioning (circular shape): Eq. (5.3) and Eq. (5.4)

32%3) 32%3)
Ato G 9%(5) 26% () ’ ’

11%® 26% (%)

(1) Py &~ 1500Pa for Ly = Ocm and Py ~ 1300Pa for Ly = 15cm.
(2) Py &~ 3400Pa for Ly = Ocm and Py ~ 3500Pa for Ly = 15cm.
() Re =~ 3600 for Ly = Ocm and Ly = 15cm.

4) Re ~ 17500 for Ly = Ocm and Ly = 15cm.

() Py &~ 360Pa for Ly = Ocm and Ly = 15cm.

constriction, was characterized for a large range of Reynolds numbers (Re < 25000). It was
suggested that the flow dynamics is partly governed by flow structures, whose existence is
triggered by the sharp edges at the contraction inlet. Therefore, in the current section, a start
is made to search the flow dynamics. Hot film anemometry is applied in order to sample the
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velocity field in combination with flow visualization in order to obtain an overall view of the

flow field.

Concretely, the free jet portion immediately downstream from the constricted channel
portion is searched for Re < 15000. Consequently, as indicated in Table 5.4, we limit ourselves
to configurations without downstream channel (Ly; = Ocm). In addition, we focus on the
influence of the cross section shape for two flow conditions: sharp edges at the constriction
inlet (label C in Table 5.4) and a single grid placed immediately upstream from the constriction
(label D in Table 5.4). As for the pressure measurements outlined in the previous section,
additional upstream flow conditions are assessed for a circular constriction.

Measured velocity profiles and visualized flow fields are presented in the following. The
analysis focuses on the influence of the cross section shape and flow conditioning. Therefore,
the measured profiles are presented as a function of the cross section shape and as a function
of the applied flow conditioning rather than as a function of the applied volume flow rate in
order to assess their impact on the flow properties. Measured profiles as a function of volume
flow rate are shown in Appendix F.

5.2.2.1 Longitudinal velocity profiles

As an example, the measured longitudinal mean velocity profiles downstream from the circular
constriction with sharp inlet edges are plotted in Fig. 5.16a for different flow rates'? illustrating

the typical range of velocity magnitudes and the applied spatial increment!?.

Influence of cross section shape The streamwise evolution of the mean velocity shown
in Fig. 5.16a, is a fine example of round jet development, which is schematically depicted
in Fig. 5.17. Indeed, the centerline velocity immediately downstream from the constriction
exit approximates the initial centerline velocity at the exit ug characterizing an ideal flow.
The extent of the cone of ideal fluid for which u ~ ug defines the potential cone extent x..
The potential cone is enveloped by a free shear layer in which the jet flow mixes with the
surrounding fluid. Downstream from the potential cone, self similar behavior is expected to
occur in the far field, which can be described by a velocity decay equation'®. In the current
chapter, we focus our attention mainly on near field behavior such as the evolution of the
potential cone extent as a function of Reynolds number for the cross section shapes shown in
Fig. 5.1. Indeed, the longitudinal velocity is assessed in the near field downstream from the

12The measured longitudinal normalized velocity profiles for each of the cross section shapes, shown in
Fig. 5.1, is plotted as a function of the applied volume flow rate in Appendix F.1: mean (Fig. F.1) and root
mean square (Fig. F.2) for sharp inlet edges (flow condition labeled C in Table 5.4) and mean (Fig. F.3) for
a single grid placed immediately upstream from the constriction inlet (flow condition labeled D of Table 5.4)
and the corresponding root mean square (Fig. F.4).

13 As a reminder, spatial step Az applied for the longitudinal velocity profile yields Az = 1mm for z < 10mm
and Az = bmm for z >10mm.

4 The form of the decay equation will depend on the cross section shape and in addition initial conditions
of the velocity at the jet emitting nozzle outlet, i.e. the constriction outlet.
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Figure 5.16: Illustration of velocity quantities for the circular constriction with sharp inlet
edges (label C in Table 5.4) are plotted in Fig. 5.16a for different flow rates @ (5, 20, 35,
50, 70 and 1001/min): a) near field longitudinal mean velocity profiles along the centerline z
downstream from the constriction illustrating typical velocity magnitude and spatial increment
(Imm for x < 10mm and 5mm for x >10mm). b) instantaneous velocity signal (0.2s) as a
function of time ¢ normalized by its mean value u/u at the initial centerline position x = 0 for
the circa. For clarity, velocity signals are shifted with with 0.1 with respect to the previous
one. Quasi-periodicity is observed depending on the flow rate (e.g. @ = 201/min).

constriction since variations of the flow structure due to either the cross section shape or the
upstream flow conditions will be apparent.
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Figure 5.17: Free jet development: a) schematic overview of potential cone extent z,.. b)
Threshold « as a function of the cross section shape applied to determine the potential cone
extent xp. presented in Fig. 5.19 [4]. For a round jet, 4 < z,./D < 8 [40].
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In order to quantify the impact of the cross section shape on the potential cone extent,
we consider the measured normalized mean velocity as a function of the cross section shape
for sharp edges at the constriction inlet (flow condition labeled C in Table 5.4) plotted in
Fig. 5.18.

The impact of the cross section shape on the near field is apparent for all assessed volume
flow rates with respect to the initial velocity wg, the extent of the potential cone as with
respect to its initial decay. The initial velocity at the constriction exit for instance is seen to
vary up to 20%. As for the pressure measurements, the measured velocity profiles suggest that
the flow behavior is shaped by the sharp edges and the presence of flow structures. Indeed,
the decreasing tendency of the velocity within the potential cone suggests jet forcing due to
the sharp edges at the constriction inlet. In addition, observed humps in the longitudinal
velocity profile, such as observed for the rectangular constriction for @ = 51/min, as well as
the quasi-periodicity of the velocity signal illustrated in Fig. 5.16b, suggests the passing of
coherent structures. The observed differences in low dynamics, when varying the cross section
shape, motivate the adaptation of the threshold « applied in the threshold criterion to define
the potential cone extent. Applied threshold values, listed in Fig. 5.17, are an ‘ad-hoc’ choice.
The resulting estimation of the potential cone extent ). as a function of Reynolds number
for each of the assessed cross section shapes is presented in Fig. 5.19.

Compared to typical values (4 < xp./D < 8 [40] reported for the potential core extent
of a round jet emitted by, at least from a flow point of view, well designed nozzles) the
constricted channel with sharp inlet edges reduces the potential core extent since in general
Zpe/D < 4 holds for Re > 1000. For Re < 1000 a large variation in the potential core extent is
observed ranging from 0 (large circular constriction) up to 7 (circular). The general tendency
of initially decreasing and consequently increasing of the potential core extent as the Reynolds
number increases corresponds to the expected behavior described in literature. The change in
tendency is related to the transition region. Note that no such tendency is observed for the
large circular sector suggesting that flow mixing and interaction affects the centerline velocity
as far upstream as the constriction outlet. Besides, the described general tendency which is
likely related to the flow condition, the influence of the cross section shape on the near field
downstream from the constriction is clearly illustrated by considering the need of a different
threshold for different cross section shapes as well as by the variation of estimated values with
as much as 50%. Note that their is no relation between firstly the value of the hydraulic
diameter and the applied threshold and secondly between the value of the threshold and the
estimated potential cone extent.

Influence of flow conditioning In the previous section it was suggested that the presence
of sharp edges at the constriction inlet (flow condition with label C in Table 5.4) results in
a reduction of the potential cone extent compared to values obtained for smooth nozzles. In
the current section, we further explore the influence of the upstream flow condition based
on measured near field longitudinal velocity profiles. Fig.5.20 presents the normalized mean
profiles as a function of the cross section shape for a single grid placed immediately upstream
from the constriction inlet (flow condition labeled D in Table 5.4). Comparing the velocity
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Figure 5.18: Measured near field normalized longitudinal mean velocity profiles u/tuq, along
the centerline of the jet for cross section shapes shown in Fig. 5.1 as a function of volume flow
rate @ (5, 20, 35, 50, 70 and 1001/min) for sharp edges at the constriction inlet (label C of
Table 5.4). w4, denotes the maximum mean initial velocity for all cross section shapes for a
given volume flow rate.
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Figure 5.19: Potential cone extent normalized by the hydraulic diameter x,./D, mean (sym-
bols) and uncertainty due to the spatial step (vertical bars), as a function of Reynolds number

Re for all cross section shapes shown in Fig. 5.1 and sharp edges at the constriction inlet
(label C in Table 5.4).

profiles in presence of the mixing element (single grid at constriction inlet) presented in Fig.5.20
with the velocity profiles shown in Fig. 5.18 in absence of such a mixing element (sharp edges
at constriction inlet) illustrates the severe impact of the mixing element on the near field flow
development for all volume flow rates'®.

The presence of the single grid mixing element will decrease the area at the constriction
inlet with &~ 50% of the constriction area. Obviously, as a consequence the velocity will
increase in presence of the mixing element compared to the velocity obtained in absence of
the mixing element for the same volume flow rate. Therefore, besides affecting the near field
due to increased flow mixing, the effect of the mixing element is likely to reduce the Reynolds
number for which the transition to turbulence occurs. A first confirmation of this effect is
provided by the minimum of the potential cone associated with the transition regime extent
which reduces from @ = 351/min to  ~ 20l/min when a mixing element is used. In addition,
increased flow mixing increases the velocity decay observed in the potential cone extent due to
the increased interaction of the centerline velocity and the enveloping fluid. This suggests also
that the flow pattern is less stable in presence of a mixing element which in turn again justified

15and re-illustrates the influence of the cross section shape as well.
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Figure 5.20: Measured near field normalized longitudinal mean velocity profiles ©/tuq, along

the centerline of the jet for cross section shapes shown in Fig. 5.1 as a function of volume flow
rate @ (5, 20, 35, 50, 70 and 1001/min) for a single grid placed immediately upstream from
the constriction inlet (label D inTable 5.4). 4, denotes the maximum mean initial velocity

for all cross section shapes for a given volume flow rate.
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the decrease of the Reynolds numbers associated with the transition regime'®. Nevertheless,
although the flow pattern is argued to be less stable, the presence of the mixing element do

seems to homogenize the flow behavior!”

so that in particular the velocity profiles measured
for the circular and rectangular cross section are more in agreement with tendencies observed

for the other cross section shapes .

The influence of the flow condition is further quantified for the circular constriction. The
near field flow behavior is assessed in presence of diverse mixing elements and different degrees
of flow development using the upstream flow conditions labeled C up to H in Table 5.4.
Normalized mean velocity profiles for each of the assessed volume flow rates are presented as
a function of the upstream flow condition in Fig. 5.21.

The velocity profiles show the effect of upstream flow development as well as flow mixing on
the near field flow development for all assessed volume flow rates (for instance when considering
the resulting variation of potential cone extent which e.g. for @ = 51/min occupies either the
entire near field (dlcm) or is absent (tgps)). The following observations are made:

e with respect to upstream flow conditioning using a mixing element (and using the pre-
viously discussed single grid (ogp, label D in Table 5.4) as a reference):

— immediately downstream from constriction outlet!®

* Adding pipes to the single grid mixing element (tgph, label E in Table 5.4)
straightens the flow and as a result reduces the mixing in the immediate near
field.

* Adding steel wool'? to the single grid mixing element (tgps, label F in Table 5.4)
increases the mixing and hence the initial decay rate immediately downstream
from the constriction exit.

— onset of the decay region

* Adding pipes to the single grid mixing element (tgph, label E in Table 5.4)
does not influences the decay onset region, since the decay rate matches the
single grid case at least for higher volume flow rates.

* Adding steel wool to the single grid mixing element (tgps, label F in Table 5.4)
does not influences the decay onset. It is interesting to note that it matches
for all volume flow rates the decay observed for pipes, although that the down-
stream distance needed to ‘forget’ the details of the mixing element decreases
as the Reynolds number (of volume flow rate) increases. This is in accor-
dance with the expected diminishing stability?? of the flow pattern for higher

16More research is motivated for the flow analysis and in particular for the stability of the flow patterns and
the transition mechanisms.

17A quantitative study of the onset of the decay region is of interest.

8Note that in the case of a single grid no potential core is distinguished due to mixing explaining why it is
not assessed to obtain the equivalent of Fig. 5.19.

19Note that for steel wool the velocity profile consists of an initial decay region, an intermediate region and
the onset of a second decay region.

20A study aiming flow stability and transition mechanisms is of interest.
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Figure 5.21: Measured near field normalized longitudinal mean velocity profiles u/um,q, along
the centerline of the jet for a circular cross section shape shown in Fig. 5.1 as a function of
volume flow rate @ (5, 20, 35, 50, 70 and 1001/min) for different flow conditioning upstream
from the constriction: sharp inlet edges (none, label C in Table 5.4), single grid (ogp, label
D in Table 5.4), pipes (tgph, label E in Table 5.4), steel wool (tgps, label F in Table 5.4),
converging cone (cone, label G in Table 5.4) and L, = 1m with diameter lcm (dlcm, label H
in Table 5.4). w4, denotes the maximum mean initial velocity for all cross section shapes for
a given volume flow rate.
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Reynolds numbers.

e with respect to upstream flow conditioning influencing flow development (and using the
previously discussed sharp inlet edges (none, label C in Table 5.4) as a reference):

— immediately downstream from constriction outlet

x Using a converging cone to reduce the effect of sharp inlet edges (cone, label
G in Table 5.4) enlarges the potential cone extent.

* Extending the constriction length in order to approximate fully developed flow
(dlcm, label H in Table 5.4) increases the initial velocity with 10% or more.
This is in agreement with the analytical solution for fully developed flow pre-
sented in chapter 2 and in Appendix A, which in case of fully developed flow
predict a maximum velocity which yields twice the bulk velocity. Based on the
extent of the potential core region, it is interesting to notice that a minima is
reached for ) ~ 35]/min in case of fully developed flow, whereas in case a cone
is used, a minimum is reached for @ ~ 601/min, suggesting that the flow field
using a converging cone is more stable than the flow field for the developed
flow.

— onset of the decay region

x Using a converging cone to reduce the effect of sharp inlet edges (cone, label
G in Table 5.4) seems to follow the general tendency that the influence of
the used upstream flow condition either based on mixing or based on flow
development does not impacts the decay rate for high @ or high Reynolds
numbers. Nevertheless, it will impact the Reynolds numbers associated with
the transition from laminar to turbulent and hence the flow field stability.

x Extending the constriction length in order to approximate fully developed flow
(dlem, label H in Table 5.4).

— summary with respect to both flow development and mixing

— immediately downstream from constriction outlet

* upstream flow condition determines the flow behavior as well as its stability
and hence the Reynolds numbers associated with the transition.

— onset of the decay region

* the decay rate is less influenced by the upstream flow condition and ‘forgets’
the upstream flow condition. As such it can be noticed that the decay onset
observed for the two reference conditions matches (sharp edges or one, label C
in Table 5.4 and single grid (ogp, label D in Table 5.4)).

5.2.2.2 Transverse velocity profiles

In the previous section, we showed the influence of the cross section shape and the upstream
flow condition on the near field of the jet emitted from the constricted channel. In the current
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section, we briefly present transverse velocity flow profiles®! following the ‘major’ and ‘minor’
axes of the cross section shapes indicated in Fig. 5.3a. Transverse profiles for each of the

assessed cross section shapes as a function of volume flow rate are presented in Fig. F.5
(‘major’ axis) and in Fig. F.6 (‘minor’ axis) of Appendix F.2.1.

We focus again on the influence of the cross section shape on the measured profiles. Nor-
malized transverse profiles for a single volume flow rate (@ = 51/min and @ = 201/min) as a
function of the cross section shape are presented in Fig. 5.22. For both the ‘major’ and ‘minor’
axis it is seen that the extent of the initial jet at the constriction exit occupied by the bound-
ary layer (compared to the flat center portion) depends on the cross section shape. Obviously,
it depends on the volume flow rate as well since increasing the volume flow rate will increase
the Reynolds number expressing a reduced viscous contribution to the flow development.
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Figure 5.22: Measured normalized transverse mean velocity profiles u/umq, following the
‘major’ and ‘minor’ axis defined in Fig. 5.3a as a function of the cross section shape for
volume flow rate Q = 51/min and @ = 201/min in the case of sharp edges at the constriction

inlet (label C in Table 5.4). w,q, denotes the maximum mean velocity for all cross section
shapes at a given volume flow rate.

2! As a reminder, spatial step Ay applied for the transverse velocity profile yields Ay = 0.5mm.
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5.2.2.3 Visualization of longitudinal flow development

It was suggested at several occasions that flow structures influences the flow issuing from
the constricted channel. In order to provide evidence of the presence of flow structures flow
visualization is assessed along the ‘major’ and ‘minor’ axis of the cross section shapes as
indicated in Fig. 5.3b. Visualization of the flow field for all of the assessed cross section
shapes are presented in Fig. 5.23 and Fig. 5.24 for a volume flow rate of @ = 51/min. More
visualization results are shown in Appendix F.3.

(a) circle (b) ellipse

(g) small circular sector (h) large circular section

Figure 5.23: Flow visualization along the ‘major’ axis for all cross section shapes for ) =
51/min. The ‘major’ axis is indicated in Fig. 5.3b.

Flow structures of a large diversity (including axis switching) are observed when consid-
ering all cross section shapes and both visualization sheets.

5.3 Model validation

A comparison of measured and modeled flow quantities is assessed in order to comment on the
accuracy and limitations of the simplified quasi-three-dimensional model proposed in chapter 4.
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(c) equilateral triangle (d) isosceles triangle

(e) small circular sector (f) large circular section

Figure 5.24: Flow visualization along the ‘minor’ axis for all cross section shapes for () =
51/min. The ‘minor’ axis is indicated in Fig. 5.3b.

Experimental data from the pressure measurements and velocity measurements, described in
the previous sections, are used as outlined in the following.

5.3.1 Pressure

The measured pressure values within the constricted channel portion, presented in this chap-
ter, offer a first opportunity to test the pressure distribution predicted with the quasi-three-
dimensional flow model proposed in chapter 4. An accurate distribution of he pressure distri-
bution within the constricted channel portion is of particular importance. Indeed, application
of the proposed flow model to fluid-structure interaction problems, such as phonation de-
scribed in section 4.2.1, relies on an accurate prediction of the pressure distribution within
the constricted portion in order to provide a good estimation of forces exerted by the flow on
the enveloping walls.

In order to evaluate the flow model, we need to decide when the proposed flow model
succeeds, and hence results in an accurate prediction, or when on the other hand it fails its
prediction. Since the quasi-three-dimensional flow model is presented as an improvement of a
quasi-one-dimensional (BP) flow model?2. It seems fair to decide that a successful prediction
is obtained as the quasi-three-dimensional flow model provides a more accurate prediction

22Models are denoted the same way as in chapter 4. The quasi-one-dimensional (BP) model is expected to
match the quasi-three-dimensional model for the case of an rectangular cross section shape.
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compared to the measured data than obtained with the quasi-one-dimensional flow model. In
addition, in chapter 4, it was argued that compared to classical boundary layer solutions, the
proposed quasi-three-dimensional flow model has the advantage offering a (cruel) way of ac-
counting for the cross section shape. Nevertheless, we are interested in evaluating the outcome
of a boundary layer solution against the proposed quasi-three-dimensional flow model. In the
following a boundary layer solution is obtained for two-dimensional (2D) flow and axisym-
metrical (Axi) flow applying Thwaites (Th) method outlined in Appendix C.2. Consequently,
pressure measurements, within the constricted channel portion P, for the rectangular and
the circular cross section shape are compared to the outcome of the quasi-three-dimensional
(mod), quasi-one-dimensional (BP) and boundary layer solution (ThAxi for circular and Th2D
for rectangular). For other assessed cross section shapes, the measured pressures within the
constriction P; are compared to the outcome of the quasi-three-dimensional (mod) and quasi-
one-dimensional (BP) model. Concretely, measured pressures obtained for the flow condition
labeled B in Table 5.4 (L, = 35cm) are compared to the modeled values. Measured and
modeled normalized pressures P;/Py are plotted in Fig. 5.25 as a function of the pressure
upstream from the constriction Fj.

Since the constriction is uniform all modeled values result in a positive prediction of the
pressure within the constriction and a continuously decreasing ratio P, /Py for increasing Fj.
Consequently, none of the applied flow model is capable to accurately predict the measured
negative pressures within the constriction or the extrema observed for the measured pressures
within the transition regime 2000 < Re < 4000. Both phenomena result from more complex
flow phenomena then accounted for in the applied flow models and they are likely triggered
by the sharp edges at the inlet of the constriction?3.

The following observations are made:

e Modeled pressure ratios P;/Py using the quasi-three-dimensional model are within a
close range (5% for Py > 300Pa and 10% for Py < 300Pa.) regardless the cross section
shape. This range is much less than the variation observed for the measured values of
the pressure ratio P;/F.

e For the rectangular cross section shape it is seen that:

— The quasi-three-dimensional model outcome and the quasi-one-dimensional model
outcome are a good match (<2%).

23¢.g. from the measured values shown in Fig. 5.15 it seems likely that a better agreement between modeled
and measured values is expected to occur for flow conditioning using the converging cone (label G in Table 5.4)
since measured values of P, are positive as predicted by models. Nevertheless, in the current section, no such
comparison is made since this flow conditioning is only available for the circular cross section shape and not
for the other assessed cross section shapes shown in Fig. 5.1. So the flow conditioning used for the comparison
between modeled and measured values (label B in Table 5.4) is not in favor of a good quantitative accuracy,
but allows to realize the limitations of flow modeling. It further motivates the choice to consider the quality
of the quasi-three-dimensional model outcome with respect to the outcome of the other applied simplified
model approaches then with respect to whatever quantitative measure of the difference between measured and
modeled values.
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— The two-dimensional boundary model (Th2D) provides the most accurate predic-
tion Py < 500Pa and underestimates the pressure drop for Py > 500Pa. The quasi-
three-dimensional model outcome overestimates the pressure drop and provides the
most accurate match for Py > 500Pa.

e For the circular cross section shape, it is seen that the axisymmetrical boundary layer
model (ThAxi) underestimates the pressure drop more than the quasi-three-dimensional
model.

e For the elliptical, squared and equilateral triangular cross section shapes, it is seen that
using the quasi-three-dimensional model slightly improves the accuracy obtained with
the quasi-one-dimensional model. Nevertheless, it is noted that the accuracy gain is
small compared to the discrepancy between modeled and measured data.

e The accuracy of the quasi-three-dimensional model compared to the measured data is
summarized as < 5% for Py > 300 and of <5% up to < 20% for Py < 300 depending on
the cross section shape.

Mentioned observations are in general in favor for quasi-three-dimensional flow model, so
it is concluded that the proposed quasi-three-dimensional model is evaluated positive, while
the poor accuracy when confronted with complex flow phenomena is kept in mind.

--BP 0.2/ ---BP
—el mod

* el exp
sq exp
+ trexp

500 1000 1500 0 500 1000 1500
P, [Pa] P, [Pa]
(a) cl and re (b) sq, tr and el

Figure 5.25: Normalized measured (flow conditioning labeled B in Fig. 5.4 with L, = 35cm)
and modeled pressures within the constriction P; /Py as a function of upstream pressure Py: a)
rectangular (re, D = 6.6mm) and circular (cl, D = 10mm) cross section shape and b) elliptical
(el, D = 6.7mm), squared (sq, D = 8.9mm) and equilateral triangular (tr, D = 7.8mm) cross
section shape. Modeled values are obtained from the outcome of the quasi-three-dimensional
(mod), quasi-one-dimensional (BP) and boundary layer solution (ThAxi for circular and Th2D
for rectangular). As a reminder the hydraulic diameter D (Table 5.1) is indicated.
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5.3.2 Velocity

Measurements?* of the mean transverse velocity profile at the exit of the constriction in ab-
sence of a downstream pipe, offers (besides the pressure measurements within the constriction)
an opportunity to further consider the relevance and limitations of the proposed quasi-three-
dimensional model outlined in chapter 4 partly exploiting fully developed flow. Indeed, the
measured volume flow rate @ allows to estimate the velocity distribution assuming fully de-
veloped viscous flow as outlined in chapter 2. A comparison® is made between modeled and
measured transverse profiles along the ‘major’ and ‘minor’ axis defined in Fig. 5.3a. Examples
of measured and modeled profiles for different volume flow rates along the ‘major’ and ‘minor’
axis of the constriction with rectangular cross section of presented in Fig. 5.26 and Fig. 5.27,

respectively.

In general, for both the ‘major’ and ‘minor’ axis, it is observed that the modeled and
measured transverse profiles matches well within the boundary layer. However, since the
modeled profile is fully developed, it tends to overestimate the velocity for the core flow
enveloped by the boundary layers. In addition, it is noticed that simplified flow models can
not explain the reduced center velocity such as observed for = 100l/min in Fig. 5.26. Given
that the simplified model does not accounts for complex flow dynamics, which based on the
presented experimental results suggested to contribute to the flow development — such as vortex
generation, vortex interaction or turbulence — at first sight the comparison is surprisingly good.

In order to further quantify the model accuracy with respect to measured transverse profiles
shown in Fig. 5.26, Fig. 5.27 and in Appendix F.2.2, the following relative overall error is used:

\/:L Z (Ue:pp(n) - umod(n))2

err = x 100, (5.5)

u

where 04 and ez, denote the modeled velocity and measured results respectively for n
measured velocities and u denotes the bulk velocity at the constriction exit.

The resulting overall error (5.5) between modeled and experimental transverse velocity
profiles along the ‘major’ and ‘minor’ axis is illustrated in Fig. 5.28 for the rectangular con-
striction shape as a function of the volume flow rate ). The relative errors for other assessed
cross section shapes are presented in Appendix F.2.1. For the rectangular shape, the relative
error varies between 25% and 50% of the bulk velocity. The variation of the error with the
volume flow rate is more pronounced fore velocity profiles along the ‘major’ axis than for the
‘minor’ axis. Note that for the profiles along the ‘major’ axis a maximum error is retrieved

2"Measured transverse profiles are presented in Fig. F.5 (‘major’ axis) and in Fig. F.6 (‘minor’ axis) of
Appendix F.2.2.

%5In case the spatial discretization used to compute the modeled velocity profile does not matches with the
spatial measurement positions, a third order fit is applied to the modeled profile in order to obtain the modeled
value for any position independently of the spatial discretization
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Figure 5.26: Modeled (mod) and measured (exp) transverse velocity profiles along the ‘major’
axis normalized by the maximum modeled velocity u/"%% at the exit of constriction for major
axis of a rectangular cross section for different volume flow rates Q). As a reference the
bulk velocity u is indicated. The transverse coordinate (y or z) is normalized by the total
width yir = w of the constricted portion. Measurements are obtained for sharp edges at the

constriction inlet (label C in Table 5.4).

for 501/min.

In the qualitative description of the flow profiles shown in Fig. 5.26 and Fig. 5.27, it was
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Figure 5.27: Modeled (mod) and measured (exp) transverse velocity profiles along the ‘minor’

axis normalized by the maximum modeled velocity u/"%% at the exit of constriction for major

axis of a rectangular cross section for different volume flow rates Q). As a reference the bulk
velocity @ is indicated. The transverse coordinate (y or z) is normalized by the total height
h of the constricted portion. Measurements are obtained for sharp edges at the constriction

inlet (label C in Table 5.4).

mentioned that the modeled and measured profile matches well in the boundary layer. In the
following, we consider the ratio of the modeled and experimental boundary layer deqp/dmod
for transverse profiles along the ‘major’ and ‘minor’ axis. The boundary layer thickness of the
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x -e-majorx
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Q [L/min]
Figure 5.28: Tllustration of the overall error (5.5) between modeled and experimental transverse

velocity profiles along the ‘major’ and ‘minor’ axis of the rectangular cross section for different
volume flow rates Q.

measured profiles is determined on the extent of positions for which the velocity is smaller
than 90% of the maximum velocity. In order to reduce the error due to spatial sampling to
0.bmm, the spatial position nearest to the threshold is taken into account. The boundary
layer thickness of a measured profile is illustrated in Fig. 5.29.

1,
0.8
= 0.6
%3
E:)E
= 0.4
02« -e-ana
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J ---‘-mean
05 Ay 0 0.5
y/w [-]

Figure 5.29: Illustration of the procedure to determine the boundary layer thickness 0y on
the measured transverse profile for a spatial step Ay.

Table 5.6 summarizes the resulting ratios of the experimental and modeled boundary layer
thicknesses dezp/dmod along the ‘major’ and ‘minor’ axis, respectively. Note that for a square
cross section shape the ‘minor’ follows the diagonal direction. The uncertainty due to the
discretization error (spatial step) is indicated. It is observed that the ratio deyp/dmod varies
from 30% to 99% depending on the cross section shape and the volume flow rate. The observed
tendency as a function of increasing volume flow rate is indicated.



5.4. Summary 117

For the ‘major’ axis the general tendency for increasing volume flow rate is consecutive
decrease and increase of the ratio dezp/0moq and hence of the accuracy of the boundary layer
extent since dezp/0mod << 100 is associated with an overestimation of the boundary layer
thickness by the model. The volume flow rates for which the tendency changes are associated
with Reynolds numbers in the range 2500 < Re < 5000 associated with the transition regime
from laminar to turbulent flow. Nevertheless, the tendency is not confirmed for the profiles
along the ‘minor’ axis. Alternatively, the ratio of the boundary layer thicknesses dezp/Omod
resulting from the threshold criterion illustrated in Fig. 5.29 for a threshold value of 100% or
Oeap/Omod = Ugyy [Uneq is assessed and results are shown in Table F.1 of Appendix F.2.2. It
is shown that both the tendency as volume flow rates associated with a change in tendency
depend on the used threshold, so that no definite conclusion can be formulated at present.

Nevertheless, the magnitude of the boundary layer thickness ratio 30% < deqp/dmod < 99%
confirms the fairly good capturing of boundary layer properties given the simplicity of the
model, the complexity of the flow and the relatively short length of the constriction. The
last point is illustrated by considering the ratio of the length of the constriction L. to the
entry length Ly required for the flow through a uniform channel to develop fully for different
cross section shape. The ratio L./Ly is illustrate in Fig. 5.30 for laminar and turbulent
flow as function of Reynolds number for a circular (maximum hydraulic diameter of cross
section shapes considered in this chapter) and rectangular cross section (minimum hydraulic
diameter of cross section shapes considered in this chapter). The entry length Ly for laminar
and turbulent flow as function of Reynolds number and hydraulic diameter D is obtained
as [125] as:

Ly~ (0.06Re+0.5)D, laminar, (5.6)

and
Ly~ 4.4Res D, turbulent. (5.7)

Indeed, it is seen that the length of the constriction yields only 1% to 15% for laminar
flow and only 10% to 30% for turbulent flow. Therefore, and in case of linear development of
the boundary layer one expect dezp/dmoa <K 30%. Therefore, we have to conclude, that the
constriction enhances boundary layer development.

5.4 Summary

The influence of the cross section shape for constricted channel flow is experimentally as-
sessed for a large number of flow and geometrical configurations since besides the cross section
shapes, the upstream flow condition is varied as well as the presence or absence of a down-
stream pipe. The influence of the cross section shape on the flow is analyzed by means of
point pressure measurements within the constriction and velocity measurements of the near
field of the jet emitted from the constriction in absence of a downstream channel. Moreover
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Table 5.6: Ratio dezp/0moa resulting from the threshold criterion illustrated in Fig. 5.29 for a
threshold value of 90% for transverse profiles along the ‘major’ and ‘minor’ axis of all assessed
cross sections. The uncertainty due to the spatial discretezation (spatial step) is indicated.
Bold volume flow rates indicate an overall change of tendency.

Q [1/min)] discretization
D |mm]| tendency
5 |10 |15 (20 | 35| 50 | 70 | 100 error |%)]
major axis
cl 10 43 | - - |36 | B0 | b7 | b7 | 64 5] N
sq 8.9 50 |41 |32 |32 | - | - | - - 6 N
lcs 8.4 68 | 63 | 57 | 63 | 73 | - - - 4 N
tr 7.8 6559 (59 (359 | 76| - | - - 4 N
scs 7.2 67 | 60 | 56 | 56 | T4 | - | - - 3 N
ntr 7.0 70 | 56 | 56 | 63 | 67 | - - - 3 N
el 6.7 53 | 47 | 50 | 47 | 53 | 50 | 47 | 53 2 -
re 6.6 64 | - - 198 | 89 | 89| 89 | &9 3 NN\

minor axis

sq | 89 69|64 |74|TA| - | - | | - 4 N
les | 84 || 41|41 |28|28 |28 - | - | - 4 N
tr 78 || 58|37 |37 |47 (37| - | - | - 4 NN\
scs | 7.2 || 9985|6868 |51 - |- | - 6 N
ntr | 7.0 | 81|81 65|65 |50 - | - | - 6 \
el 6.7 || 95|63|63|63|63]|63]|48]| 48 11 \
re 66 (|89 | - |- |71]53]|53]|53]| 71 13 N

flow visualization is assessed in order to provide some evidence for the existence of flow struc-
tures. The measured quantities are used to determine the accuracy of the proposed simplified
quasi-three-dimensional model approach. It is seen that although the quantitative error is
considerable, the performance of the model is surprisingly good given the complexity of the
flow dynamics and the simplicity of the model. In the following chapter, numerical data of
the flow field are presented in presence of a downstream pipe. In contrast with the current



5.4. Summary 119

30'?\ -o-cl

ﬁ"\ -S-re

05 1 15 2 25
Re x 10°

Figure 5.30: Tlustration of the ratio of the length of the constriction L. to the entry length
Ly for laminar and turbulent flow as function of Reynolds number for a circular (maximum
hydraulic diameter of cross section shapes considered in this chapter) and rectangular cross
section (minimum hydraulic diameter of cross section shapes considered in this chapter).

chapter, no attention is given to the upstream flow condition.
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Chapter 2 showed the influence of the cross section shape on the velocity distribution for
developed viscous flow. In chapter 4, a simple ‘quasi-three-dimensional’ flow model is proposed
for laminar incompressible steady channel flow, which accounts for flow inertia, viscosity and
the cross section shape. Flow data are needed in order to test the relevance of this quasi-three-
dimensional model and to characterize the influence of the cross section shape on the flow. In
chapter 5, experimental data were presented. In the current chapter, we focus on numerical
data in order to quantify and analyze modeled, measured and simulated flow quantities.

On one hand, biological flow applications, such as discussed in chapter 4, are the result of a
complex fluid-structure(-acoustic) interaction, and on the other hand, the simple ‘quasi-three-
dimensional’ flow model assumes laminar flow. For these two reasons, we prefer a numerical
method which is suitable to simulate complex fluid-structure interactions and at same time
models laminar incompressible three-dimensional flow. As a result, the immersed boundary
(IB) method is used to simulate the flow field [100, 47, 44, 46]. In the current work, the
immersed boundary method is applied to a fixed structure matching some of the channel
geometries used during the experimental and model study.

Since the IB method is a powerful tool to simulate a fluid-structure interaction, it is com-
monly used in biological flow dynamics [85, 85, 129, 54, 83, 75, 77, 80|. Nevertheless, most of
the applied research reported in the cited references focus on blood flow through the cardiovas-
cular system for which typical Reynolds numbers are smaller than the ones encountered when
studying phenomena, related to the respiratory system, such as speech production. Therefore,
the laminar flow model can be questioned and the aimed validation on experimental data
provides a good opportunity to reflect on the accuracy of the flow model.

121
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In the following, the IB method is formulated. Next, numerical results are presented and
simulated flow quantities are compared to modeled quantities obtained using the ‘quasi-three-
dimensional’ model and measured flow quantities presented in chapter 5.

6.1 Mathematical formulation

6.1.1 Continuous formulation

The immersed boundary (IB) method for fluid-structure interaction considers an elastic struc-
ture immersed in a viscous incompressible fluid. The immersed boundary formulation of
such problems uses a Lagrangian description of the immersed structure along with an Fule-
rian description of the viscous incompressible fluid, which is modeled by the incompressible
Navier-Stokes equations. The Lagrangian and Eulerian frames are coupled by interaction
equations using Dirac delta function kernels. In the following, the fluid is assumed to have a
uniform mass density p and dynamic viscosity p.

First, let x = (z,y, 2) € Q denote Cartesian physical coordinates, with  C R? denotes
the physical region that is occupied by the coupled fluid-structure system. The Lagrangian
material coordinates attached to the structure is denoted s = (s1,82) € U C R?, with U
denoting the Lagrangian coordinate domain. x(s,¢) € € denotes the physical position s of
material points at time ¢. Throughout the present work, (2 is taken to be a rectangular box
with Q = [0, L,] x [0, L,] x [0, L.]. The physical region occupied by the structure at time ¢
is x(U,t) C €, and the physical region occupied by the fluid at time ¢ is Q\x (U, t).

To use an Eulerian description of the fluid and a Lagrangian description of the elasticity of
the immersed structure, it is necessary to describe the stress of the fluid-structure system in
both Eulerian and Lagrangian forms. If 0 = o(x,t) is the Cauchy stress tensor of the coupled
fluid-structure system, then

ol (x,t) + o¢(x,t) for x € x(U,t)

6.1
of(x,t) otherwise, (6.1)

o(x,t) = {

where of (x,t) is the stress tensor of a viscous incompressible fluid, and o°(x,t) is the stress
tensor that describes the elasticity of the immersed structure. The fluid stress tensor is defined
as

o/ (x,t) = =PI+ p [Vu + (Vu)] (6.2)

in which P = P(x,t) is the pressure and u = u(x,t) is the Eulerian fluid velocity field.
In order to describe the elasticity of the structure with respect to the Lagrangian material
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coordinate system, it is convenient to use the first Piola-Kirchhoff elastic stress tensor P¢(s, t),
which is defined as

Pe(s,t)NdA(s) = / ol (x, t)nda(x) (6.3)
oV ox(Vit)

for any smooth region V' C U, in which N = N(s) is the outward unit normal along 0V and
n = n(x,t) is the outward normal along dx(V,t). The hyperelastic constitutive models can be
characterized by a strain-energy functional W¢ = W¢(F), in which F = F(s,t) = Vgx(s,t) =
% is the deformation gradient associated with the mapping x : (U,t) — Q. For such

constitutive laws, P¢(s,t) = %(s,t}.

The weak form of the equations of motion for the coupled fluid-structure system are

p (?)ltl(x,t) +u(x,1) - Vu(x,t)> = —VP(x,t) + uV?u(x,t) + £(x,1), (6.4)

V- u(x,t) = 0, (6.5)
£(x, 1) = /U F(s, 1)5(x — x(s,1))ds, (6.6)

/ F(s,t) - V(s)ds = / Pe(s,t) - VsV(s)ds
U U

— [ PAs.N(s) - VV(s)dA(s), YV () (6.7)
axést’ 2 /Q u(x,1)d(x — x(s, t))dx, (6.8)

In the equations of motion, (6.4) and (6.5) are the incompressible Navier—Stokes equations,
which are written in terms of the Eulerian velocity field u(x,t) = (u(x,t),v(z,t), w(z,t)) and
the Eulerian pressure field P(x,t), along with a Eulerian elastic force density f(x,t) applied
by the structure to the fluid, which is determined by a time-independent functional of the
Lagrangian configuration of the immersed structure.

(6.6) and (6.7) are Lagrangian-Eulerian interaction equations that use integral transfor-
mations with three-dimensional Dirac delta function kernels §(x) = 0(x)d(y)d(z), to couple
the Lagrangian and Eulerian descriptions. Specifically, (6.6) converts the Lagrangian elastic
force density F into the equivalent Eulerian elastic force density f. Notice that F and f have
totally different characters: F(s,t) is the Lagrangian elastic force density (i.e., the force den-
sity with respect to the curvilinear coordinate system so that F(s,t)ds has units of force),
whereas f(x,t) is the Eulerian elastic force density (i.e., the force density with respect to the
physical coordinate system so that f(x,¢)dx has units of force). Nonetheless, F and f are
equivalent as densities [99]. Notice that a unified body force density F(s,t) is used to take
into account the effects of both the internal and transmission elastic force densities and V (s)
is an arbitrary Lagrangian test function that is not assumed to vanish on OU.



124 Chapter 6. Immersed Boundary method

The velocity of the structure is determined for the Eulerian fluid velocity field u(x,t) via
the integral transform equation (6.8), which is equivalent to

%(s,t) =u(x(s,t),t) (6.9)

with the no slip condition on the structure walls and no penetration of a viscous incompress-

ible fluid.

6.1.2 Spatial discretization

We employ a finite element (FE) discretization of the Lagrangian equations and a uniform,
staggered-grid finite difference discretization of the Eulerian equations. For further details on
these spatial discretization, see Griffith [43, 44, 45]. The time stepping scheme used is similar to
that of Griffith [45]. However, in the present work we employ a second-order Adams—Bashforth
scheme for the convective terms when solving the incompressible Navier—Stokes equations.

Briefly, let u itk and w 1 denote staggered-grid approximations to the com-

i—&-%,j,k’ i,5,k+35

ponents of the Fulerian Velomty field that are defined at positions x X;j+ Lk and x;

i+1 .5,k Goktds
respectively. Let P ;; denote the cell-centered approximation pres;arje at posmon Xi j, kj %he
position and Lagrangian elastic force density at node (I,m) of the Lagrangian curvilinear
mesh are denoted as x;,, and F,,. Let Vj,, Vj- and V,QL denote standard second-order ac-
curate finite-difference approximations to the gradient, divergence, and Laplace operators,

respectively, in which h is the Cartesian grid spacing.

Let 7, = U, U® be a triangulation of U composed of elements U¢ . We denote the time-
dependent physical positions of the nodes of the Lagrangian mesh by Xl(t)zﬂiy Using the
Lagrangian basis functions, we define an approximation to x(s,t) by

M
)= xt)as), (6.10)
=1

where ¢;(s) denotes the Lagrangian basis functions. An approximation to the deformation
gradient is given by

Fn(s,t) = aXh (5,¢) Z

=1

(6.11)

Using Fj(s,t), we compute directly Pf(s,t) and 73,(s,t) to approximate the first Piola-
Kirchhoff stress tensor and the Lagrangian transmission force density, respectively. We ap-
proximate the Lagrangian force densities F(s,t) by
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M
Fa(s,t) =Y Fi(t)di(s). (6.12)
=1

where the nodal values F;(¢)M, must be determined from Py (s, t).

To compute an approximation to f = (fs, fy, f-) on the Cartesian grid, we construct for
each element U¢ € 75, a Gaussian quadrature rule with N€ quadrature points SEQ € U¢ and
weights wg,, Q =1,...,N° We then compute f;, f, and f, on the edges of the Cartesian grid
cells via

NE
1
(F" " D)igzgn= D D Falsht)on (xi%,j,k - X(Sz”t)> g, (6.13)
Ueer, Q=1
1 ol
B Digipa= 3 3 Folsty 0 (#.dis 0~ X(55,1)) uy 614
Ueer, Q=1
1 ol
D S O D L S
Ueer, Q=1

where the Lagrangian force density F(s,t) = (Fy(s,t), Fy (s, t), F.(s,t)). We use the shorthand

f=SF (6.16)

where § = S(x) is the force prolongation operator implicitly defined by (6.13), (6.14)
and (6.15).

A corresponding velocity restriction operator R = R(x) is used to determine the motion
of the nodes of the Lagrangian mesh from the Cartesian grid velocity field via

dx _

_ 1
- =Ru (6.17)

where the approximated Lagrangian vector field U(s,t) = (U(s,t), V(s,t), W(s,t)) = Ru is
given by
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U(s,t) = Zui-s—%,j,kéh <$i+%’j,k — X(s,t)) h3, (6.18)
i,4,k

V(s,t) =3 001 400 (xi7j+%’k - X(s,t)) B3, (6.19)
Y

W(s,t) = Zwi,j,k:—&-%éh <$i,j,k+% - X(s,t)) h3, (6.20)
0.4,k

where 0 (x) = 05(2)0n(y)0n(2) is the four-point delta function of Peskin [99].

Notice that the constructed S and R are adjoint operators which ensures the semi-discrete
scheme conserves energy during Lagrangian—Eulerian interaction.

6.1.3 Temporal discretization

Let x,, u™ and p”_% denote the approximations to the values of x and u at time t", and to

the value of p at time t"_%, respectively. First, we determine a preliminary approximation to
tn+1

the deformed structure configuration at time via
sn+l _ n

where R = R(x"), and an approximation to x at time 13 is defined as

T = W (6.22)
we next solve
p <unHA; ut An+%> = ViP5 4 V3 unH; W, (6.23)
YV, -u"t =0, (6.24)
£75 = S(HEF(Y"TE), 6.25)
XXt ( n+§)un+1 +u” (6.26)

1 1 _ 1. .
for x"t1 u™*!, and P""2, where A"z = %u” -Vpu" — %u” L. vpu™ ! is computed via a

piecewise parabolic method (PPM) approximation to the nonlinear advection term [26, 45].
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Since time step-lagged values of u and P are used by the time step, we can not use that
scheme for the initial time step. In order to have an initial value for the pressure, P = 0 is
1
assumed to be an initial guess for P"*2. So during the initial time, we first solve

Sn+l _ oon " n+1 n
p (W A = v, Pt v Y e (6.27)
At 2

vV, -uttt =0, (6.28)
" =8S(x")F(x"), (6.29)

~n+1 n

X" =X

= R(x")u" 6.30
Al (x")u”, (6.30)

- - =l
for x**t1, a"tl, P2 where A" = u” - Vjyu”. Then we set

n+1 ynJrl —+ Xn

X TX 31
b% 5 , (6.31)

N[

and finally solve (6.23)-(6.26) for ™!, u"*! P”‘%, except that we use A =yt
1 1 ~
Va2 with u"2 = 1 (" 4+ un).

Note that, because in this chapter we consider a constricted channel with rigid wall, the
Piola-Kirchhoff elastic stress tensor P is thus not used. Instead, a feedback force, of the form

F(s,t) = #(s, x(s,)), (6.32)

is used in order to force the wall not to move. xk > 0 is a penalty parameter. Note that as
Kk — 00, x(x,t) — s.

6.2 Numerical results

In the simulations!, the immersed boundary method is applied to describe steady pressure-
driven flow through a constricted channel. A geometrical model of the channel structure is gen-
erated using the SolidWorks CAD software, and the resulting CAD structure is converted into
a mesh with tetrahedron cells. The constricted channel has a total length L, = 22.5cm with
radius r; = 1.25cm at the inlet and outlet. The constricted portion is of length L, = 2.5cm

!The simulations described herein employ the freely available IBAMR code (http://ibamr.googlecode.
com), an adaptive and distributed-memory parallel implementation of the IB method that provides software
infrastructure for developing fluid-structure interaction models that use the IB method. IBAMR leverages
functionality provided by other freely available software libraries, including SAMRAI (http://computation.
1lnl.gov/casc/SAMRAI) [52, 53], PETSc (http://wuw.mcs.anl.gov/petsc) [7, 6] and hypre (http://www.
11nl.gov/CASC/hypre) [35].


http://ibamr.googlecode.com
http://ibamr.googlecode.com
http://computation.llnl.gov/casc/SAMRAI
http://computation.llnl.gov/casc/SAMRAI
http://www.mcs.anl.gov/petsc
http://www.llnl.gov/CASC/hypre
http://www.llnl.gov/CASC/hypre
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with cross section area 0.79cm?. The unconstricted upstream portion has length L, = 5cm and
the unconstricted downstream portion has length Ly = 15cm. The channel walls are rigid and
have a thickness of 0.1cm. The structure is immersed in a rectangular 5.4cmx5.4cmx22.5cm
fluid box shown in Fig. 6.12.

XYZ <2.7 2.7 22.5>

A I

R R
g 1 i
& eem . Tt soe Toom i
u = Lg
XYZ <-2.7 -2.7 0>, ,
i ! i >
hoss 0 1 ZiL, 7

Figure 6.1: Illustration of the structure immersed in a 5.4cmx5.4cmx22.5cm rectangular fluid
box for which two corner points coordinates are given [cm]|. The streamwise direction corre-
sponds to the Z direction. The lengths of the unconstricted upstream portion L,,, constriction
portion L. and unconstricted downstream portion L, are indicated. The upstream pressure
Py and downstream pressure P; are indicated as well. Note, that the streamwise direction is
normalized as Z/L..

In the current simulations, we initialize the discretization of the fluid box with an N x N x N
Cartesian grid for N = 128. The penalty parameter  is set to x = 105, which is large enough
to fix the structure for the physical and numerical parameters considered. A pressure gradient
is prescribed between the inlet (Z/L. = —2) and outlet (Z/L. = 7) of the interior part of
the flow channel, i.e. Py — Py, whereas zero pressure boundary conditions are employed along
the remainder of the fluid domain boundary. The fluid is air with density p = 1.2kg/m?
and dynamic viscosity i = 1.8 x 107°Pa-s as indicated in Table 4.1. Several upstream pres-
sures are considered (Py = 10Pa, 35Pa or 100Pa), whereas the downstream pressure is fixed
to Py = OPa. Imposed upstream pressures Py and corresponding approximated volume flow
rates @ and Reynolds numbers® Re are listed in Table 6.1. Concretely, as summarized in
Table 6.2, simulations for different cross section shapes are performed for Py = 35Pa, whereas
the upstream pressure is varied for a channel with circular cross section shape. The total
simulation time for each geometrical configuration and upstream pressure Py is indicated in
Table 6.2 as well. A front view of structures with different cross section shapes (circular,
elliptical, rectangular, circular sector and asymmetric) rounded inlet and outlet with radius

2To avoid numerical errors all sharp corners are rounded with a radius of 0.5mm, such as e.g. at the inlet
and outlet of the constriction.
3 As before, the Reynolds number is based on the hydraulic diameter of the constricted area.
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Figure 6.2: Front view of the channel structure mesh for different constriction cross section
shapes. Geometrical characteristics of the circular, elliptical, rectangular, circular and asym-
metrical section cross section shape are shown Table 6.3. The asymmetrical shape is obtained
using the general polar equation (2.14) with the parameters listed in Table 6.4. The shaded
part coincides with the structure mesh of the rigid wall and the blank space in the center
denotes the constricted channel. Note that the angle of the circular sector yields 30°.

X [cm]

15 20

Figure 6.3: Example of fluid and structure mesh along the streamwise direction for Y =0 in
the case of a circular constriction. Self-adjustment of the fluid mesh near the structure walls
and within the constricted channel portion is illustrated.
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0.5mm? is illustrated in Fig. 6.2. The corresponding geometrical parameters (hydraulic diam-
eter D, total width along the X-direction w and maximum height along the Y-direction h) are
listed in Table 6.3. Fig. 6.3 illustrates the self-adjustment property of the fluid mesh so that
the fluid mesh is more dense along the walls of the structure as well as within the constricted
channel portion. The size of the fluid mesh within the constriction is AX = AY = 0.42mm
and AZ = 1.76mm. Fig. 6.4 shows an example (at t=40ms) of the imposed uniform pres-
sure profile at the entrance Z/L. = —2 and the corresponding pressure distribution along the
X-axis and the Y-axis for a channel with circular constriction.

Table 6.1: Overview of imposed upstream pressure Py and corresponding approximated volume
flow rate @ and Reynolds number Re for a channel with circular constriction.

Upstream pressure, Py [Pa]

10 35 100
@ [1/min] 16 30 53
Re 2000 3700 7800

Table 6.2: Overview of the total simulation time T [ms| for different geometrical configurations
and imposed inlet pressures Py [ms].

Total simulation time, T [ms|
Po [Pa]
circle asymmetric circular sector ellipse rectangle
10 90ms - - - -
35 43ms 50ms 50ms 50ms 50ms
100 40ms - - - -

Table 6.3: Overview of geometrical parameters of different constriction shapes: hydraulic
diameter D, total width along the X-direction w and maximum height along the Y-direction
h. Constrictions have constant area A, and constant length L..

—_—

mm)| H circle asymmetric circular sector ellipse rectangle

D 10 8.5 7.2 6.7 6.6
w 10 11.4 17.3 22.4 19.8
h 10 12.1 9.0 4.5 4.0
A, = 0.79cm?, L. = 2.5cm

4The reason of roundness is due to the limitation of code in the finite element version of immersed boundary
method.
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Figure 6.4: Example of the imposed pressure profile Py = 35Pa at the inlet Z/L. = —2 for a
channel with circular constriction at t=40ms: a) pressure profile in (X,Y)-plane. Note that
the pressure unit is dyne/cm? with 10dyne/cm? = 1Pa . and b) pressure distribution [Pa]
along the center of the X-axis and the Y-axis along the lines (magenta) depicted in (a).

Table 6.4: Overview of general polar equation parameters (2.14) to generate the asymmetrical
constriction shape.

shape m | ni | ng | ng g(0) al|b

asymmetrical || 3 | 2 | 8 | 4 | 368x107% |11

Fig. 6.5 illustrates the temporal evolution of simulated flow quantities, pressure and ve-
locity, for a channel with circular sector cross section shape at positions corresponding to the
maximum velocity at the transverse (X)Y) position associated with the maximum velocity
in the analytical model assuming viscous developed flow through the constricted channel as
outlined in chapter 2. The transverse (X,Y) position is taken within transverse planes located
at the following streamwise Z positions: immediately upstream from (Z/L. = —0.4), in the
middle of (Z/L. = 0.5), immediately downstream from (Z/L. = 1.04) and further downstream
from (Z/L. = 1.4) of the constricted channel portion. It is seen that both the pressure and
velocity converges and reaches a relatively steady state for ¢ > 20ms. In this example, the
flow properties fluctuate less for quantities sampled upstream from (Z/L. = —0.4) or within
(Z/ L. = 0.5) the constriction compared to quantities sampled downstream from (Z/L. = 1.04
and Z/L. = 1.4) the constriction. Fluctuations downstream from the constriction are likely
due to the imprint of complex flow phenomena such as jet formation and recirculation vortices.
Jet formation is occurring as seen from Fig. 6.6 and Fig. 6.7 illustrating the instantaneous
spatial evolution of the flow field at times ¢ > 20ms for all assessed cross section shapes in the
streamwise (plane XZ and plane YZ) and transverse (plane XY at Z/L. = 0.5) direction. The
influence of boundary layer development on the velocity distribution within and downstream
of the constricted channel is observed to be important regardless the cross section shape as
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Figure 6.5: Illustration of simulated flow quantities as a function of time ¢ for a channel
with circular sector cross section shape and upstream pressure Py = 35Pa at the transverse
(X,Y) position associated with the maximum velocity in the analytical model assuming viscous
developed flow through the constricted channel as outlined in Chap. 2. The transverse (X,Y)
position is taken at the following streamwise Z positions, immediately upstream from (Z/L. =
—0.4), in the middle of (Z/L. = 0.5), immediately downstream from (Z/L. = 1.04) and
further downstream from (Z/L. = 1.4) the constricted channel portion: a) pressure P(t) and
b) velocity u(t). Note that the flow converges for ¢ > 20ms (vertical red line).

seen from the evolution of the velocity field within the constriction. At the constriction outlet,
the velocity magnitude distribution for the circular sector clearly illustrates reduced velocity
within the sharp corner of the constricted portion. It is also observed that as a result of the
symmetry break of the velocity profile, the jet downstream of the constriction reattaches to
the wall portion nearest to the circular portion of the constriction, whereas for example in
the case of the asymmetrical shape, jet reattachment occurs further downstream of the con-
striction due to jet spreading. Note that in general jet reattachment does not occur within
3cm downstream from the constriction, which corresponds to at least 3 times the hydraulic
diameter. An asymmetrical velocity distribution, such as observed for the circular sector, was
also found for purely viscous flow as outlined in chapter 2. Nevertheless, the modeled velocity
distribution was continuously decreasing away from the position of maximum velocity, which
is not the case for the simulated instantaneous flow field due to its timme dependence. Complex
phenomena such as flow recirculation and vortex formation can indeed be observed in the
instantaneous velocity field immediately downstream of the constriction outlet as shown in
Fig. 6.8 and Fig. 6.9 (Plane XZ and plane YZ). Obviously, recirculation and jet spreading are
not accounted for when using the simplified ‘quasi-three-dimensional’ (quasi-3D) flow model
presented in chapter 4, so that it is of interest to compare simulated and modeled flow quanti-
ties in order to determine the relevance of the proposed ‘quasi-three-dimensional’ flow model.
In the following, we focus on the streamwise pressure and velocity distribution.

Fig. 6.10, Fig. 6.11 and Fig. 6.12 illustrate simulated (IB) and modeled (mod) streamwise
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Nlustration of the magnitude of the instantaneous spatial velocity field for

Py = 35Pa: a) streamwise XZ plane and b) transverse XY plane within the constriction
at streamwise position Z/L. = 0.5. Profiles are sampled at time ¢ = 43ms for the circular
shape and at time ¢ = 50ms for the other shapes. Note that the unit of the velocity is [cm/s]
and lem/s— 0.01m/s. The velocity along the streamwise YZ plane is illustrated in Fig. 6.7.
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Figure 6.7: Tlustration of the magnitude of the instantaneous (¢ = 50ms) spatial velocity
field for Py = 35Pa along the streamwise YZ plane. The magnitude of the instantaneous
velocity distribution along the streamwise XZ plane and the transverse XY plane is illustrated

in Fig. 6.6.

pressure and velocity distributions for Py = 35Pa. Distributions are shown for a circular, ellip-
tical, rectangular and circular sector cross section shape. The modeled pressure distribution
shown in Fig. 6.10 results from the quasi-three-dimensional model outlined in chapter 4. For
the IB method, the streamwise pressure distribution in Fig. 6.10 and the velocity distribution
in Fig. 6.12 are obtained by sampling instantaneous values for each streamwise Z position at
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cross section shape.

the transverse (X,Y) position associated with the maximum velocity in the analytical model
assuming viscous developed flow through the constricted channel as outlined in chapter 2.
Fig. 6.11 illustrates the modeled (mod) and simulated (IB) local streamwise bulk velocity ob-
tained as the transverse mean velocity®. Fig. 6.12 illustrates the velocity distribution obtained
from sampling the velocity, for each streamwise Z position, at the transverse (X,Y) position
associated with the maximum velocity in the analytical model assuming viscous developed flow
through the constricted channel as outlined in chapter 2. The modeled values are sampled at
the same transfers (X,Y) position whereas the transverse velocity profile is obtained from the
volume flow rate Q.04 resulting from the quasi-three-dimensional flow model to compute the
velocity distribution along the constricted portion assuming developed viscous flow as outlined

’The modeled mean velocity is obtained as @(Z) ~ Qumoa/A(Z) With Qumoq the volume flow rate resulting
from the quasi-three-dimensional model described in chapter 4 and A(Z) the streamwise varying channel area.
Alternatively, a one-dimensional velocity distribution could be obtained from the modeled streamwise pressure
distribution as 4(Z) ~ /2AP(Z)/p using the local pressure difference AP(Z) ~ Py — P(Z) resulting from the
quasi-three-dimensional model.
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in chapter 2.

Fig. 6.10 shows that within the constriction both the quasi-three-dimensional model and
the simulated pressure distribution® are decreasing and result in negative pressures’. In gen-
eral, the quasi-three-dimensional model provides a good approximation of the simulated pres-
sure within the constriction since an overall difference of 5% between simulated and modeled
pressure distribution is found. This motivates the use of the quasi-three-dimensional flow
model to compute the fluid forces on the wall within the constriction while accounting for
the cross section shape as was done in the stability analysis to derive phonation quantities
as presented in chapter 4. On the other hand, it is seen that the quasi-three-dimensional
model is incapable to account for jet reattachment downstream from the constriction. Con-
sequently, the simplified quasi-three-dimensional model is not able to capture the pressure
distribution downstream from the constriction. This is a major drawback of the proposed
quasi-three-dimensional flow model® and as a consequence the quasi-three-dimensional model
underestimates the pressure difference immediately downstream from the constriction with
20% or more.

The main findings of comparing the modeled and simulated streamwise pressure distribu-
tion holds also when comparing the modeled and simulated mean streamwise velocity as seen
from Fig. 6.11. Indeed, within the constriction, the modeled mean velocities overestimate the
simulated values with maximum 30% and minimum 15%, whereas immediately downstream
from the constriction the error increases since no reattachment is accounted for in the quasi-
three-dimensional flow model. Comparing modeled and simulated streamwise velocities at
the position of maximum velocity seems a less fair comparison even within the constriction,
since from Fig. 6.12 is seen that modeled values overestimate simulated values with 50% up
to 60%. The overestimation of the maximum velocity could be expected since developed vis-
cous flow is assumed in the combination of the flow models (the quasi-three-dimensional flow
model to estimate the volume flow rate, which is then used to compute the transverse velocity
field assuming developed viscous flow). As before, the simplified model does not account for
jet spreading and flow recirculation so that downstream from the constriction, the proposed
quasi-three-dimensional model fails.

Modeled?, simulated and measured transverse profiles along the X-dimension are illus-
trated in Fig. 6.13 using the transverse velocity measurements immediately downstream from
the constriction outlet for () = 351/min presented in chapter 5. The simulated profiles at the

SA comparison could also be made between the modeled streamwise pressure distribution and the mean
streamwise pressure distribution of the simulated flow field.

"Note that for the quasi-three-dimensional model the rounded corners at the outlet of the constriction
result in the negative pressure values since as extensively shown in chapter 4 a sharp outlet results in a positive
pressure distribution.

8Note that this could be partly corrected for by implementing an ad-hoc jet model, e.g. by forcing jet
reattachment at Z/L. ~ 3 as observed from the simulated data, but some thoughts should be given to the
sense of such a correction prior to adding it to the model.

9Here again, the velocity profile is estimated by applying the quasi-three-dimensional model to estimate the
volume flow rate and then using this volume flow rate to predict the transverse velocity profile for developed
viscous flow within the constriction.
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Figure 6.10: Streamwise pressure distributions obtained using the quasi-three-dimensional
model (mod) described in chapter 4 and the instantaneous simulated pressure distribution
using the immersed boundary method (IB). For the IB method, values are taken at the trans-
verse (X,Y) position associated with the maximum velocity in the analytical model assuming
viscous developed flow through the constricted channel as outlined in chapter 2. Instantaneous
simulated values are assessed at time ¢ = 43ms for the circular constriction shape and at time
t = 50ms for the other constriction shapes.

inlet (Z/L. = 0), middle (Z/L. = 0.5) and outlet (Z/L. = 1) of the constriction are shown.
Boundary layer development along the constricted portion is observed for the simulated flow
profiles so that for Z/L. > 0.5, the simulated, measured and modeled profiles matches near
the walls and so that the simulated center velocity provides a better approximation of the
measured center velocity as Z/L. increases. Since developed flow is assumed!?, the modeled
maximum velocity overestimates the measured and the simulated transverse velocity at the
center with 40% as was also observed from Fig. 6.12. Simulated and measured center velocities
provide a good match to within 5% and 10% depending on the cross section shape.

Fig. 6.13 depicted simulated instantaneous profiles at the constriction outlet whereas the

0Note that the constriction length provides only 1% of the length required to obtain developed flow in a
uniform channel. It could be argued that despite the severe overestimation, the result is better than expected
due to the presence of the constriction which favors boundary layer development.
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Figure 6.11: Modeled (mod) and simulated (IB) streamwise mean or local bulk velocity distri-
butions are normalized by the maximum modeled local bulk velocity @'7. Modeled velocity
values correspond to the local bulk velocity Qumed/A(Z) with Q0 the volume flow rate result-
ing from the quasi-three-dimensional model described in chapter 4 and A(Z) the streamwise
varying channel area. For the IB method, the shown values correspond to the transverse
mean value at each streamwise Z position. Instantaneous simulated values are assessed at

time ¢t = 43ms for the circular constriction shape and at time ¢ = 50ms for the other constric-
tion shapes.

shown measured profiles are gathered immediately downstream from the constriction and
represent mean velocities. In order to estimate the impact of the streamwise position and the
variation between instantaneous and mean flow profiles Fig. 6.14 shows the transverse profiles
at the constriction outlet (Z/L. = 1) and immediately downstream from the constriction outlet
(Z/L. = 1.04 or Imm downstream from the constriction) as well as several instantaneous and
the corresponding mean velocity profile for t > 20ms in order to make sure that the flow
simulation is converged (see Fig. 6.5). It is seen that both conditions do not alter the velocity
magnitude significantly. Indeed, the difference is smaller than 5% in the center and smaller

than 10% within the boundary layer, illustrating that the flow is easier to be disturbed in the
boundary layer than along the center core.

Fig. 6.15 presents mean and standard variation of pressure values at different streamwise
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Figure 6.12: Modeled (mod) and simulated (IB) streamwise velocity distributions are normal-

mazx
mod *

the transverse (X,Y) position associated with the maximum velocity in the analytical model
for viscous developed flow through a constricted channel as outlined in chapter 2. for a volume
rate obtained from the quasi-three-dimensional model described in chapter 4. Instantaneous

ized by the maximum modeled velocity u Simulated and modeled values are sampled at

simulated values are assessed at time ¢ = 43ms for the circular constriction shape and at time
t = 50ms for the other constriction shapes.

positions, immediately upstream from (Z/L. = —0.4), in the middle of (Z/L. = 0.5), imme-
diately downstream from (Z/L. = 1.04) and further downstream from (Z/L. = 1.4). The
pressure was measured for Z/L. = —0.4 and Z/L. = 0.5 as detailed in chapter 5. Conse-
quently, modeled, simulated and measured mean values and their standard deviation can be
compared. In general, a good match is obtained between measured and predicted values. In
particular, the measured and modeled values within the constriction provide a good match
since the difference is limited to about 2Pa, whereas the simulated value slightly overestimates
the pressure (5Pa to 10Pa). It is further observed that the standard variation for both the
simulated and measured data yields about 10Pa. Note that the standard variation for the
modeled streamwise pressure yields OPa since no time dependence is taken into account. The
modeled pressure downstream from the constriction is shown for completeness, although from
the previous discussion is seen that the model can not capture downstream flow development
which is shaped by complex flow phenomena such as jet spreading, jet reattachment and flow
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Figure 6.13: Hlustration of normalized transverse velocity distributions along the X direction:
modeled (mod), experimental (exp) and simulated (IB). Simulated profiles are shown for
different streamwise positions within the constriction: at the inlet (Z/L. = 0), in the middle
(Z/L. = 0.5) and at the outlet (Z/L. = 1). Instantaneous simulated profiles are assessed at
time ¢ = 43ms for the circular constriction shape and at time ¢ = 50ms for the other shapes.
The X coordinate is normalized by the the width of the constricted portion w along the X
dimension.

Fig. 6.16 further illustrates the simulated and measured time signal of the velocity immedi-
ately downstream from the constriction for a circular and elliptical constriction and Py = 35Pa.
It is observed that for t > 20ms, as the flow simulation converges, the simulated and measured
flow velocity matches well with respect to their magnitude as well as with respect to the ob-
served quasi-periodic behavior of the signal representing the flow dynamics!!. The measured
velocity signal for the elliptical cross section shows in addition irregular variations, which are
likely due to the onset of turbulence, so that the laminar flow (IB) simulation is not able
to reproduce flow features related to the dissipation of those turbulent structures and the
consequent generation of turbulent flow.

The previous discussion dealt with the influence of the cross section shape on the flow

"1t is of interest to further quantify the flow dynamics of the measured and simulated velocity field.
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Figure 6.14: (a) Simulated transverse velocity profile along the X direction (¢t = 50ms) at
the constriction outlet (Z/L. =1) and downstream from the constriction (Z/L. = 1.04) for
a constriction with circular section shape. (b) Several instantaneous (¢ = 26ms, ¢t = 30ms,
t = 3bms and ¢ = 40ms) and mean transverse velocity profiles immediately downstream
(Z/L. = 1.04) from a circular constriction are shown. The mean value is obtained for ¢ >
20ms. The X coordinate is normalized by the the width of the constricted portion w along
the X dimension.

field for a single upstream pressure Py = 35Pa. In the following, we consider the impact of
varying the upstream pressure Py for a single cross section shape, i.e. a circular cross section
shape. Fig. 6.17 illustrates the simulated velocity as a function of time for Py = 10Pa and
Py = 100Pa at different downstream positions (immediately upstream from (Z/L. = —0.4),
in the middle of (Z/L. = 0.5), immediately downstream from (Z/L. = 1.04) and further
downstream from (Z/L. = 1.4) the constriction). The flow simulation is seen to converge for
t > 50ms for Py = 10Pa and for £ > 15ms for Py = 100Pa. As expected the velocity variation
within and downstream from the constriction is smaller for Py = 10Pa than for Py = 100Pa
since flow structures will occur as the pressure increases. The simulated velocity field, pressure
distribution and streamwise velocity profiles are further shown in Fig. 6.18 for Py = 10Pa and
in Fig. 6.19 for Py = 100Pa. The simulated streamwise distributions are compared with the
modeled distributions obtained using the quasi-three-dimensional flow model. The stream-
wise and transverse velocity field seems more homogenous for Py = 10Pa as for Py = 100Pa,
again indicating an increase of the flow complexity as the upstream pressure and hence the
Reynolds number increases. In general, observations made for the comparison of modeled and
simulated streamwise pressure and velocity distributions for Py = 35Pa hold for Py = 10Pa
and Py = 100Pa is well, so that in general the quasi-three-dimensional model provides a good
approximation for the pressure distribution and mean velocity within the constriction whereas
the model result in a severe overestimation (> 50%) of the maximum velocity within the con-
striction compared to the simulated streamwise distributions. Downstream the constriction,
the quasi-three-dimensional model does not capture the flow dynamics. Nevertheless, looking
in more detail at the streamwise distribution illustrates that flow reattachment occurs further
downstream from the constriction for Py = 10Pa than for Py = 100Pa, i.e. at /L. =~ 5
compared to /L. ~ 3. This corresponds to the decrease of the potential core extent of the jet
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Figure 6.15: Mean pressure and associated standard variation at different streamwise positions
(immediately upstream from (Z/L. = —0.4), in the middle of (Z/L. = 0.5), immediately
downstream from (Z/L. = 1.04) and further downstream from (Z/L. = 1.4) the constriction):
modeled (mod), simulated (IB) of measured (exp). Simulated mean values are taken for
t > 20ms. Note that the standard deviation of the model is 0Pa.

as the upstream pressure or Reynolds number increases as was observed from the visualized
flow field in chapter 5. Note that flow visualization also showed the absence of flow structures
for low Reynolds numbers as expected for laminar flow, whereas coherent structures influence
the flow dynamics as the upstream pressure increases.

An overview of measured (E), modeled (M) and simulated (IB) pressure values P; at the
center of the constriction (Z/L. = 0.5) and of velocity values u,q, along the centerline of
immediately downstream from the constriction (Z/L. = 1.04) is shown in Fig. 6.20a and in
Fig. 6.21, respectively.Mean values and their standard variation are indicated for different
cross section shapes, upstream pressures Py and volume flow rates (), so that the impact
of the cross section shape on P; and wume, can be quantified as a function of increasing
upstream pressure or Reynolds number. From Fig. 6.20a is seen that the standard variation
of the simulated and measured pressure P; increases as the imposed upstream pressure Py
increases for all cross section shapes in accordance with the previous findings of an increased
flow complexity. A good overall match of the mean pressures and their standard deviation
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Figure 6.16: Measured (exp) and simulated (IB) velocity signal as a function of time immedi-
ately downstream from the constriction (Z/L. = 1.04) for Py =35Pa: a) circular constriction
and b) elliptical constriction.
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Figure 6.17: Illustration of simulated (IB) velocity signal for a circular constriction at different
streamwise positions (immediately upstream from (Z/L. = —0.4), in the middle of (Z/L. =
0.5), immediately downstream from (Z/L. = 1.04) and further downstream from (Z/L. = 1.4)
the constriction) and for different upstream pressures: a) Py = 10Pa and b) Py = 100Pa.

is observed for Py < 60Pa (corresponding to Re > 4000) between modeled, simulated and
measured values. As the pressure increases, the model underestimates the impact of the
cross section shape on the pressure values as seen from the limited range of predicted values
compared to the measured values, stressing again the limitations of the quasi-three-dimensional
flow model to capture more complex flow phenomena. The same observation holds with respect
to the prediction of the centerline velocity w4, downstream from the constriction shown in
Fig. 6.21. The magnitude as well as the range associated with varying the cross section shape
of simulated, measured and modeled values exhibit the same tendency for @@ < 401/min. For
higher volume flow rates, the modeled values overestimate measured values in agreement with
previous findings. It is seen that the standard variation of w4, can be neglected. Moreover,
simulated values of w4, match the experimental tendency as illustrated in Fig. 6.22.
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Figure 6.18: Tllustration of flow field for a channel with circular constriction for upstream pres-
sure Py = 10Pa. Simulated (IB) quantities are obtained at time ¢ = 90ms: a) instantaneous
simulated (IB) streamwise velocity magnitude, b) instantaneous simulated (IB) transverse
velocity magnitude at the middle of the constriction (Z/L. = 0.5), ¢) normalized modeled
(mod) and simulated (IB) streamwise pressure distribution, d) normalized modeled (mod)
and simulated (IB) mean streamwise velocity distribution and e) normalized modeled (mod)
and simulated (IB) streamwise velocity distribution along the centerline of the constriction.

In order to further quantify the impact of the cross section shape on the pressure P; the
range of the mean P; values, i.e. |(P"% — P{"")| is quantified for the experimental and
simulated flow field and normalized with respect to the range observed for the quasi-three-
dimensional model as |(P"e® — Pmin) /( mod — {%@dﬂ Consequently, a value smaller than
1 indicates that the range is smaller than the range estimated for the quasi-three-dimensional
model whereas a value greater than 1 indicates a range which is larger than the one predicted
from the quasi-three-dimensional model. The quantity is illustrated in Fig. 6.23 as a function
of the upstream pressure Fy. Consequently, it is seen that for all upstream pressures the
quasi-three-dimensional model underestimates the impact of the cross section shape on the
range of the mean pressure P; within the constriction and the underestimation becomes more
prominent as the pressure increases. It is interesting to note that a minimum is found around
Py = 30, corresponding to 2800 < Re < 4200 and hence the transition regime, for which
the modeled range corresponds best to the experimental range. Moreover, it is seen that the
simulated values provide an overestimation of the range of pressure values P; due to varying
the cross section shape.
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Figure 6.19: Tllustration of flow field for a channel with circular constriction for upstream pres-
sure Py = 100Pa. Simulated (IB) quantities are obtained at time ¢ = 40ms: a) instantaneous
simulated (IB) streamwise velocity magnitude, b) instantaneous simulated (IB) transverse
velocity magnitude at the middle of the constriction (Z/L. = 0.5), ¢) normalized modeled
(mod) and simulated (IB) streamwise pressure distribution, d) normalized modeled (mod)
and simulated (IB) mean streamwise velocity distribution and e) normalized modeled (mod)
and simulated (IB) streamwise velocity distribution along the centerline of the constriction.

6.3 Summary

In the current chapter, the immersed boundary (IB) method is applied to flow through a rigid
constricted channel for a wide range of Reynolds numbers and different cross section shapes
of the constriction. Simulated flow quantities are compared with the quasi-three-dimensional
model outcome and with experimental values in order to estimate the relevance of the proposed
simplified quasi-three-dimensional flow model and in order to validate the flow model used in
the IB method before applying the method to simulate fluid-structure interaction problems.
In general, it is seen that the quasi-three-dimensional flow model can be used to approximate
the flow within the constriction, but does not capture flow phenomena downstream from
the constriction, whereas the IB method is able to capture three-dimensional flow structures
as well as jet development downstream from the constriction. Nevertheless, both models
fail to capture fully the impact of the cross section shape compared to experimental values.
Nevertheless, it is concluded that the IB model provides an accurate flow solution for upstream
pressures Py < 60Pa corresponding to Reynolds numbers Re < 4000 so that fluid-structure
interactions up to this Reynolds number can be assessed. Further research is required to
investigate the flow dynamics. In addition, it is of interest to extent the flow models (both
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Figure 6.20: Overview of pressure values at the center of the constriction (Z/L. = 0.5) for
a circular (o cl), elliptical (x el), rectangular ((J re) and circular sector (I> scs) cross section
shape as a function of the imposed upstream pressure Py. Modeled (M), experimental (E)
and simulated (IB) values are indicated. For clarity experimental and simulated values are
shifted with +3Pa and —3Pa, respectively. a) mean and standard variation and b) mean
values. Experimental results for upstream length L,=2c¢m and downstream length Liz=15c¢m
are indicated (see chapter 5). The standard variation of modeled values yields OPa.
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Figure 6.21: Overview of velocity values sampled along the centerline immediately downstream
from the constriction (Z/L. = 1.04) for a circular (o cl), elliptical (x el), rectangular (J re)
and circular sector (> scs) cross section shape as a function of the measured and predicted
volume flow rate Q. Modeled (M), experimental (E) and simulated (IB) values are indicated.
For clarity experimental and simulated values are shifted with +1.21/min and —1.21/min,
respectively. a) mean and standard variation and b) mean values. Experimental results for
upstream length L,=2cm and downstream length Ls=15cm are indicated (see chapter 5).
The standard variation of modeled values yields 0Pa.
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centerline immediately downstream from the constriction (Z/L.=1.04) for experiment (exp)
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Figure 6.23: Tlustration of ratio |(P{"®® — P /(P — Pﬂlggd)\ between different cross
section shapes for experiment (exp) and IB method (IB). Experimental results is obtained
when pressure is the initial condition for L,—2cm and Lg—15cm. P/ and P{™" denotes the

maximum and minimum mean pressure for experimental and simulated result.
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the quasi-three-dimensional as well as the IB flow model) to include a simple turbulence
model. Finally, it need to be commented that the simulated and quasi-three-dimensional model
outcome is compared to quantities measured on a constricted channel with sharp edges instead
of rounded edges applied to the numerical structure. Consequently, it would be interesting to
perform an additional experiment for a constricted channel for which the geometry matches
the numerical structure.






CHAPTER 7

Conclusion and perspectives

Simple flow models have a long and successful tradition with respect to the qualitative pre-
diction of complex biological circulation phenomena in terms of meaningful physiological pa-
rameters at a low computational cost. In addition, the last decades complex flow simulation
techniques are applied to those biological circulation phenomena in order to overcome the
agssumptions inherent to simplified flow models so as to provide quantitatively accurate pre-
dictions at a large computational cost. A good example of a physiologically important variable
which is either neglected in simple flow models or for which incorporating all its details in
a computational model is firstly a huge task and secondly increases the computational cost
significantly is presented by the cross section shape of a stenosis related to a biological circu-
lation system. Besides the cross section shape, attention is given to upstream flow conditions
since a stenosis might involve blood flow as well as air flow so that flow conditions vary sig-
nificantly. Therefore, in this thesis we sought to describe the influence of the cross section
shape for pressure-driven laminar flow at a low computational cost and taking into account
the possible need to analyze the model in terms of its parameter space such as Reynolds
number or a geometrical parameter. As a result, a simplified quasi-three-dimensional flow
model is proposed in combination with a parametrized description of an arbitrary cross sec-
tion shape. Such a model provides the sought balance between simplicity and complexity
and adds a three-dimensional aspect to a simple flow model, which is uncommon since it is
more natural to rely on two-dimensional boundary layer theory in case it is sought to improve
the flow model. The proposed flow model relies on fully developed flow solutions and can
therefore be seen at the extension of classical quasi-one-dimensional flow models. The rele-
vance as well as the limitations of the proposed flow model with respect to constricted channel
flow is shown in several ways. Firstly, it is shown that the impact of the cross section shape
on the pressure distribution within the constriction can not be neglected when the flow is
not completely dominated by viscosity. In the latest case, the classical quasi-one-dimensional
flow model provides as good results with a minimum of computations. Secondly, it is shown
that the application of the quasi-three-dimensional flow model to phonation allows indeed a
mathematical analysis in terms of the parameter space and moreover affects predicted values,
again compared to the quasi-one-dimensional model, of relevant physiological parameters in
case the flow is affected and hence when the flow is not fully dominated by viscosity. Thirdly,
pressure measurements within the constriction show that although the quantitative accuracy
is poor, the quasi-three-dimensional flow model does improve predicted values compared to
the quasi-one-dimensional model as well as to a boundary layer solution for axisymmetrical or
two-dimensional flows (except for the lowest Reynolds numbers). The same way, transverse
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velocity profiles show that the predicted profiles by the quasi-three-dimensional flow model,
although not accurate, do provide some main characteristics of the velocity profile such as the
asymmetrical development of the boundary layers in the case of asymmetrical geometries. On
the other hand, it is shown that the proposed flow model can not capture the complexity of
the flow dynamics related to the variation of upstream flow conditions. At the same time,
although a prediction obtained from the numerical simulation with a more complex flow model
would certainly be more accurate, it can be questioned that it would capture the impact of
the upstream flow conditions in a reasonable amount of time. Fourthly, the model outcome
is compared to the outcome of the numerical simulation of a laminar incompressible three-
dimensional flow model. It is seen that predictions obtained from the model are suitable to
predict the order of magnitude of flow quantities within the constriction whereas predictions
downstream from the constriction are useless. The simulated flow field on the other hand is
shown to capture some of the flow dynamics at a high computational cost.

Several research perspectives can be formulated.

In the current work, it was aimed to show the influence of the cross section shape and
of upstream flow conditions. As such both were varied extensively, in order to provide an
overview of their impact on the flow dynamics. Several observations related to the complexity
of the flow can be an individual research topic. In particular, the stability of the flow patterns
and the transition mechanism from laminar to turbulent flow needs to be addressed.

In the current work, the flow model is assessed for steady flow. Obviously, the analysis
needs to be extended to unsteady flow. In addition, the model can be improved in several
ways. Given the observed flow regimes, it is of interest to extent the flow model with a
simple turbulence model. For the same reason, implementation of a simple flow model in the
numerical model is of interest. Finally, the balance between accuracy and computational cost
would probably improve when a flow model is proposed which does not rely on fully developed
flow but on boundary layer development.

The numerical simulation with the immersed boundary method needs to be extended to
represent the full fluid-structure interaction in order to be able to model phonation.

Finally, it is of interest to obtain experimental data using a smooth converging transition
from the upstream channel to the minimum constriction for all cross section shapes and not
only for the circular cross section.
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APPENDIX A

Derivation of fully developed laminar
viscous flow

A.1 Basic equation

For fully developed pressure-driven flow through a uniform channel with arbitrary but constant
cross section shape, and under the assumptions of laminar, incompressible, parallel and steady
viscous flow, the streamwise component of the momentum equation expressed in Cartesian
coordinates (z,y, z) reduces to the following Poisson equation [9, 126]

10P (a% a%) | A1)

_ = —4+ —
p Ox oy? 022
with driving pressure gradient dP/dx, velocity u(y, z) and dynamic viscosity p. The spanwise
and transverse components of the momentum equation become,

oP oP
=0, — =0 A2
Ay T 0z ' (A2)
and the continuity equation yields
ou
— =0. A3
o (A.3)

In cylindrical coordinates (r,0,x), and under the same assumptions, the Poisson equa-
tion (A.1) becomes

1dP 10 [ Ou 1 0%u
pdr ror <a> T2 (A.4)

while the spanwise and transverse components of the momentum equation become,
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oP opP
=0 5 = 0. (A.5)
A.2 Circle
z @y
circle

In cylindrical coordinates where the pipe radius is indicated by a and the length scale
becomes 7* = 7, the general equation can be rewritten as

1
ut = _ZT*Q + Ci1Inr* + Cy, (A.6)

where the Laplace operator reduces to

ror T@r r2902  9x2  rdr Tdr '

Since the velocity cannot be infinite at the centerline, on physical grounds, we reject the
logarithm term and set C; = 0. The no slip condition v* = 0 is satisfied by setting Cy = %.
The pipe solution is thus

ur) = (<) @ = (A7)

The velocity distribution in fully developed laminar pipe flow is then a paraboloid of
revolution about the centerline. The total volume flow rate @) is of interest, as defined for any

duct by @ = [ 4, udA where the element of area is 2mrdr for this pipe case. The integration is
simple and yields

wat dP

From this the bulk velocity defined as u = ®/A gives

. a? dP 1
U= — <_dCC> = iumaxa (Ag)
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and the wall shear stress is given as

B du _a dP _ Apu
Tw_'u<_dr>w_2( dx)_ — (A.10)

A.3 Ellipse

ellipse

Elliptical cross section with axes (a,b) and the area A = mab defined as

2 2

+b72§17

@M‘td
N

and the solution of (A.1l) is sought subject to the no slip boundary condition v = 0. We
postulate the velocity profile to be the form

g2 22
u(y, z) = A <1 -5 = 2) . (A.11)

a b
Since it automatically satisfies the boundary condition for a elliptical cross section and
determine A. by substituting for u in (A.1) gives A, = iaa;f;. Because the assumed form

of u satisfies both the Poisson equation and the boundary condition, it’s the correct and only
solution possible!. So

1 dP\ a?b? y? 22
=—|-—— )= |1-5—=5]- A2
uy,2) 20 < dx) a? +v? ( a? b2> ( )
Imposing g—Z = % = 0 the maximum velocity is given as
1 dP\ a’b?
Umaz(y = 2 =0) = 2 <_d:c> praCR (A.13)

Using the transformation y = ar cos 6, z = brsin § with the limits r € [0,1], 6 € [0, 27] the
volume flow rate is given as

!The proof of uniqueness solution is followed at section A.3.1
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T dP a’b?
b = dydz = — | —— | ———= Al4
/Auyz 4;4( dx)a2+b2’ ( )
From here it follows
1 dP a’b?
bt=——-——] —. A.15
“ 4u< d:c>a2+b2 (A.15)

For the wall shear stress, we need transform to an elliptical cylinder coordinate system
with y 4+ iz = dcosh (§ + in) and

= dcosh¢ - cosn,
y 7 deoshe reosn (A.16)
z =dsinh¢ - sinn,

where d = va? — b2. The ellipse now be represented by & = & = %log Z—fz. Now we can
convert (A.12) in Cartesian coordinates to (£,n) coordinate system via equations (A.16)

(A.17)

u(y. 2) d2< dP

= ™ —) <cosh 2&y — cosh 2€ — cos 2n +
1

cosh 2£ cos 2n
dx

cosh 2&,

Consider the different geometry of the elliptical cylinder coordinate system, the elemental
arc length in the (£, 7n) directions are given as

oy2 0227
dsﬁ = |:8 67 :| dn = 5(177,
ool (A.18)
B oy? 92?2 B
dse = {35 9 } d§ = 0dg,

respectively, where § = d[cosh2 ¢ — cos? n]% As we know the wall shear stress is given as

oo (1) = 1 (g;)w, (A19)

where 0D represents the boundary of the region D and n is an outward normal from the
boundary. We have dn = §d€ so that the wall shear stress can be written as

Ty (1) = —% @2‘)5&) . (A.20)
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Substituting the (A.17) into (A.20) the wall shear stress is found that

d dP>
Two (M) = —— ) (sinh 2¢y — tanh 2&, cos 27) , (A.21)
o) 44/ cosh? & — cos2 7 ( dx )

The expression of wall shear stress can be converting back to Cartesian coordinate by using
equations (A.16), the wall shear stress then becomes

dPY a®b? 2 22
> a vy 4z (A.22)

o (§1,71) = <_dx 2reVa T

Here the set of (y1,21) correspond to those which define the elliptical boundary.

A.3.1 Proof of the uniqueness of solution

Suppose that there exist two solutions u; and us that satisfies (A.1) and the prescribed
boundary condition, i.e.,

_Lap
pdz’ (A.23)
u; = 0, on boundary

V2U1

and

e
pdz’ (A.24)
ug = 0. on boundary

V2’LL2

From these we know that the function © = u; — uy satisfies

Vu =0,

u = 0. on boundary

(A.25)
Using the identity

/Su(Vu-n)ds :/A(Vu~Vu)dA+/AuV2udA, (A.26)
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with s means on the boundary. Substitutes this in u and gives [, (Vu - Vu)dA = 0 which
implies that Vu = 0, thus u = const. But since u = 0 on the boundary we have u; = uo
everywhere which yields the desired result.

A.4 Rectangle

bl
|

rectangle

The rectangular cross section with axes (a,b) and the area A = 4ab defined with |y| < a,
|z| < b. Taking into account the symmetry with respect to the planes y = 0, z = 0, the flow
can studied only in the first quadrant. The boundary condition can be rewritten as follows

Gu=0, y=0,

u=0, y=a
' A.27
Gu=0, 2=0, (A.27)

u=0, z=hb.

(A.1) can be transformed into Laplace equation by setting

= —— (2" = b7). A28
ur2) = (,2) + 5 P~ ) (A.28)

The second term in the right hand side of (A.28) is just the Poiseuille flow profile between
two infinite plates at z = +b. Substitutes (A.28) into (A.1) and (A.27) it gives

82U1 82u1

— =0 A.29
subjected to
_ 2 2 _
ul—%%(b -z )7 y=a, (A30)
% = ) z = 07
up =0, z=0b.

The above problem can be solved using separation of variables setting ui(y,z) = uy -
uy. (A.29) gives
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u, — Ay = 0,
v (A.31)
u, + Au, = 0.
Solutions of (A.31) then can be got
(2k—1)m (2k—1)7
Uy =cpe 2 Y 4dge 2w Y,
(2k — 1) (A.32)
=A —z.
Uz ks cos < TR
Then the special solution of (A.29) is
—1)m —)m 2k -1
uik(y, 2) = (cke(%%l Y+ dke*(%%l y) - cos <(2b)wz> (A.33)
So the general solution of (A.29) is
oo
(@k—D)r (k=D (2k — 1)
— Yy ).
u1k(y, 2) Z (cke 2 Y4 dge” ) cos < 5 z> (A.34)
k=1
Using other two boundary conditions
G — 0, y=0
oy — y="u A.35
{ uy = AW =) y=a, 439)
which gives
i = dy,
0o (2k — 1) (2k — 1) (A.36)
kgl 2¢y, cosh (2[)@) - COoS <2bz = i%(lﬁ —2%).
. L . o (2k — D
The pivotal point in the analysis is the determination of the C. Because cos Tz
forms a complete orthogonal set, as a first approach it is natural to consider the methods of

(2m — 1)m

5% z) in orthogonal set and integral with

Fourier series. By multiply other item cos (

the limits [—b, b], we get
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8b? [ dP (—1)* 1
= - : A37
h w ( dx) (2k — 1)373 Loshy ((Wf—l)ﬁa) ( )

2b

Then general (A.29) becomes

. ((% — )7 )
o o cosh| /o e
Z £ (dP) ( (=1) - COoS <(2k D z). (A.38)

p 2k — 1)m? (2k — 1w
cosh Ta

k=1

Finally, with the substituting (A.38) let i = 2k — 1, there is obtained that

1 dpP 3202 & cosh(—y) cos(ZZ)
T i 1)@=/ 2 B2 (A39
uly, 2) 2u ( dx) ‘ 73 z:;( ) cosh(Z2) 43 ( )
The other same results can be also obtained
164> apP > - cosh(Z2) | cos(ZY)
uly.2) = o (52 1)/ ) | % 3 A0
A= () 2 o | (A.40)
The volume flow rate defined as ® = [, u(y, z)dA gives
4a3 [ dP 192a & tanh(imb/2a)
=—|——) [b— _ A4l
3u ( d$> o 11232 i° ( )
From this it follows that the velocity
2 o .
s _dp ~ 192a tanh(z.ﬂb/Qa) ’ (A.42)
3 dx b 1P
i=1,3,...
16a [ dP\ < (—1)0-Y/2 1
Umaz(y =2 =0) = - - 1- . , A.43
w==0=T5 (%) X — (A.43)

and the wall shear stress are
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8a ([ dP < (—)-D/2 cosh(42)
— —_2Z(_ — =a A4
7'(27 Yy :]:a) 2 ( dx ) l:; 2 COSh(%) ’ ( )

A.5 Equilateral triangle

equilateral
triangle

Equilateral triangle cross section with axes a and the area A = @ defined with the
following three boundaries

22 —V3a = 0,
V3y —z=0, (A.46)
V3y+ 2z =0.

Since the velocity profile u(y, z) is zero on the boundaries, the following solution form
for (A.1) is prompted,

u(y,z) = Ae <\/§y — z) (\/gy + z) (22 — \/ga) ) (A.47)

where A, is a constant to be determined. It turns out that the solution of (A.1) is satisfied
. . 1 dP . . .
provided that A, = iV3an (_H)' Thus, the velocity profile is given by

u(y,z) = 4\1/3 ( dP) L (\/gy — z) <\/§y + z) <2z - \/§a> . (A.48)

S dx ) ap

The proof of uniqueness solution is already described in section A.3.1. Since the assumed
from of u satisfies both the Poisson equation and the boundary condition, it is the correct and
only solution possible. Then the volume flow rate defined by ® = [, u(y, z)dA gives
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V3a V3z
2 5 V3a* [ dP
o —/0 dz v u(y, z)dy = 320/ <_dsc> . (A.49)
3
From this it follows that the velocity
a? dP
i=——-—— A.
u < d:c) , (A.50)

V3a a dP
max = U,z = =2\ — > A51
“ (y 0.2="3 364 ( dx) (A.51)

o= - B (LY (2 ), (A52)

g =Y = 1 (P, (ﬁ) (A53)

A.6 Circular sector

circular
sector

For circular sector it is convenient to analysis by considering the Poisson equation (A.4)
in cylindrical coordinates. In approaching the task of solving this equation perhaps the most
reagonable beginning is to reduce it to Laplace equation, which is the most familiar and
perhaps best understood of any partial differential equation. Thus there is introduced a
reduced velocity u*

u=u"+——-. (A.54)

After substituting in (A.4) one finds that u must satisfy Laplace equation
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P 1w 10w
or? r Or r2 920

=0. (A.55)

Using the separation of variables method of the form u* = R(r) - () gives

52 (0) _
g T ke(0) =0, (A.56)

r?2 0?R(r) r OR(r)

= k. A57
R(r) orF ' R(r) or (4.57)
For (A.56) the solution is obtained as follows
®,,(0) = Apcos VED. (A.58)
For (A.57) let ¢ = Inr which gives
d’R
— —kR=0. A.59
Thus the general solution for R(r) is
R, (r) = C’ne\/Et + Dne_‘/Et = C’nr\/E + Dnr_\/E. (A.60)
Therefore the general solution of u*
u* = Ag + Z (Anr‘/E + Bnr*\/ﬂ cos(VED). (A.61)
n=1

If one utilizes the fact that velocity is infinite at » = 0 then B, = 0. The remaining
constants are determined by imposing the condition that u = 0 on all boundaries. To satisfy
this requirement at r = 0 it is necessary that Ag = 0. Thus

ut = Z AprVF cos(VED), (A.62)
n=1
Substitutes the resulting expression for u* into (A.54), there is obtained

r? dP

T

+ Z Apr® cos (k). (A.63)
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When one applies (A.63) on the oblique sides § = £5

r? dP ko
_ = ide + zn:Anr cos < ) (A.64)
This may be satisfied by taking cos (£¢) = 0, from which it follows that k = (2n ;l)w,n =
1,2,...,00. And in order to cancel the term Z—Q it is necessary to take k = 2 and
1 1dP
Agpes = —_— A.65
"2 7 Lcos(a) ( W dx) ' ( )

with these the velocity solution (A.63) becomes

u/ <—41H‘f£> _ 2 (‘;‘f‘s ) ZAM«(Q”J“ (Qnalw). (A.66)

The set of constants A,,, still remains to be found, and for this there is available the
condition that u = 0 ar » = a. The introduction of this into (A.66) and the setting of u = 0
leads to

B cos(20)\ > cos (2n — 1)mé
(1 Cos(a)> _;cn (a > (A.67)

where the C,, are the dimensionless counterparts of the constants A,,, that is

(2n— )7
—
Cn = Ana e} : (A.68)

(2n—1)m6
a

) and integral with the limits [-$, §]

Consider the orthogonality of function cos (

we have

, 1602
C, = (-2 ,
(=1) i+ 22)(i - 22)

i=1,3,..,00. (A.69)

Finally, with the substituting (A.68) and (A.69) we get
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1 [/dP 9 cos 20 16a%0® & o\ cos (im0 /)
u(r, ) 4p <da: ) " < cos ) 73 i:% (=1)= (a) i(i + 2a/m)(i — 2/ 7)

(A.70)

It is convenient to calculate the volume flow rate ® which passes through the cross section
® = [, urdrdd so that

at dP tana —a 3200 & 1
o ([ _ ATI
4 < d:r) 4 7o i:; i2(i 4 2a/7)2(i — 2a/) ( )

From this it follows that the mean velocity with the area A = QT“Q is

e}

a? dP tana —a 320 1
_ _ _ AT72
< dm) 4 m® 123 20+ 20/m2 —2ajm) |7 T

IN|
Il

o |
Do
=
Q

and the wall shear stress are

! 1 dP 16a2a = e 1
O=%_)==(——) [r*(1+2¢ - 73
T( 2) 4 ( dx) r(1+2tana) + 2 3 (a) (1 + 2a/7) (i — 2/ ) (8.73)
a ( dP cos20 8o = Jit1 cos (imf /)
—g) =2 — 1— - — A.74
7(r=a) 2 ( da:) cosa T2 1:123 v (i +2a/7)(i — 2a/) )

A.7 Concentric annulus

concentric
annulus

Consider the general (A.1) for concentric annulus we have
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r?2 dP
= —— 1 Cs.
U 4Md517+01 nr+ Cy

Impose the boundary conditions the solution in concentric annulus is thus

P (_dP) [ (e - bzﬁflgg;;ﬂ |

The volume flow rate ® then gives

From this it follows that the mean velocity with the area A = 7(a® — b?) is

and the wall shear stress are

T(r=10) = _i <_Cclip> [% g?Oi1<_b/bj))] ’
a2_ 2
e () o]

A.8 Eccentric annulus

eccentric
annulus

For eccentric annulus the general equation (A.1) may be arranged as

_19P

1 dP
2 s 2 2 -
V<\I/+4Md$(y +z)> o

(A.75)

(A.76)

(A.77)

(A.78)

(A.79)

(A.80)

(A.81)
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where U is a plane harmonic function V2W¥ = 0. The boundary u = 0 leads to ¥ = —ﬁ%(y%—

22) + d, where d is an arbitrary constant which will not be the same for the two bounding
circles. Let the y-axis contain the centers of pipe and core, of radii a and b respectively, and
distant ¢ apart.

Using complex-variable technique, exact solutions can be obtained if the cross section can
mapped conformal onto a region where Laplace equation has a known solution. The present
case of an eccentric annulus can be mapped by the transformation

1
W:y+iz:M‘can§C,C:§+n, (A.82)

onto a concentric annulus, where the solution is known, (A.76). The inner and outer boundaries
are described by n = 8 and «, respectively. In the new (£, 7n) coordinate system, it is necessary
to solve

*v  0?
— +—== ] =0. A.83
(352 i 6772) (453)
Since W = M%, so that
B sin & L sinh n
4= coshn+cos¢” = coshn+ cos¢’ (A84)
\/(02 —(a+b)*)(c* — (a—b)?) .
M= ,
4c?

In this system the outer and inner cylinders are n = a and 1 = [ respectively, where a and
B are constants given by sinh « = M/a, sinh § = M/b. Referred to the Cartesian coordinate
system (x,y, z), the axes of the cylinders are the lines (M coth «,0) and (M coth 3, 0) respec-
tively. Thus the distance between their centers is ¢ = M (coth @ — coth 5). Then the (A.82)
subject to ¥ = Uy - (—%)i with

M? 2coshn
UVy=—|(———1 d, n= . A.85
L (coshn—i—cos{ ) td, n=ap ( )
Using the Fourier expansion
coshn >
————— =cothp- [ 1+2 —1)"e™™ . A.86
coshn + cos§ ORI < + nz:l (=1)%e cos n{) ( )

(A.85) may be rewritten as
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M?2 -
Uy = Em cothn Z (=1)"e™™ cosn + const,n = «, 5. (A.87)
H n=1
Assume
U, = Z (-=1)" (Ane_m7 + Bne”") cosné. (A.88)
n=1

Using the orthogonality property we have

coth ae =2 — coth Be—2nP

A, = M?
n e—2na _ o—2nf ’ (A89)
, cotha — coth 3
By =M e—2na _ o—2nf "
Therefore
o —nB . . __—na . .
e~ " coth Bsinh (n(n — «)) — e~ coth asinh (n(n — B))
Uy =M?D (-1)" . cos (n&),
7;1 sinh (n(8 — «))

(A.90)
where «, 8 are the values of 77 on the outer and inner boundaries respectively, which satisfies
(355%1 + 6827;1121> = 0 and makes ¥; = —ﬁ%(gf—kz%—i—d constant when n = « or . Inspection
of (A.81) shows that

M? dP Uy coshn — cosé
- (= V2L s Ap+ B — A9l
" w ( dx) [M2+ nE 4(coshn + cos€) |’ ( )

where A and B are constants, will satisfy (A.81), since the first three terms within the brackets
form a plane harmonic function in the {-plane which transforms into a plane harmonic function
in the W-plane. On the boundaries W is readily shown to be given by

M? coshn
Y| =— | ———"—— —coth A 92
T <cosh77 + cos& «© 77) ’ ( )
so that on the boundaries
M? [ dP 1 1
= — | —— A B — = coth - A.
u . ( da:)( n+ 5 €O 77+4>, (A.93)
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and substituting a, 8 in turn for n, yields two equations for A and B, which together gives

. coth o — coth 3

20a-p)
A94
B_ﬁ(l—2c0tha)—a(1—2c0thﬁ) (4.94)
4o — ) ’
and (A.91) is then completely determined.

The volume flow rate evaluated by ® =2 [ [ f u- \%\dédn is obtained

T dP 4 M> > nenAte)
b= —|(——F ot ——— 82 M2 _— A95
8,u< dm) “ B—a ¢ ;Sinh(nﬁ—na) ’ ( )

where

) 2C )

11 F+M 3 1l F—c+ M
o= —In = —-IN——
F-M 2 F—c—M’

n = « and n = 8 being the outer bounding circle and inner bounding circle, respectively.

From this it follows that the mean velocity with area A = 7(a? — b?) is

4 4 4(32M2 9 x 19 00 ne_n(ﬁ“'a)
—b*— ———8c*M -

_ 1 dP a B —a ¢ nzzjl sinh (nf — na) (A.96)

a=—-— |

I dz a2 — b2 )
and the wall shear stress are
0o e‘nﬁ cothﬁ cosh (n(n — 04)) — e~ coth o cosh (n(n B ﬁ))

PN A.
K nzl o sinh (n(8 — a)) cos (n&), (A.97)
S %2 _ap - cotha —cothg  sinhncos§ (A.95)

substituting the boundary n = a and n = § the wall shear stress at radius r = a and r = b
are obtained.
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A.9 Half moon

half

moon

Recall the basic equation in cylindrical coordinates.

2 2
dP (8u 1 0u 18u> (A.99)

R — L
dx or2  ror 1?2062

If (A.99) can be solved subject to the no-slip condition that u is zero on all duct boundaries,
then all flow quantities of interest can be determined. Consider the two boundary conditions
(y — a)® + 22 = a2 in inner circle and y? + 22 = b? of outer circle and the corresponding
equations in polar coordinate give r = 2acosf and r = b, respectively. The domain is thus

0 € [ arccos(:2

5 ) arccos(za)] Normally we can postulate the solution to be the form

u(r,0) = B(r — b) (2acos — 1) , (A.100)
u(r,8) = B(r — b) ( 2a cos ) (A.101)
u(r,0) = B(r* — b*) (2acos —r), (A.102)
u(r,0) = B(r* — b?) (2“ CTOSG - 1) . (A.103)

For (A.100) to (A.102) it can be validated that Vu # const so that are not correct
solution. Consider the (A.103) it gives Vu = B = %( fli];) Since the uniqueness solution of
such problem already been done in section (A.3.1), it’s the correct and only solution possible.

Thus, we obtain that

1 dP 9,9\ [ 2acos
=— (- —b -1 A.104
LEDEnER)
_ Ou

when 2 5 = gp = 0 which gives §# = 0 and r3 —ar? —ab® = 0, then the maximum velocity is got
from the root of cubic equations. Obviously, the position of maximum velocity depend on the

radius ratio b/a. The volume flow rate defined by ® = f o 2acose udrdf, 0, = arccos (%)

gives
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1 [ dpP 21 b
- (_dx) [(2@36 + Eab?’) sinfy + (a* — 5 2a%b%)6; | , (A.105)
From this it follows that the mean velocity can be obtained by o = % with A =

a? (71' — 0y + %sin(292)) — %bQ(ﬂ' — 09 — sinfy) while 3 = 2arcsin (%) And the wall shear
stress are

1 dP
=b)=—|——1](4 0—2 Al
T(r =b) 1 ( dx) (4a cos b), (A.106)
1( dP b?
7(r = 2acosf) = i <_dx> (m — 2acosb), (A.107)
where —91 S 0 S 91.
A.10 Limacon

limacon
(b<1)

Limacon cross section with axes a, constant b and the area A = ma?(1 + 2b%) defined by
the following equations

y = a(cos @ + bcos 20),

_ . (A.108)
z = a(sin 6 + bsin 20),

with the corresponding polar coordinate is 7 = a(1 4+ 2bcosf). Consider the equation (A.1)
which may be arranged as

1 dP 1dP
2 2 2
VAU 4+ —— =-— Al
( +4ud:r(y —|—z)> dr (A.109)

where U is a plane harmonic function V2% = 0. As u = 0 on the solid boundaries, so



182 Appendix A. Derivation of fully developed laminar viscous flow

_Lar
4p dx

(2 + 2%) + d, (A.110)

where d is an arbitrary constant.

Using the following map, we can map a circle (£2 +7?) < 1 to the case of Limacon

y = a(€+b(& —n?)), (A.111)
z = a(n + 2b&n). (A.112)

In the new (&, 7n) coordinate system it is necessary to solve (% + %27%/) = 0. From the

boundary (A.110), inspection of (A.109) shows that

u= 1T (‘ZIZ) [Br& + Ban + Bsgn + By — (€ +17°) — 2b€(6* +0°) — 0*(§" + ") — 26%6%°]
(A.113)

where By, Bs, Bs and By are constants. Using the boundary (¢2 +n?) = 1, we have By = 2b,
By =0, B3 =0 and By = 1 + b2. Thus, the velocity profile is

o) = 4 (< ) (142064 8 = (€4 0P) = 26 4 7) = U+ ) = 2P
(A.114)

Impose g—’g = %Z = 0 which gives n = 0 and 2b%¢3 + 3b62 + ¢ — b = 0, then the

maximum velocity can be obtained from the root of cubic equations. Obviously, the po-
sition of maximum velocity depend on the constant b. The volume flow rate defined by

\/1—n2 2 .
¢ =/l f,\/lj7 u(€, )| G2 |ddn gives

T dP\ 9 4
= — | —— 144 -2 A1l
S ( dx) “ ( +4b b ) ’ ( 5)

where \a(y’z)\ = a?(1 + 2b€)? + 4a®b?n?. From this it follows that the velocity

a(Em)
a? dP 1+ 4b% — 2p*
__ a7 [ al” _ v A1l
" 8,u< d:c>< 1+ 262 ) (4.116)

and the wall shear stress is
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a? dP 9
T = 5(—d—)(1+2b00s0+2b )cosf, 0 <6 <2r. (A.117)
x






APPENDIX B

Estimation of parameters for an
arbitrary shape

B.1 Method

In the previous chapter 2 the proposed parametrization of an arbitrary cross section shape
following the "superformula"

n2

_|_

sin(mTH)
b

cos(™0 na)—t/m
r(6) = 9(6) [() ] —g0).F6). m>0. (B

describes almost any closed curve base on the deformed circle, f(#) and another function,
g(0) and their parameters. This function g(f) can be considered as a modifier factor of the
function f(6). For a scientific purpose, the parameters need to be estimated from empirical
data which are considered in this chapter.

Let the n true points be z; = (x;,v;), ¢ = 1,2, ...,n, of which the corresponding observed
values are z; = (x;,y;), possibly with errors of measurement and displacement of unknown
origin by (cg, ¢y). Let (¢, ¢,) be the approximate or assumed values of (¢, cy). Let us denote

/

by Zi = (2, 9i) = (=, —6x,y; —¢&y) so that we obtain 7; = /Z7 + §2 and 0; = tan=1(¢;/2;). On

the other hand, we obtain #; = g(f) - f(6;, @, b, 1, 7u1, 2, i3). The deviation of assumed values
n

of parameters from their true values gives rise to d; = |7 — 7| and consequently S = Y d? > 0.

i=1
Only if the assumed values of parameters are the true values, S can be zero, but the smaller

it is, the closer are the assumed values of the parameters from their true values (assuming
empirical uniqueness of the parameters to a given set of data). Thus we have to find the values
of the parameters in f(-) and g(-) such that S is minimum.

In many methods of global optimization the Particle Swarm method of global optimization
is a very important and effective method (32, 94, 33, 96, 10, 38]. The Particle Swarm method
of global optimization mimics the behavior of a swarm of birds or other animals searching for
food. Each individual of the swarm is considered as a particle in a multidimensional space
which has a position and a velocity. The particles remember the best position they seen
and communicate to each other to adjust their positions and velocities. Among the Particle

185
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Swarm method, the Repulsive Particle Swarm method (RPSM) of optimization is particularly
effective in finding out the global optimum in complex search spaces though may be slower
for certain problems [87, 88, 65, 102]. In Repulsive Particle Swarm method the future velocity
u;+1 of a particle at position x; with a recent velocity u; is calculated by

w41 = au; + aéy ()A(Z — Xi) + b&sa ()A(bZ — Xi) + c€3az, (BQ)

where,
e &1, &, &3 are random numbers € [0,1]. a, b, ¢ are constants. « is inertia weight
€ [0.01,0.7].
e X is best position of a particle. Xp; is best position of a randomly chosen other particle

from within he swarm. z is a random velocity vector.

The future x;41 is thus defined as x;11 = x; + u;41. Occasionally, when the process is
caught in a local optimum, some perturbation of u may be needed.

B.2 Result

Fig.B.1 illustrates the figures generated by true and estimated parameters using 360 particles
shown in Table. B.1. It is seen that the estimation is good coincidence with the true values.

Table B.1: True and estimated parameters of "superformula" function by Repulsive Particle
Swarm method when g(6) = 1. 360 Particles is used.

shape m n1 9 n3 a b S

true 3 4 2 7 1 1 0.0

estimated | 2.9853 | 4.4548 | 2.7747 | 5.6781 | 1.004 | 1.001 | 8.4543e-5

1 —true
—estimate

0.5

-0.5

0
x [m]

Figure B.1: Illustration of figures generated with true and estimated parameters.



APPENDIX C

Modeling

C.1 Quasi-1D model

The quasi-1D model, which takes into account the kinetic losses and the viscosity for two-
dimensional flow, can be formulated as follows

_du | 1dP _ 9%u

U T odr Vo

where u(z) denotes the local bulk velocity.

C.2 Thwaites method

The equations of Thwaites’” method for 2D and axisymmetrical flow solving steady integral
momentum equation [126, 105] are summarized in the system below

o) = [ (1= 15 )
(o) = [ Y (1 - ﬁf(’j))) dy. ©2)
0 2D flow
1 axisymmetrical flow

flow index k = {

where r(x) is the radial function of the streamwise position z. Using the quasi-similarity
assumptions [126], the laminar boundary-layer momentum thickness can be represented as a
function of downstream distance z with Thwaites equation

0.45v @ 52(0)r2(0)US(0
() = 7”2k(90)Ue6(:U)/0 U e)da + 2(r)2kxl<fs)(m§( : (C.3)
0 2D flow ‘

flow index k = {

1 axisymmetrical flow

187
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where U(0) and d2(0) are the flow velocity and momentum thickness at the inlet z = 0. The
skin friction parameter

o2 OU,
S(\) = —— , C.4
) Ue(z) Oy (©4)
becomes zero at the flow separation and depends on the Thwaites parameter A
9o OU, ()
A== . C5
v Oz (C5)

In addition, a shape parameter H () is introduced characterizing the boundary layer

HO) =2

(C.6)

The skin friction parameter S(\) and shape parameter H(\) are derived from experimental
data described by modified universal Thwaites functions [12, 27|

0.018\

A)=02241402) + ————  —01< A<
S(\) = 0.22 4 1.40 oty 0lsAs0,
0.0731\
H(\) =2. =
() =208+ 5o (C.7)
S(A) =0.22 4+ 1.57\ — 1.8)\? 0<A<0.1,

H(\) = 2.61 — 3.75)\ + 5.24)\%.

This system can be discretized spatially, with the step Az and discretisation index ¢ in the
x direction. The values of variable U.(iAzx), 61(iAz), d2(iAx) and A(iAx) are denoted U,
01,i, 02,; and A; respectively. Then the system can be rewritten as

52 __ _045v
2i = 72k(0

1 e,t

i 2 2k 6
2k775 65 (0)r=*(0)U¢(0)
Ar o U+ e

N\ — 02, Uei—Uei—1
) Ax ) (CS)

where the area A(d1,;) based on the displacement thickness 1 ; is defined respectively as

l(hi —2614),

k:
A((Sl,i) - { m(r; — 51,1’)2’ k=

0
X (C.9)
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The code use the volume flow rate @) and discretised contraction geometry A; as the input
parameters. The limit conditions at entrance are

50 = 80 =0,
A0 =0,
70 :O.l

S,1

Once the initial conditions are known, the calculation is performed in the following steps

e The velocity erﬂ- in the flow entrance is deduced in (C.10).

e After each step of the computational domain, the following steps are repeated until
convergence

a. The velocity U, 2 ; 1s calculated according to the precedent values as

Q
Uiy = —. C.11
s A(él,i—l) ( )
b. Knowing the value U, ;, we can calculate dy; with the first equation of (C.8)
0450 <~ s 02(0)r2E(0)US(0)
Soi = 7.2]“U6,szrj US + e . (C.12)

c. Then )\; is determined by the second relation of (C.8) and new ¢;; is obtained by
51,1’ = 52,1H()\z)

d. With new values obtained, the velocity U, ; is recalculated by

(C.13)

e Finally, the process is reiterated until it converges (the criterion of convergence is deter-
mined by the user) and the wall shear stress 7,; can be calculated by the last equation
of (C.8).






APPENDIX D

Detailed constriction geometries

D.1 Sharp edged

The detailed geometries for the sharp edged constrictions used for the experiments presented
in chapter 5 is illustrated in Fig. D.1.

D.2 Round edged

The details of three-dimensional printed geometries with rounded edges adapted from the
numerical grid presented in Chap 6 is illustrated in Fig. D.2.

191
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Figure D.1: Detailed geometries for the sharp edged constrictions used for the experiments
presented in chapter 5.
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Figure D.2: Three-dimensional printed geometries with rounded edges adapted (screwthread
is added) from the numerical grid presented in chapter 6.






APPENDIX E

Measurement instruments

During experiments, senors are used to measure physical quantities: pressure, velocity, etc.
These sensors deliver a variable voltage with the digital acquisition system (PCI-MIO, NI,
Labview NI). Converting these voltages into the physical quantities requires calibration.

E.1 Calibration of pressure sensors and visualization images

E.1.1 Electronic manometer

The electronic gauge (Ashcroft-XLdP) is used to calibrate the piezoelectric pressure trans-
ducers (see next section). Its calibration is done using a water manometer. The two gauges
are connected to a point of constant pressure, the value is changed by means of a pressure
regulator which allows fine adjustment. This arrangement is shown schematically in Fig. E.1a.

ﬁ Supply of

compressed air

Regulator [O)]
2

I &€ 2000
I 3

£ 1500
o
&
£

Electronic manometer g 1000
2

+ display 8 500
o

o)

0 0.2 0.4 0.6 0.8
Voltage XLdp [V]

(a) (b)

Figure E.1: (a) The calibration device Electronic manometer. (b) The voltage delivered by
pressure manometer Ashcroft-XLdP depending on the pressure read from the water manome-
ter. It is shown that the slope of the line obtained by linear regression on all measurement
points.

Two different water manometers were used: the first is a little limited to a pressure of
100mm H50 model, and the second has a larger liquid column up to 300mm H2O. Use both

195



196 Appendix E. Measurement instruments

helped us to ensure that we found the same pressure (with an accuracy of about 0.5mm HsO
or 5 Pa). The calibration is illustrated in Fig. E.1b.

E.1.2 Piezoelectric pressure transducers

Piezoelectric pressure transducers are used to measure the pressure at various points in the
model. The Kulite XCS-093 models need to be calibrated before use. The calibration proce-
dure is quite similar to the electronic manometer, while it is connected to the transducer at a
point of sampled pressure. On each sensor, a dozen tension / pressure points covering a range
of 0 to 3000 Pa are measured. Then a linear regression is applied as done for the electronic
manometer (Fig. E.1b). The response of both sensors is linear (correlation of 0.99 between
the points and the right) to for example gain 2587 Pa/V for the Kulite XCS-093 model.

E.1.3 Smoke visualization: image calibration

In the experiment of smoke visualization in order to remain the same region of observation
and redress the position of cross section shape calibration using a grid square pattern with
lcm side shown in Fig. E.2 is performed before film the first time of every new component.

Figure E.2: Calibration using a grid square pattern with lcm side.

E.2 Single hot film anemometry

Constant temperature anemometer [FA-300 TSI is used. In our study a single hot film
anemometer called model 1201-20 TSI shown in Fig. E.3 is used for one-dimensional flow
measurements. The diameter and the length of sensing area are 50.8um and 1.02mm
respectively. More features of the hot film are detailed in Table. E.1. The probe is mounted
on an positioning system and connected to the TFA-300.

The entire system of constant temperature anemometer is depicted in Fig. E.4. Briefly
the main function of constant temperature anemometer is to maintain the temperature of the
probe and thus keep its resistance R,, constant. Any variation of the flow will induce a change
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- 10.2 mm

|

38 mm —»‘

3.9 mm [ 4.6 mum

Figure E.3: Hot film model 1201-20 TSI ( http://www.tsi.com/uploadedFiles/Product._
Information/Literature/Catalogs/Hotwire_Catalog_2980465.pdf).

Table E.1: Features of hot film model 1201-20 TSI ( http://www.tsi.com/uploadedFiles/
Product_Information/Literature/Catalogs/Hotwire_Catalog_2980465.pdf).

Maximum sustained | Maximum sensor | Temperature | Distance

Material ambient operating coefficient of | between
temperature temperature resistance supports

Platinum 300 °C 425 °C 0.0024 °C~! | 1.65mm

in the resistance R,, and then cause a small voltage change e, at amplifier input. Finally, the
current out from the differential amplifier changes the bridge voltage Ep at output. Once the
temperature becomes stable, the flow velocity can be indirectly measured from the resulting
tension.

Bridge

Voltage - :
Out D.C. Differential
(Ep) Amplifier

R,
Control
Resistor

op
Sensor

Figure E.4: Schema of constant temperature anemometer, where FEp: bridge volt-
age output, ep: small voltage change at amplifier input, Ip: current through sen-
sor, R,,: resistance of sensor at operating temperature, R;, R, Rp: bridge resis-
tor (http://www.tsi.com/uploadedFiles/Product_Information/Literature/Catalogs/
Hotwire_Catalog_2980465.pdf).

Calibration is an important step for the accuracy of the measurements. The instrument
for the calibration of hot film is illustrated in Fig. E.5. The compressed air flow measured
by a flow meter. The flow goes through a tube which consists of a diverging portion, a 2m
uniform PVC tube with diameter 10cm and a converging portion with diameter 2.14cm at
outlet. More details can be found in Ref. [42].

The hot film is positioned at the center of converging portion at Imm distance from the
nozzle exit. The displacement is controlled by a user-defined matrix implemented in LabView
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7 (National Instruments). The speed signal is recorded by hot film with frequency 10kHz for
10s at every position. Volume flow rate is acquired with sampling frequency 100Hz. In order
to avoid any flow disturbances and temperature variation the whole setup except for the air
compressor is arranged in a confined room with an air conditioning system. To account for
the drift in room temperature 7, based on the reference ambient temperature, T, , = 21.1°C,
the measured output bridge voltages E,,eqs are corrected to E.,- using the approach adopted
by Kanevce [61], where Ty denotes the airflow temperature:

z
i _hot film
\ o < -
1 k X
Ja— o J}“Sm 118.25cm
’ i
Yy air IFA-300 positioning system
COMPressor

Figure E.5: a) Overview the setup of calibration for hot film. b) cross sectional view of the
tube arranged in the diverging portion. c¢) cross sectional view of the converging tube.

T —T,, 1/2
fa) (E.1)

Ecor = Emeas < Tf _T,

The voltages are plotting with a fifth order polynomial curve fit. The calibration procedure
is outlined in Ref. [42]. Results are shown in Fig. E.6, which include the ideal velocity (+) by
considering the exit centerline velocity to be equal to the bulk velocity [40, 61], the calibration
velocity (x) and the fitting velocity (o). The main calibration error is due to the experimental
error on the measured volume flow rates (< 2% of its recording).

An illustration of the home-made one-dimensional positioning system used to position the
hot film sensor to obtain transverse and longitudinal velocity profiles is given in Fig. E.7. The
position is determined by means of a step motor so that the precision is determined by the
number of steps (200 steps) in a rotation. The precision based on the step motor is 0.0lmm.
The accuracy was validated up to 0.lmm due to the limitation of the used measurement
instrument.



E.2. Single hot film anemometry 199

—+ideal
—-calibration
—=corrected

u [m/s]

T2 14 16 18 2
[v]

E
cor

Figure E.6: Single hot film calibration.

Figure E.7: Tllustration of the home-made one-dimensional positioning system used to measure
transverse and longitudinal velocity profiles.






APPENDIX F

Velocity profiles and flow visualization

F.1 Measured longitudinal profiles

Measured longitudinal profiles are presented in Fig. F.1, Fig. F.2, Fig. F.3 and Fig. F.4.

F.2 Transverse profiles

F.2.1 Measured transverse profiles

Measured transverse profiles are presented in Fig. F.5 and Fig. F.6

F.2.2 Modeled and measured transverse profiles

In the previous chapter 5 the comparison of modeled and measured transverse profiles along
the 'major’ and 'minor’ axis of constriction was presented only for rectangular shape, in the
current section the comparison of constrictions with other shapes are shown in F.7-~F.14.

In general, for both the ‘major’ and ‘minor’ axis, it is observed that the modeled and mea-
sured transverse profiles matches well within the boundary layer. However, since the modeled
profile is fully developed, it tends to overestimate the velocity for the core flow enveloped
by the boundary layers. Given that the simplified model does not accounts for complex flow
dynamics, which based on the presented experimental results suggested to contribute to the
flow development — such as vortex generation, vortex interaction or turbulence — at first sight
the comparison is surprisingly good.

The estimated error between modeled and experimental velocities defined by (5.5), is
illustrated in Fig. F.15. The error vary from 33% to 85% and from 12% to 57% of the bulk
velocity at the center of 'major’ and 'minor’ axis respectively. It is seen that the error tendency
depends on the cross section shape and the volume flow rate and The variation of the error
with the volume flow rate is more pronounced fore velocity profiles along the ‘major’ axis than
for the ‘minor’ axis. The precision is mainly depend on the unaccounted complex phenomena
in model and the undeveloped flow due to the limit of the length of the upstream pipe and
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Figure F.1: Measured near field normalized longitudinal mean velocity profiles u/ug along the
centerline of the jet for cross section shapes shown in Fig. 5.1 as a function of volume flow
rate @ (5, 20, 35, 50, 70 or 1001/min) for sharp edges at the constriction inlet (label C of
Table 5.4). ug denotes the initial velocity of the jet along the centerline.
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Figure F.2: Measured near field normalized longitudinal root mean square velocity profiles

Urms/uo along the centerline of the jet for cross section shapes shown in Fig. 5.1 as a function
of volume flow rate @ (5, 20, 35, 50, 70 or 1001/min) for sharp edges at the constriction inlet
(label C of Table 5.4). ug denotes the initial velocity of the jet along the centerline.
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rate @ (5, 20, 35, 50, 70 or 1001/min) for a single grid placed immediately upstream from the
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Figure F.4: Measured near field normalized longitudinal root mean square velocity profiles
Urms/uo along the centerline of the jet for cross section shapes shown in Fig. 5.1 as a function
of volume flow rate @ (5, 20, 35, 50, 70 or 1001/min) for a single grid placed immediately
upstream from the constriction inlet (label D of Table 5.4). ug denotes the initial velocity of
the jet along the centerline.
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Figure F.5: Measured normalized transverse mean velocity profiles u/umq, at the exit of the
constriction for cross section shapes shapes shown in Fig. 5.1 as a function of volume flow rate
Q (5, 20, 35, 50, 70 or 1001/min) for sharp edges at the constriction inlet (label C of Table 5.4).
Umaz denotes the maximum velocity of each volume flow rate for each cross section shape.

The measure direction is indicated by full arrow shown in Fig. 5.3a and is along the major
axis.
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Figure F.6: Measured normalized transverse mean velocity profiles u/umq, at the exit of the
constriction for cross section shapes shapes shown in Fig. 5.1 as a function of volume flow rate
Q (5, 20, 35, 50, 70 or 1001/min) for sharp edges at the constriction inlet (label C of Table 5.4).
Umaz denotes the maximum velocity of each volume flow rate for each cross section shape.
The measure direction is indicated by dashed arrow shown in Fig. 5.3a. Note that for a square
it denotes the diagonal direction and not the minor axis.
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constricted portion. Anyway, the discrepancy between modeled and experimental values is
quantified.

xxxxxxxxxxxx

x exp
----mean

0.5

o W
(a) Q=51/min (b) Q=201/min
L 1
) 08 i
...-r(;ean \5 ----Eean \\ds
yw ] yw ]
(c) Q=351/min (d) Q=501/min
1 _eeces 10 _eeces
...-n(';ean \5 ----n(;ean \5
yiw [] yw ]
(e) Q=T701/min (f) Q=1001/min

Figure F.7: Comparison of modeled and experimental assessed velocities normalized by the

mazx
mod

Volume flow rate are assessed for 5, 20, 35, 50, 70 and 100l/min. Velocity estimated from
transverse profiles using spatial step Ay = 0.5mm is labeled "exp". The modeled results is
denoted as "mod" and u is the bulk velocity. The width of the constricted portion along major
axis is labeled 'w’.

maximum modeled velocity at the exit of constriction for major axis of circular shape.

F.3 Flow visualization
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Table F.1: Ratio Gexp/Omod = Uy /Upmaq Tesulting from the threshold criterion illustrated in
Fig. 5.29 for a threshold value of 100% for transverse profiles along the ‘major’ and ‘minor’
axis of all assessed cross sections. The uncertainty due to the spatial discretization (spatial

step) is indicated. Bold volume flow rates indicate an overall change of tendency.

Q [1/min] position
D [mm] tendency
5110 | 15]20 | 35|50 | 70 | 100 | error |%]

major axis

cl 10 o4 | - | - | 54|54 | b3 | 39| 67 2.5 -
sq 8.9 62 | 62|61 |60 | - - - - 3 AWV
les 8.4 6362|6160 |39 | - - - 2 N
tr 7.8 62 | 60 | 58 | 58 | 56 | - - - 2 AV
sCs 7.2 61 | 60 | 57 | 57 | 87 | - - - 1.5 N
ntr 7.0 60 | 59 | 58 | 46 | 45 | - - - 1.5 N
el 6.7 72 |70 | 68 | 67 | 65 | 64 | 67 | 82 1 N
re 6.6 8L | - | - | 77|75 |75 | 79| 100 1.5 N

minor axis

s5q 8.9 64 | 63|62 |60 | - | - - - 2 N
les 8.4 7373717069 | - - - 2 N
tr 7.8 71171169 |68 |66 | - - - 2 Ny
scs 7.2 94 | 94 19292 |96 | - - - 3 N
ntr | 7.0 |97 93|97 |75 |5 - | - | - 3 NN\
el 6.7 72|70 | 68 | 66 | 63 | 65 | 69 | 80 5.5 N

re 6.6 83| - | - |79 || 72| 77| 91 6.5 N
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Figure F.8: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity u/°% at the exit of constriction for major axis of elliptic shape.
Volume flow rate are assessed for 5, 10, 15, 20, 35, 50, 70 and 1001/min. Velocity estimated
from transverse profiles using spatial step Ay = 0.5mm is labeled "exp". The modeled results
is denoted as "mod" and u is the bulk velocity. The width of the constricted portion along

major axis is labeled 'w’.
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Figure F.9: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity u; % at the exit of constriction for minor axis of elliptic shape.
Volume flow rate are assessed for 5, 10, 15, 20, 35, 50, 70 and 1001/min. Velocity estimated
from transverse profiles using spatial step Ay = 0.5mm is labeled "exp". The modeled results
is denoted as "mod" and « is the bulk velocity. The height of the constricted portion along

minor axis is labeled 'h’.
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h) diagonal axis of square shape. Volume flow rate are assessed for 5, 10, 15 and 201/min.
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Figure F.11: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity w"%7 at the exit of constriction for: (a-e) major axis and (f-)
minor axis of equilateral triangle. Volume flow rate are assessed for 5, 10, 15, 20 and 351/min.
Velocity estimated from transverse profiles using spatial step Ay = 0.5mm is labeled "exp".
The modeled results is denoted as "mod" and # is the bulk velocity. The width and height of
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Figure F.12: Comparison of modeled and experimental assessed velocities normalized by the

maximum modeled velocity w"%7 at the exit of constriction for: (a-e) major axis and (f-)

minor axis of isosceles triangle. Volume flow rate are assessed for 5, 10, 15, 20 and 351/min.

Velocity estimated from transverse profiles using spatial step Ay = 0.5mm is labeled "exp".
The modeled results is denoted as "mod" and # is the bulk velocity. The width and height of

the constricted portion along major and minor axis is labeled 'w’” and 'h’.
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Figure F.13: Comparison of modeled and experimental assessed velocities normalized by the

maximum modeled velocity w7 at the exit of constriction for:
Volume flow rate are assessed for 5, 10, 15, 20 and

j) minor axis of small circular sector.

(a-e) major axis and (f-

351/min. Velocity estimated from transverse profiles using spatial step Ay = 0.5mm is labeled
"exp". The modeled results is denoted as "mod" and u is the bulk velocity. The width and
height of the constricted portion along major and minor axis is labeled 'w’ and 'h’.
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Figure F.14: Comparison of modeled and experimental assessed velocities normalized by the
maximum modeled velocity u"% at the exit of constriction for: (a-e) major axis and (f-
j) minor axis of large circular sector. Volume flow rate are assessed for 5, 10, 15, 20 and
351/min. Velocity estimated from transverse profiles using spatial step Ay = 0.5mm is labeled
"exp". The modeled results is denoted as "mod" and u is the bulk velocity. The width and

height of the constricted portion along major and minor axis is labeled 'w’ and 'h’.
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Figure F.15: Illustration of the estimated error between modeled and experimental velocities
for shapes except rectangular shape. The error along the center of major axis is labeled as
"major" and so is the "minor" for minor axis. Notice that the measured in diagonal axis of

square is labeled as "dia'".
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(a) circle (b) ellipse

(c) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure F.16: Illustration of the visualization at major axis for all cross section shapes when
volume flow rate equal to 501/min.
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(a) circle (b) ellipse

(¢) rectangle (d) square

(e) equilateral triangle (f) isosceles triangle

(g) small circular section (h) large circular section

Figure F.17: Tlustration of the visualization of centerline flow profile at major axis for all
cross section shapes with one grid plate placed at the inlet of the constricted portion when
volume flow rate equal to 5l/min.



220 Appendix F. Velocity profiles and flow visualization

(a) ellipse (b) rectangle

(e) small circular section (f) large circular section

Figure F.18: Tlustration of the visualization of centerline flow profile at minor axis for all
cross section shapes with one grid plate placed at the inlet of the constricted portion when
volume flow rate equal to 51/min.
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(a) Q=51/min (b) Q=101/min

(c) Q=151/min (d) Q=201/min

(e) Q=351/min (f) Q=501/min

(g) Q=70l/min (h) Q=1001/min

Figure F.19: Visualization of the flow profiles along the centerline of major axis of equilateral
triangle at a distance from Ocm to 21cm of the exit. One grid plate is placed at the inlet of
the constricted portion. Volume flow rate equal to 5, 10,15, 20, 35, 50, 70 and 1001/min are
experimentally assessed.
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(a) Q=51/min (b) Q=101/min

(c) Q=151/min (d) Q=201/min

(e) Q=351/min (f) Q=501/min

(g) Q=701/min (h) Q=1001/min

Figure F.20: Visualization of the flow profiles along the centerline of major axis of circular
shape at a distance from Ocm to 21cm of the exit. Volume flow rate equal to 5, 10,15, 20, 35,
50, 70 and 1001/min are experimentally assessed.



APPENDIX G

Unsteady flow

G.1 Modeling

In the previous work the main work is focus on the influence of the cross section shape on
steady flow, in the current the unsteady flow is assessed by extend the flow model described
in chapter 4. Experimental data are presented in order to assess the influence of cross section
shape for unsteady flow. The model outcome is validated.

Consider the streamwise area variation consists of a uniform constriction, with fixed
length L = 25bmm and varying cross section shape, which is inserted in a uniform tube of
internal diameter 25mm as schematically depicted in Fig. G.1. As the abrupt expansion is
characterized by a sharp trailing edge, the streamwise position of flow separation x, is at
the constriction end (x5 = x3). The pressure downstream from the flow separation point is
assumed to be zero so that P; = 0 and the model outcome remains constant for x > xj.
Consequently, imposing the upstream pressure Py is equivalent to imposing the driving
pressure gradient Py — Pj.

Figure G.1: Flow through an abrupt expansion.

For a given fluid and under assumption of a laminar and incompressible flow the streamwise
momentum equation of the governing Navier-Stokes equations is simplified using additional
assumptions. With driving pressure gradient dP/dz, bulk velocity @, cross section area A,

volume flow rate Q, velocity u(w,y, z), kinematic viscosity v (1.5 x 107°m?/s for air) and
aQ _
==
simplified flow model accounts for both viscosity and flow inertia and depends therefore on
both shape and area of cross section:

density p (1.2kg/m? for air), applying conservation of volume flow rate 0, the following
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- 2 2 2
di @Q*dA  1dP V<8u 8u> (G.1)

a Bdr . pdr 02 02

Making a 2D assumption allows to drop the first term within brackets resulting in the
quasi-one dimensional flow model, which is further labeled Bernoulli-Poiseuille flow (BP) [25].
The first term at the left hand side accounts for flow unsteadiness. Note that in the current
work, unsteadiness is due to varying the upstream flow conditions, i.e. Py(t), whereas the
cross section area is time independent. Thus

B T du pQ? 1 1 ¢ 0% 0%u

The bulk Reynolds number Re = % and Strouhal number Sr = % are defined using
volume flow rate @, hydraulic diameter D and characteristic frequency fo. The experimental
setup is described in Fig. 5.9b for Ly = Ocm. unsteady flow is assessed for @ = 5, 20 and

1501 /min with driving frequency fo = 500Hz.

G.2 Results

Measured pressures Py(t) and Pi(t) in case of a circular and elliptic cross section shape are
illustrated in Fig. G.2. The unsteady oscillatory flow Py(t) with period T = 1/ fy illustrates
flow for ST =~ 1 and Sr < 1. It is seen that the mean pressure value within the constriction
varies as function of the cross section shape, e.g. the ratio observed for the elliptic section
is greater than the one observed for the circular cross section. In addition, the amplitude
of the pressure in the constriction around its mean value, P;(t) — Pi(t), observed for the
elliptic section is greater than the one observed for the circular cross section. Moreover, a
phase difference between the upstream pressure Py and constriction pressure P; is observed,
which is seen to depend on both Reynolds number and cross section shape as summarized in
Table G.1. As for the unsteady flow, further research is needed to fully determine the flow
dynamics.

Table G.1: Normalized phase difference of Py(t) and Pi(t).

: 7=
Qll/min} c re elT sq tr ntr
5 0.08 0 0.02 0.98 0.98 0.02
20 0.10 0.02 0.02 0.98 0.98 0.04
150 0.04 0.02 0.94 0.90 0.94 0.92

Fig. G.3 illustrates the scaled upstream pressure (Pp=1000Pa at time t=0s) and corre-
sponding model outcome while accounting for the cross section. The influence of the unsteady
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Figure G.2: Measured pressures Py and P; for a circular (cl) and elliptic (el) cross section.
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Figure G.3: Experimental values of P; for steady and unsteady flow.

G.3 Conclusion

The influence of the cross section shape on unsteady flow through a constricted channel is
shown for modeled outcome and validated on experimental data.






APPENDIX H

Résumé de Francais

Introduction

Des écoulements dans des canaux — commande par la pression — sont associés a des flux
physiologiques pour lesquelles portions de canaux rétrécis se produisent naturellement ou
sont dus & une pathologie. Des exemples bien connus sont le flux d’air & travers des voies
respiratoires (asthme, production de la parole humaine, [’apnée obstructive du sommeil) et le
flux sanguin a travers une sténose.

Par conséquent, des efforts sont faits pour modéliser ces écoulements afin de comprendre
les mécanismes en jeu et de développer des outils d’aide pour les soins de santé. En raison
de la complexité de ’appareil respiratoire humain et le systéme cardio-vasculaire, la plupart
des études simplifient fortement la physiologie afin d’arriver & une configuration en fonction
d’un nombre limité de paramétres physiologiques et physiques significatives. Une telle simpli-
fication améliore la compréhension des phénoménes physiques en cours et facilite la validation
expérimentale de la précision des modéles.

En général, les simplifications du modéle d’écoulement & travers des parties du systéme
respiratoire ou cardiovasculaire sont fondées sur une analyse non dimensionnelle des équa-
tions de Navier -Stokes tout en tenant compte des valeurs typiques de caractéristiques physi-
ologiques, géométriques et écoulement. A partir de ces observations pertinentes des nombres
non - dimensionnelles sont obtenus (nombre de Mach Ma, nombre de Reynolds Re, nombre
de Strouhal Sr et le rapport largeur - hauteur du canal Ar) qui permettent de simplifier le
modéle d’écoulement. Par exemple, le débit glottique lors de la phonation peut-étre considérée
incompressible, laminaire non visqueux, quasi - stationnaire et bi-dimensionel. Lhypothése
d’un débit glottique bi-dimensionelle implique une glotte pour laquelle la forme de section
transversale est rectangulaire dont la hauteur h(x) varie le long de la direction principale de
I’écoulement z, alors que la glotte largeur w est fixé. Des modéles théoriques d’écoulement
fondées sur ces hypothéses se traduisent par une description de I’écoulement quasi - unidi-
mensionnel pour la comptabilisation des pertes cinétiques ainsi que les pertes visqueuses. Par
conséquent, des modeéles de flux quasi - unidimensionnel (1D) ou bi-dimensionnel (2D) se sont
avérées extrémement utiles pour comprendre la physique sous-jacente et sont appliqués & re-
produire et prédire les phénoménes en cours en utilisant peu de ressources informatiques tout
en permettant la validation expérimentale sur les répliques avec différents degrés de complex-
ité.
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Donc, le but du travail actuel est d’évaluer I'impact potentiel d’un modéle simplifie ’quasi-
tridimensionnel’ - avec un faible cotlt de calcul et qui prend en compte les pertes cinétiques,
la viscosité ainsi que la forme de la section transversale - sur I’écoulement. L’issue du modéle
d’écoulement proposes est considéré en ce qui concerne le résultat du modéle d’écoulement
quasi-unidimensionnelle et bi-dimensionnelle, un modeéle d’écoulement en trois dimensions,
ainsi que des données de flux expérimentaux. Le modéle proposé avec un faible coiit de calcul,
est appliqué & la phonation, les systémes de circulation biologiques et équations physiques.

Méthodologie

Tout d’abord, nous considérons des solutions quasi-analytiques pour ’écoulement visqueux
développé laminaire alimente par la pression pour des canaux uniformes de différent, mais
constante forme de section. Dans un premier temps, une solution quasi-analytique pour un
nombre limité de formes de section transversale est considéré. Ensuite, une solution générale
pour une forme arbitraire en coupe transversale est proposé, et la solution est comparée & une
solution numeérique obtenue en utilisant une approche pseudo-spectral.

Deuxiémement, nous exploitons la paramétrisation proposée d’une forme de section
transversale arbitraire en utilisant les coordonnées tendues aprés 1’équation de "Superfor-
mula". Nous nous concentrons sur des solutions pour les équations physiques en cas de deux
dimensions (2D), ainsi que trois dimensions (3D). Solutions pour les équations de Laplace,
Helmbholtz et I’équation d’onde sont formulées et les résultats numériques sont présentés.

Troisiemement, étant donné que 1’écoulement commandé par la pression dans les canaux
rétrécis est une question importante pour les flux physiologiques pour des conditions normale
ainsi que pathologiques, d’abord, nous considérons des canaux resserrées. Nous proposons
un modele simplifie ’quasi - tridimensionnel’ (quasi-3D) qui prend en compte des pertes ciné-
tiques, la viscosité ainsi que la forme de la section transversale. L’influence de la forme de
la section transversale sur la distribution de pression dans le canal est examine. La distri-
bution de la pression permettra de déterminer les forces exercées par 1’écoulement sur les
parois enveloppantes. C’est donc une quantité importante pour des applications biologiques.
Le résultat de la 'quasi- tridimensionnel’ modéle d’écoulement est comparée & l'issue d’un
"quasi-unidimensionnel’ modéle de flux dont les détails de la forme de la section transversale
sont négligés. Sténose biologique se produit pour différents fluides, dans lequel nous consid-
érons la circulation sanguine et le flux d’air, car ces liquides se produisent dans des systémes
circulatoires importantes, i.e. le systéme cardio-vasculaire et le systéme respiratoire. Nous
appliquons le modéle d’écoulement quasi - tridimensionnel proposé & un modéle physique de
la phonation humaine, 7.e. cordes vocales auto-oscillation pendant la production du son voiseé.
Nous discutons de I'impact potentiel du modéle d’écoulement en tenant compte de la forme
de la section transversale de la pression minimum nécessaire pour maintenir la phonation.

Quatriéemement, on cherche a évaluer 'impact de la forme de la section transversale sur
les propriétés d’écoulement expérimentalement ainsi qu’a valider le modelé quasi-3D sur des
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données expérimentales. Le champ d’écoulement est quantifiée par échantillonnage spatio-
temporelle de la pression et de champ de vitesse. Afin de caractériser complétement le champ
d’écoulement, les conditions d’écoulement en amont sont modifiés. Un apergu spatiale du
champ d’écoulement est présentée en utilisant une visualisation de 1’écoulement.

Enfin, ‘Immersed Boundary Methode’ est utilise pour simuler I’écoulement pour des canaux
avec une forme de section différents. Les résultats numeériques sont présentés et les quantités
de flux simulés sont comparés aux quantités modélisées obtenues en utilisant le modéle 'quasi-
tridimensionnel’ et les quantités de flux mesurées.

Résultats

Tout d’abord, considérons un canal uniforme qui est entiérement définie par son section
(forme et surface) et dont la forme peut étre exprimé analytiquement en utilisant un ou
deux parameétres géométriques (a,b). Concrétement, les formes suivants sont évalués: cercle
(cl), rectangle (re), ellipse (el), anneau excentrique (ea), anneau concentrique (ca), half moon
(hm), secteur circulaire (cs), triangle équilatéral (tr) et limacon (Im). Les formes de section
transversale et les paramétres géométriques associés sont illustrés dans la Fig. H.1.

z Q@ Y
[Els=leYC

anneau

cercle (cl) rectangle (re) ellipse (el)

excentrique (ea)

IFARC

half moon secteur triangle limacon (lm)

(hm) circulaire (cs) équilateral (tr) b<1)

Figure H.1: Formes de section transversale avec leur paramétres (a,b) dans le plan (y, 2).
Notez que pour un secteur circulaire, b indique un angle. x désigne le sens de ’écoulement, y
la largeur et z la hauteur.

Afin d’évaluer 'impact de la forme de la section transversale, deux jeu de parameétres a sont
choisis, le jeu de paramétres par défaut (aq) et le jeu de paramétres non-défaut (aw), résultant

en Upaz /U, ~ 1 et Upaz /Ul
est défini comme : ape = lag, ae = 1.2a¢, beg = 0.2Geq, bes = 7/3, bpm = 0.2ap,, and

& aw << 1, respectivement. Par défaut le jeu de parameétres (o)
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bim = 0.2. Le jeu de paramétres non-défaut (ag) correspond a : ape = 10ay, ae = 10ay,

beq = 0.6a¢q, bes = /6, bpym = 0.6ap,, and by, = 0.6. Ceci permets de considéré trois jeu de
paramétrés pour un forme de section donne avec un mémé surface A = 79mm?

e jeu de paramétres par défaut (o),
e jeu de paramétres non-défaut (as),

e largeur fixe w, i.e. Yot = W.

La distribution de vitesse résultant u(y/ac, 2/ae) pour un canal uniforme avec surface
A =179 mm? et le gradient de pression dP/dx = 75Pa est en outre illustrée dans la Fig. H.2

pour le jeu de parameétres par défaut (1) et a la Fig. H.3 pour le jeu de paramétres non-défaut
(a2) et pour la condition avec largeur ixe (yior = w).
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Figure H.2: Distributions de vitesse u(y/aq, z/aq) pour A = 79mm? et dP/dx = 75Pa/m
pour le jeu de paramétres par défaut () correspondant a, = 5mm.

Dans la Fig. H.2, obtenue en utilisant le jeu de parameétres par défaut (aq), on voit que la
vitesse maximale pour toutes les formes de section transversale varie entre les valeurs observées
pour un cercle et un triangle équilatérale. A noter que la vitesse est réduite avec 20%. Fig. H.3
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Figure H.3: Distribution de vitesse u(y/ac, 2/aq) pour A = 79mm? et dP/dz = 75Pa/m. A
gauche) le jeu de paramétres par défaut (ag) et a droite) largeur fixe (w) avec w =4 X ag et
e = dmm.

illustre le jeu de parameétres non-défaut (as) ainsi qu’une largeur fixe (w). La réduction de
vitesse est plus importante et varie entre 20% a 98% dépendant la forme.

Ensuite, pour les formes de section arbitraires, Fig. H.4 illustre 'erreur maximale E,,4, en
fonction de la nombre de discrétisation radiale N pour les formes tout en utilisant la méthode
pseudo-spectrale. IL’erreur estimée devient constante lorsque le nombre radial N > 40 et
Erae < 10%. Pour les formes avec des frontiéres lisses, une haute précision (Epq, < 1%)
peut étre obtenue pour un nombre radiale inférieure a 40 (N < 40), tandis que Eqe < 4%
pour N > 73 lorsque les formes ne sont pas lisses. Quoi qu’il en soit, la tendance est que
lerreur estimée Fy,q; diminue lors que N augmente. Ce qui montre la convergence de la
solution numérique.

L’estimation de ’erreur maximale en fonction de la nombre de troncature N de la somme
est illustrée sur la Fig. H.5. On voit que pour toutes les formes évalués une bonne précision
est atteint pour l'erreur général ainsi que U'erreur maximal (Frars < 0,5% et Epnaz < 0,03%)
pour N > 6. Table H.1 illustre la comparaison des erreurs F,q;. Une bonne précision est
obtenu pour toutes les formes de section évalue.

Deuxiémement, laissez f(z,y) = = + 3y + cos(x + 2y) soit la condition limite pour le
probléme de Dirichlet de I’équation de Helmholtz. Fig. H.6a illustre I’erreur relative en fonction
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Figure H.4: Mlustration de ’erreur maximale estimée F,,q, avec la fonction de radiale nombre
N lorsque M = 72.
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Figure H.5: Illustration de ’estimation de ’erreur maximale FE,,, en fonction de la nombre
de troncature N de la somme.

Table H.1: Comparaison de l'erreur E,,q, & 'approche générale de pseudo-spectrale analytique
et numérique.

triangle
approche circle rectangle ellipse
équilatéral
présent [%]
0 0.393 1.44e-14 0.479

(N >6)
numérique [%]

0.046 0.046 4.09 10.69

(N > 40)

du nombre tronqué de somme N. De Fig. H.6a et Fig. H.6b on voit qu’un bonne (erry < 2%)
estimation de ’état initial peut étre observée pour la solution de développement de Fourier
a lordre N = 7 et le modéle et les valeurs limites imposés correspondent bien. En outre, la
solution de domaine intérieur pour N = 7 est représenté sur la Fig. H.6c.
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Figure H.6: (a) Illustration d’erreur relative de frontiéres en fonction du nombre tronqué de
somme N pour le probléme de Dirichlet de I’équation de Helmholtz. (b) Comparaison de
la valeur limite entre I’état initial et la somme tronqué issu uff lorsque 'ordre N = 7 pour
Péquation de Helmholtz. (c) Distribution de la solution représentée par la somme tronquée
N=T.

Troisiémement, nous modélisons la distribution de pression a I’aide du modeéle d’écoulement
quasi - tridimensionnel proposé pour une douceur et un canal resserré brusque avec différentes
formes de section transversale pour l’écoulement d’air et la circulation sanguine. Différents
configurations de sténose sont considérés en faisant varier certains parameétres géométriques
représentés sur la Fig. H.7: degré de sténose Ro, superficie minimale A,,;,, et I'étendue
streamwise de constriction minimum Lo. L’impact possible des données de section transversale
sur la répartition de la pression est évaluée pour: jeu de paramétres par défaut (aq), jeu
de parametres non - défaut (as) et le jeu de paramétrés correspondant a une largeur fixe

(ytot - w)'

Fig. H.8 illustre la répartition de la pression pour une extension lisse et pour une détente
brusque pour les différents jeux de paramétres - jeu de paramétres par défaut («y), jeu de
parameétres non - défaut (as) et largeur fixe (yror = w) - appliqué a chacune des formes de
section transversale. Les parameétres de sténose sont définies comme surface minimal A,,;;, =
79mm?, R. = 30% et Lc/Dy = 6. La pression en amont est fixé & Py = 75Pa. La distribution
de pression est modélisée en utilisant le modéle d’écoulement quasi tridimensionnel, un modéle
quasi - unidimensionnel (BP) et un écoulement idéal (B) sont indiqués également.

On voit que l'influence de la forme de section sur les résultats du modéle en utilisant le
jeu de paramétres par défaut défini «q est moins prononcée que pour le jeu de paramétre
non- défaut as ou pour le jeu de paramétrés correspondant a une largeur fixe s = w. Les
distributions de pression obtenues pour toutes les formes de section transversale & ’aide de
parameétres par défaut «; se rapproche de la distribution d'un écoulement idéal (B) pour
laquelle AP,;sc = 0 de sorte que I” approximation quasi - unidimensionnel (BP) se traduit par
une sous-estimation grave de la chute de pression le long de la partie resserré. D’autre part,
on voit que pour le jeu de paramétre non - défaut ao et largeur fixe y;or = w 'ampleur de la
chute de pression varie de facon significative de sorte que, en fonction de la section transversale
de forme, la modelé quasi - unidimensionnels (BP) résulte dans une surestimation, une sous-
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Figure H.7: Vue d’ensemble schématique d’un canal resserré, ce qui représente une sténose,

-

x/D

orienté selon la streamwise = direction. Le degré de sténose est exprimée par rapport R, =
Apmin/Ao et son streamwise extension par L.

estimation ou une estimation précise de la chute de pression dans la constriction. Notez que
I'imposition d’'un largeur ys+ = w résulte dans une bon accord entre 'approximation avec le
modelé quasi-unidimensionnel (BP) et la distribution de la pression obtenue en utilisant le
modelé quasi-3D avec une forme de section rectangulaire (re).

Ensuite, nous voulons évaluer 'impact potentiel du modéle d’écoulement quasi - tridi-
mensionnel, qui prend en compte la forme de la section transversale, sur les résultats d’un
modele de la phonation physique en comparaison avec un (BP) écoulement quasi - unidimen-
sionnel modéle. Les résultats simulés sont obtenu lors d’un analyse de stabilité de modelé.
On g’intéresse au seuil de pression nécessaire afin de maintenir la phonation P,,. Les seuils
obtenus sont illustrés dans la Fig. H.9a en fonction du degré de rétrécissement de 1 — A10/Aq
qui est indépendant de la section la forme et la Fig. H.9b en fonction du rapport d’aspect
Arl® = w/h!0 qui dépend de la forme de section transversale.

Pour les grands degrés de constriction (plus de 75% dans la Fig. H.9a) la forme de la section
transversale peut étre négligé. Pour moyennes ou petites constriction degrés (moins de 75%
dans la Fig. H.9a) la pression de seuil de déclenchement de la phonation prédit P,, dépend de la
forme de section. En effet, moins de pression est nécessaire pour maintenir ’oscillation d’un
forme circulaire que pour une forme rectangulaire ou elliptique. L’écart entre les pressions
estimées P,, pour des sections différentes augmente a mesure que le degré de constriction
(Fig. H.9a) ou rapport d’aspect (Fig. H.9b) diminue. En outre, on observe que pour toute la
plage des degrés d’étranglement et des rapports d’aspect teste, une géométrie rectangulaire
peut étre modélisée a ’aide approximation quasi- unidimensionnel (BP) d’écoulement. Les
simulations de la phonation et les seuil de pressions P,, obtenus suggérent que pour les grands
degrés de constriction (plus de 75% dans la Fig. H.9a) le résultat du modéle dépend d’une
valeur précise de la zone rétrécie A0 en tant que parameétre d’entrée de modéle. Ce résultat est
la conséquence de la faible différence constatée dans les quantités d’écoulement prédites lorsque
la viscosité domine le comportement d’écoulement et des effets relie a l'inertie deviennent
moins prononcées et donc la forme de la section transversale devient plus important. Pour les
degrés de constriction moyennes ou petites (moins de 75% dans la Fig. H.9a), il est nécessaire
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Figure H.8: Tllustration de la distribution de pression normalisée P(z)/Py selon le modéle
quasi-tridimensionnel pour ’écoulement d’air et surface minimum A,,;, = 79mm?, Py = 75Pa,
R. = 30% et Lo/Dg = 6 pour les différentes formes de sections transversales obtenues pour
a) l'expansion lisse et jeu de parametres par défaut (ay), b) une expansion brusque et jeu de
parameétres par défaut (1), ¢) jeu de parametres non-défaut (az) et d) largeur fixe (yior = w).
La répartition de pression associé & un modeéle quasi-unidimensionnel (BP) et un écoulement
idéal (B) sont indiqués. La géométrie normalisée est indiquée en nuance de gris et la streamwise
x direction est normalisée comme Xy = x/D,;. Titre de référence, la constriction apparition
9 et la position de séparation xg sont indiquées.

de quantifier la zone rétrécie A9 ainsi que d’obtenir des informations sur la forme de la
section transversale afin de déterminer I'impact de la forme en coupe transversale sur les
pertes visqueuses dans le modéle d’écoulement. Lorsque le rapport d’aspect Arl0 est utilisé
comme paramétre d’entrée du modeéle (Fig. H.9b) des informations supplémentaires sur la
forme de la section transversale est nécessaire comme un parameétre d’entrée de modéle pour
tous les rapports d’aspect.
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Figure H.9: (a, b) seuil de pression minimum de phonation P,, en fonction du degré de
rétrécissement de 1 — A'0/Aq (a) et en fonction du rapport d’aspect Arl.

Quatriemement, huit portions de canaux resserrés avec différentes formes de section
transversale illustrés dans la Fig. H.10 sont considérés. Les formes de sections transversales
ont surface constante A. = 79 mm? et longueur constante L. = 25mm le long de la streamwise
x direction. Chaque constriction peut étre vissé & un canal en amont et en aval avec le filetage
le long des parois externes de facon & obtenir une partie de canal rétrécie. Un apercu des
configurations évaluées pour chacune des formes de constriction de la Fig. H.10 est donnée
dans le tableau H.2.

Dans un premier temps, nous quantifier et évaluer 'impact de la forme de la section
sur les valeurs de pression mesurées dans la constriction. Des pressions sont mesurées pour
différentes conditions. Afin de quantifier I'influence de I'impact global de la forme de la section
transversale sur la pression mesurée dans le rétrécissement on mesure les valeurs de la pression
relative pour toute la gamme des débits considérés A(P;/Py) et les valeurs particuliéres de la
pression amont Py ou nombre de Reynolds Re.

De l'observation de l'impact global de la section sur la pression moyenne dans
Pétranglement, il se trouve que les deux mesures AP;/Py ou A(P;/Fy) resultent dans les
mémes tendances qui sont resume & partir des observations suivantes:

e observations lorsqu’on différé soit la forme de la section (de I'impact de la forme de la
section transversale) soit le conditionnement de flux (impact des flux conditionné):

— Tordre de grandeur de I'impact s’éléve & 10% jusqu’a 30% de la pression amont.
Ce résultat illustre le fait que, au moins pour la gamme de Py ou Re utilisée, les
détails de la forme de la section ou les détails de I'installation de débit sont tout
aussi importants.

— en général, 'effet est plus grande en présence d’un canal en aval de I’étranglement
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triangle triangle circular sector ci sector
(a) vue de transversale (b) vue de streamwise

Figure H.10: Illustration de formes de section uniforme expérimentalement évaluées et la
position des prises de pression P; (plein fleche) et P, (fleche pointillée): a) vue de face des
formes de section transversale le long de la plan (y,z). A titre d’exemple, la largeur totale
w et la hauteur h est indiqué pour la forme de section transversale rectangulaire. b) vue
par fractions de la partie rétrécie de longueur L. Filetage est présente au niveau des bords
extérieurs de la partie de canal rétrécie. Les positions des prises de pression est souligné.

(confiné & jet a la sortie de la constriction) qu’en absence d’un tel canal en aval (&
jet libre a la sortie de la constriction).

e observation due a la variation de la section transversale de forme (I'impact de la forme
de section):

— limpact des formes de section transversale réduit (de ~25%, & ~10%) quand on
conditionne le développement de flux amont (L, augmente) ou quand on utilise un
élément de mélange de fluide (OGP).

— laugmentation de la pression en amont ou le nombre de Reynolds n’augmente pas
de maniére significative l'influence de la forme de la section transversale. Cela
donne & penser que, en raison de la dissipation de la turbulence et le développe-
ment, le champ d’écoulement perd de l'identité ou empreinte de la géométrie au
moyen des structures d’écoulement caractérisant la forme de la section transversale.
Visualisation de 1’écoulement et de ’analyse de la vitesse d’écoulement peuvent
éventuellement offrir une confirmation de ce point.

e observations lorsque on varie le débit conditionné (impact des flux conditionné):

— limpact de Iécoulement conditionné dans la présence d’un canal en amont (jet
confiné) est moins sensible a une augmentation du nombre de Reynolds que, en
Pabsence d’'un canal en amont (a jet libre dont I'impact réduit de plus de la moitié de
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Table H.2: Vue d’ensemble des conditions expérimentales évaluées pour les formes de constric-
tion de la Fig. H.10 indiquant le flux conditionné occasion. Au cas ol aucun écoulement con-
ditionné est mentionné bords tranchants d’entrée sont évalués. Les quantités de flux mesurées
sont indiquées: prises de pression, transversale et profils de vitesse longitudinales en utilisant
anémomeétrie & film chaud (HF) et les flux de visualisation (FV).

Label H L, Ly Pression) Champ d’écoulement®3) Commentaire H
Conditions entrée: arétes vives (Fig. 5.9) — développement écoulement
Ocm Po, Pl(PQ) jet libre
A 2
e 15cm Py, Pi(Ps), P jet confiné ~
o
Ocm Py, P, (PQ) jet libre =
B 35 g
o 15cm Py, Pi(P2), Ps jet confiné %
Ocm Py, Pi(P) HF, FV jet libre &
C 1m . . =
15cm Py, Pi(Ps), Ps jet confiné =
Conditions entrée: élément de mélange (Fig. 5.10) — écoulement de mélange 5
Ocm Py, Pi(P) HF jet libre
D
35em (08P) s Ry PP, Py jet confiné
Ocm P(], P1 (Pg) HF jet libre
E h
svem (teph) o p Pi(Py), P jet confing N
Ocm Py, Pi(P) HF jet libre g
F t
3vem (48DS) 1o Py, PPy, Py jet confiné 5
Conditions d’entrée: pas de bords tranchants (Fig. 5.8) — développement écoulement %
Ocm Py, Pi(P) HF jet libre =5
®
G 35¢m (cone) 15cm Py, Pi(P), Ps jet confiné =)
H Im (dlcm) HF jet libre

(1) Flux régulier pour 0 < @ < 2001/min ou Re < 25000.
(2) Flux régulier pour 0 < @ < 1001/min ou Re < 15000.
(3) Pour "'anemometrie avec film-chaud on utilise un cangl en amont avec un longueur de 1m.

sa grandeur que Re est accru), de sorte que le canal en amont a un effet de mémoire
des conditions d’écoulement en amont, méme pour des nombres de Reynolds bien
au-dessus du régime de transition. Notez que on ne trouve pas un tel effet de
mémoire prononcée (ou empreinte de débit) a la forme de la section transversale.

Ensuite, les profils de vitesse mesurés et les champs d’écoulement visualisées sont présentés
en mettant 'accent sur I'influence de la forme de la section transversale et le conditionnement
de flux. Par conséquent, les profils mesurés sont représentés en fonction de la forme de la
section transversale et en fonction de I’écoulement conditionné appliquée plutdét que comme
une fonction de la vitesse d’écoulement volumique appliqué afin d’évaluer leur impact sur les
propriétés d’écoulement. Afin de quantifier 'effet de la forme de la section transversale sur
I’étendue de cone potentiel, la vitesse longitudinale est évaluée dans le champ proche en aval
de I'¢tranglement étant donné les variations de la structure de 1’écoulement en raison soit
de la forme de la section transversale ou les conditions d’écoulement en amont. L’impact
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de la forme de la section sur le champ proche est évident pour tous les débits de volume
évalués par rapport a la vitesse initiale ug, dans la mesure du céne potentiel par rapport & son
déclin initial. La vitesse initiale & la sortie de I’étranglement, par exemple, est considéré de
faire varier jusqu’a 20%. Comme pour les mesures de pression, les profils de vitesse mesurés
suggérent que le comportement de ’écoulement est formé par les arétes vives et la présence de
structures d’écoulement. En effet, la tendance a la baisse de la vitesse dans le céne potentiel
suggeére le foracage du jet di aux arétes vives & l'entrée du rétrécissement.

Ensuite, 'influence de ’état d’écoulement en amont évaluée sur les mesures de profils de
vitesse longitudinales proche de la sortie est exploré. En comparant les profils de vitesse en
présence de 1’élément de mélange (grille unique a Pentrée de constriction) avec les profils de
vitesse en I'absence d’un tel élément de mélange (des arétes vives a U'entrée de constriction)
illustre 'impact sévére de I’élément de mélange sur la mise au point d’écoulement de champ
proche pour tous les débits. La présence de 1’élément de grille de mélange unique diminuera
la zone a l'entrée de constriction avec ~ 50% de la zone de constriction. Il est évident que, en
conséquence la vitesse augmente en présence de ’élément de mélange par rapport & la vitesse
obtenue en "absence de I’élément de mélange pour le méme débit volumique. Par conséquent,
en plus d’affecter le champ proche en raison de 'augmentation du débit de mélange, leffet de
I’élément de mélange est de nature a réduire le nombre de Reynolds pour laquelle la transition
a un écoulement turbulent se produit. Une premiére confirmation de cet effet est fourni par le
minimum du cone potentiel associée a la transition régime étendue qui réduit de @ ~351/min
a @ ~201/min lors d’un élément de mélange est utilisé. En outre, 'augmentation du débit de
mélange augmente la décroissance de la vitesse observée dans I’étendue de cone potentiel en
raison de l'interaction accrue de la vitesse et de la ligne centrale du fluide enveloppant. Cela
suggeére aussi que le motif d’écoulement est moins stable en présence d’un élément de mélange
qui & son tour & nouveau justifié la diminution des nombres de Reynolds associés au régime
de transition. Néanmoins, bien que le motif d’écoulement est soutenu & étre moins stable, la
présence de 1’élément de mélange ne semble homogénéiser le comportement de 1’écoulement
de telle sorte que, en particulier les profils de vitesses mesurés pour la section transversale
circulaire et rectangulaire ne sont plus en accord avec les tendances observées pour d’autres
formes de section transversale.

En outre, plus de conditions sont testes pour la constriction circulaire afin d’évaluer
I'influence de I'état d’écoulement en plus de profondeur. On constate que I'état d’écoulement
en amont détermine le comportement de 1’écoulement, ainsi que sa stabilité et donc les nom-
bres de Reynolds de la transition lorsqu’on examine I’écoulement immédiatement en aval de la
sortie de la constriction. Le taux de décroissance du jet en aval de la sortie est moins influencée
par I’état de la circulation en amont et ‘oublie’ la condition d’écoulement en amont. Comme
tel, il peut étre remarqué que le début de décroissance observée pour les deux conditions de
référence correspond. De plus, 'influence de la forme de la section transversale sur les profils
de vitesse transversale mesurée est évaluée. On voit que, & la fois pour l'axe 'majeure’ et
'mineur’ du jet initiale a la sortie de la constriction occupée par la couche limite (par rap-
port & la partie centrale plane) dépend de la forme de la section transversale. Evidemment,
cela dépend de la vitesse d’écoulement aussi bien que 'augmentation du débit car ceci aug-
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mentera le nombre de Reynolds exprimant une contribution visqueuse réduite a I’écoulement.
Des structures d’écoulement d’une grande diversité (y compris l'inversement de ’axe) sont
observés lors de I'examen des deux planes de visualisation du jet en sortie des constrictions
avec des formes différents.

Enfin, une comparaison des quantités de flux mesurés et modélisés est évaluée afin de com-
menter sur l’exactitude et les limites du modéle simplifié quasi - tridimensionnel proposé. Etant
donné que le modéle d’écoulement quasi tridimensionnel est présenté comme une amélioration
d’un modéle d’écoulement quasi- unidimensionnel (BP). Il semble juste de décider qu'une pré-
diction réussie est obtenu sous la forme du modéle d’écoulement quasi-tridimensionnel fournit
une prédiction plus précise par rapport aux données mesurées obtenues que par le modéle
d’écoulement quasi- unidimensionnel. En outre, dans le précédent, il a été soutenu que par
rapport aux solutions de la couche limite classiques, le modéle d’écoulement quasi - tridimen-
sionnel proposé a l'avantage offrant un moyen (cruel) de rendre compte de la forme de section
transversale. Néanmoins, nous nous intéressons a l’évaluation des résultats d’une solution de
couche limite sur le modéle d’écoulement quasi - tridimensionnel proposé. Dans la suite, une
solution de couche limite est obtenue pour deux dimensions (2D) et écoulement de révolution
(Axi) par I'application de la méthode Thwaites (Th). Par conséquent, des mesures de pression,
a l'intérieur de la constriction partie de canal Pp, pour le rectangle et la forme circulaire de la
section transversale sont comparés a des résultats de la quasi- tridimensionnel (mod), quasi-
unidimensionnel (BP) et de la couche limite solution (ThAxi pour circulaire et Th2D pour
rectangulaire). Pour les autres formes évalués de section transversale, les pressions mesurées
au sein de la constriction P; sont comparés aux résultats de la quasi - tridimensionnel (mod)
et quasi - unidimensionnel (BP) modéle. Concrétement, les pressions mesurées obtenues sont
comparées a des valeurs modélisées de la Fig. H.11.

Etant donné que le rétrécissement est uniforme, toutes les valeurs modélisées résultent dans
une prédiction positive de la pression a l'intérieur de la constriction. En outre, le rapport P; /Py
diminue si on augmente Py. Par conséquent, aucune de modéle de flux appliqué est capable de
prédire avec précision les pressions négatives mesurées dans le rétrécissement ou l'extrémale
observée pour les pressions mesurées au sein du régime de transition 2000 < Re < 4000. Les
deux phénomeénes résultent de phénoménes d’écoulement plus complexes alors comptabilisés
dans les modéles de flux appliquées et elles sont déclenchées probablement par les bords
tranchants a l'entrée de I’étranglement. La précision du modéle quasi - tridimensionnel par
rapport & des données mesurées se résume comme < 5% pour Py > 300Pa et de <5% jusqu’a
< 20% pour Py < 300Pa selon la forme de la section transversale. Observations mentionnées
sont en général en faveur de modéle d’écoulement quasi - tridimensionnel, il est donc conclu que
le modéle quasi - tridimensionnel proposé est évalué positif, tandis que les pauvres précision
lorsqu’ils sont confrontés a des phénomeénes de flux complexes est gardé & D'esprit.

En outre, les mesures de profil de vitesse transversale moyenne & la sortie de I’étranglement
en Pabsence d’un tuyau en aval, offrent (en plus des mesures de pression au sein de la con-
striction) une occasion pour examiner avec plus de précision la pertinence et les limites du
modéle quasi - tridimensionnel proposé et donc I’approche qui consiste a exploite en partie une
écoulement pleinement développé. En effet, le débit volumique mesuré () permet d’estimer
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la distribution de vitesse en supposant un écoulement visqueux pleinement développé. Une
comparaison est faite entre les profils transversaux modélisées et mesurées le long de ’axe
‘majeur’ et ‘'mineur’. En général, & la fois pour l'axe 'majeur’ et 'mineur’, on constate que
les profils transversaux modélisées et mesurées correspondent bien & l'intérieur de la couche
limite. Toutefois, étant donné le profil modélisé est entiérement développé, il a tendance &
surestimer la vitesse de I’écoulement de base enveloppé par les couches limites. Etant donné
que le modéle simplifié ne comptes pas pour la dynamique des fluides complexes, qui joue bien
sur un role dans les résultats expérimentaux présentés - telles que la génération de vortex, la
turbulence ou l'interaction d’un vortex avec la turbulence - & premiére vue, la comparaison
est étonnamment bonne.

500 1000 1500 0 500 1000 1500
P, [Pa] P, [Pa
(a) cl and re (b) sq, tr and el

Figure H.11: Pressions mesurées et modélisées normalisées au sein de la constriction P; /Py
en fonction de la pression amont Py: a) la forme de la section transversale rectangulaire et
circulaire et b) forme elliptique, carré et équilatéral section triangulaire. Valeurs modélisées
sont obtenues a partir des résultats de la quasi-tridimensionnel (mod), quasi-unidimensionnel
(BP) et une solution de la couche limite (ThAxi pour circulaire et Th2D pour rectangulaire).

Enfin, les données numériques du champ d’écoulement sont obtenues en présence d’un
tuyau en aval de forme différente en coupe transversale. Fig. .12 et Fig. .13 illustrent les
résultats simulé (IB, Immersed Boundary Method) et modélise (mod) pour la distribution
de pression et la distribution de vitesse selon x pour Py = 35Pa. Les distributions sont
présentés pour une forme de section circulaire, elliptique, rectangulaire et secteur circulaire.
La répartition de la pression modélisée représenté sur la Fig. H.12 montre les resultats du
modele quasi-tridimensionnel. Pour la méthode IB, la répartition de la pression selon la
direction principal de I’écoulement (z) sur la Fig. H.12 est obtenue en échantillonnant les
valeurs instantanées pour chaque position par fractions de Z a la direction transversale (X, Y)
qui corresponds a la position associée a la vitesse maximale pour un écoulement pleinement
développe. Fig. H.13 illustre la vitesse streamwise modélisé (mod) et simulé (IB) obtenu
comme la vitesse moyenne transversale. Les valeurs modélisées sont échantillonnées aux mémes
postions (X, Y) tandis que le profil de vitesse transversale est obtenue & partir du débit
volumique Qg résultant du modéle d’écoulement quasi tridimensionnel pour calculer la
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distribution de vitesse le long de I’'partie rétrécie en supposant développé écoulement visqueux.
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Figure H.12: Les distributions de la pression par fractions obtenues en utilisant le modéle
quasi tridimensionnel (mod) et la répartition de la pression instantanée simulé en utilisant
la méthode de ‘Immersed Boundary’ (IB). Pour la méthode IB, les valeurs sont prises a la
transversale de position (X, Y) associée a la vitesse maximale dans le modeéle d’analyse en
supposant un écoulement visqueux développée par le canal étranglé. Valeurs simulées instan-
tanées sont évalués au temps t = 43ms pour la forme circulaire de rétrécissement et au temps
t = 50ms pour les autres formes de constriction.

Fig. H.12 montre que dans la constriction a la fois le modeéle quasi - tridimensionnel et
la distribution de pression simulée sont en baisse et se traduisent par des pressions néga-
tives. En général, le modéle quasi-tridimensionnel fournit une bonne approximation pour la
pression simulée au sein de I'étranglement parce qu’une différence globale de 5% entre la dis-
tribution de la pression simulé et modélisé est trouvé. Ceci motive l'utilisation du modéle
d’écoulement quasi-tridimensionnel pour calculer les forces de fluide sur la paroi a 'intérieur
de I’étranglement tout en tenant compte de la forme de la section transversale comme on
le faisait dans ’analyse de stabilité pour calculer la pression minimum nécessaire pour en-
tretenir la phonation. D’autre part, on voit que le modéle quasi-tridimensionnel est inca-
pable de rendre compte de rattachement du jet en aval de I'étranglement. Par conséquent, le
modéle quasi-tridimensionnel simplifié n’est pas en mesure de capter la répartition de pres-
sion en aval de l'étranglement. Ceci est un inconvénient majeur du modele de ’écoulement
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Figure H.13: Modélisé (mod) et simulé (IB) streamwise moyen ou distributions de vitesse
locales sont normalisées par la vitesse local maximale modélisée u; 7. Valeurs de vélocité
modélisées correspondent a la vitesse apparente locale Quod/A(Z) avec Qumoq le débit de
volume résultant du modeéle quasi-tridimensionnel et A(Z) la streamwise variable la zone de
canal. Pour la méthode de I'IB, les valeurs indiquées correspondent & la valeur moyenne
transversale & chaque position par fractions Z. Valeurs simulées instantanées sont évalués au

temps t = 43ms pour la forme circulaire de rétrécissement et au temps ¢t = 50ms pour les
autres formes de constriction.

quasi-tridimensionnel proposé et en conséquence le modéle quasi-tridimensionnel sous-estime
la différence de pression immédiatement en aval de I’étranglement avec 20% ou plus.

Les principaux résultats de la comparaison de la répartition de la pression dans la direction
principal de ’écoulement modélisé et simulé détient également lorsque 'on compare la vitesse
moyenne streamwise modélisé et simulé comme on le voit sur la Fig. H.13. En effet, dans
le rétrécissement, les vitesses moyennes modélisées surestiment les valeurs simulées avec un
maximum de 30% et minimum 15%, alors que, immédiatement en aval de 1’étranglement

Ierreur augmente parce au’on prends pas en compte le rattachement de I’écoulement dans le
modele d’écoulement quasi - tridimensionnel.

Les profils transversaux modélisées, simulées et mesurées le long de la dimension X sont
illustrés dans la Fig. H.14 en utilisant les mesures de vitesse transversales prise immédiate-
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ment en aval de I'étranglement pour @) = 351/min. Les profils simulés & l'entrée (Z/Lo = 0),
moyenne (Z/Lc = 0,5) et de sortie (Z/Lo = 1) de I'étranglement sont présentés. Développe-
ment de la couche limite le long de la partie rétrécie est observée pour les profils d’écoulement
simulées de sorte que pour Z/L¢c > 0.5, les profils simulés, mesurés et modélisés comparé a
proximité des parois est de telle sorte que la vitesse du centre simulé fournit une meilleure
approximation de la vitesse au centre mesuré que les augmentations Z/Lco. Parce qu’un
ecoulement développé est supposé, la vitesse maximale modélisée surestime la valeur mesurée
et la vitesse transversale simulée au centre avec 40%. Vitesses au centre simulées et mesurées
fournissent un bon match a moins de 5% et 10% en fonction de la forme de section transversale.
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Figure H.14: Illustration de la distribution des vitesses normalisées transversales le long de
la direction X: modélisées (mod), expérimentale (exp) et simulées (IB). Profils simulés sont
présentés pour différentes positions de streamwise dans la constriction: a ’entrée (Z/L¢c = 0),
au milieu (Z/Lo = 0,5) et a la sortie (Z/Lc = 1). Profils simulés instantanées sont évalués
au temps t = 43ms pour la forme circulaire de rétrécissement et au temps ¢ = 50ms pour les
autres formes. La coordonnée X est normalisée par la largeur de la partie rétrécie w le long
de la dimension X.
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Conclusion

Des modéles simples d’écoulement ont une longue et fructueuse tradition par rapport a la prévi-
sion qualitative des phénoménes de circulation biologique complexes en termes de paramétres
physiologiques significatifs & un faible cotit de calcul. En outre, les derniéres décennies des
techniques de simulation d’écoulement complexes sont appliqués & ces phénoménes de circula-
tion biologiques afin de surmonter les hypothéses inhérentes aux modéles de flux simplifiés de
maniére & fournir des prévisions précises quantitativement & un grand cott de calcul. Un bon
exemple d’'une variable physiologique importante qui est soit négligé dans les modeéles de flux
simples ou pour lesquels incorporant tous ses détails dans un modéle de calcul est d’abord une
tache énorme et d’autre part augmente le cott de calcul significativement est la forme de la
section transversale d’une sténose connexes & un systéme de circulation biologique. Outre la
forme de section transversale, une attention particulier est accordée & ’amont des conditions
d’écoulement. Des applications sont multiple et donc les conditions d’écoulement varient con-
sidérable menton si on considéré par example une sténose dans la circulation sanguine ou un
flux d’air lors de la respiration.

Par conséquent, dans cette thése, nous avons cherché a décrire I'influence de la forme de la
section transversale sur un écoulement laminaire qui est commandé par la pression a un faible
coflit de calcul et en tenant compte de la nécessité possible d’analyser le modéle en termes
d’espace de paramétres tels que le nombre de Reynolds ou un paramétre géométrique. Par
conséquent, un modéle d’écoulement quasi-tridimensionnel simplifié est proposé en association
avec la description d’une forme paramétrée de section transversale arbitraire. Un tel modéle
permet 'équilibre recherché entre la simplicité et de la complexité et ajoute un aspect tridi-
mensionnel dans un modéle d’écoulement simple. Un tel modelé est original car il est plus
naturel de s’appuyer sur une théorie bidimensionnelle ou couche limite dans le cas ou l'on
cherche & améliorer le modéle d’écoulement utilise. Le modéle de flux proposée repose sur
des solutions de flux entiérement développés et peut donc étre considérée & ’extension d’un
modeéles d’écoulement quasi - unidimensionnels classique.

La pertinence ainsi que les limites du modéle de flux proposé par rapport & I’écoulement
de canal resserré est représenté de plusieurs facons. Tout d’abord, il est montré que I'incidence
de la forme de la section transversale sur la distribution de la pression & l'intérieur de
I’étranglement ne peut pas étre négligée lorsque 1’écoulement n’est pas entiérement dominée par
la viscosité. Dans le dernier cas, le modéle de flux de quasi - unidimensionnel classique dispose
de bons résultats avec un minimum de calculs. D’autre part, il est montré que 'application du
modele d’écoulement quasi tridimensionnel de phonation permet en effet une analyse math-
ématique en termes de espace de paramétres, et affecte en outre des valeurs prédites, de
nouveau par rapport au modéle quasi- unidimensionnel, des parameétres physiologique perti-
nente dans le cas ol le débit est affectée et donc lorsque le débit n’est pas entiérement dominée
par la viscosité. Troisiémement, les mesures de pression dans ’étranglement montre que, bien
que la précision quantitative est faible, le modéle d’écoulement quasi - tridimensionnel améliore
des valeurs prédites par rapport au modéle quasi - unidimensionnelle ainsi qu’a une solution
de couche limite pour axisymétrique ou bi-dimensionelles (sauf pour les nombres de Reynolds
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bas). De la méme fagon, les profils de vitesse transversales montrent que les profils prédits
par le modéle d’écoulement quasi - tridimensionnel, mais pas précis, ne fournissent certaines
caractéristiques principales du profil de vitesse tels que le développement asymétrique des
couches limites dans le cas de géométries asymétriques. D’autre part, il est montré que le
modeéle d’écoulement proposé ne peut pas saisir la complexité de la dynamique d’écoulement
liées & la variation de conditions d’écoulement en amont. Dans le méme temps, méme si une
prédiction obtenue & partir de la simulation numérique avec un modeéle d’écoulement plus
complexe serait certainement plus précise, elle peut étre mise en doute qu’il capture 'impact
des conditions d’écoulement en amont dans un temps raisonnable. En quatriéme lieu, le ré-
sultat de modele est comparée avec les résultats de la simulation numérique d’un modéle
d’écoulement laminaire incompressible tridimensionnel. On voit que les prédictions obtenues
a partir du modéle sont adaptés pour prévoir 'ordre de grandeur des quantités d’écoulement a
l'intérieur de ’étranglement tandis que des prédictions a partir de I’étranglement sont inutiles.
Le champ d’écoulement simulé d’autre part est capable & capter une partie de la dynamique
d’écoulement & un cott de calcul élevé.
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