Scene Flow Estimation from RGBD Images

par Julián Quiroga Sepúlveda

Thèse de doctorat en Mathématiques et Informatique

Sous la direction de James L Crowley.

Le président du jury était Peter Sturm.

Le jury était composé de Frédéric Devernay, Thomas Brox.

Les rapporteurs étaient Lourdes Agapito, Pierre Kornprobst.

  • Titre traduit

    Estimation du flot de scène à partir des images RGBD


  • Résumé

    Cette thèse aborde le problème du calcul de manière fiable d'un champ de mouvement 3D, appelé flot de scène, à partir d'une paire d'images RGBD prises à des instants différents. Nous proposons un schéma d'estimation semi-rigide pour le calcul robuste du flot de scène, en prenant compte de l'information de couleur et de profondeur, et un cadre de minimisation alternée variationnelle pour récupérer les composantes rigides et non rigides du champ de mouvement 3D. Les tentatives précédentes pour estimer le flot de scène à partir des images RGBD étaient des extensions des approches de flux optique, et n'exploitaient pas totalement les données de profondeur, ou bien elles formulaient l'estimation dans l'espace 3D sans tenir compte de la semi-rigidité des scènes réelles. Nous démontrons que le flot de scène peut ^etre calculé de manière robuste et précise dans le domaine de l'image en reconstruisant un mouvement 3D cohérent avec la couleur et la profondeur, en encourageant une combinaison réglable entre rigidité locale et par morceaux. En outre, nous montrons que le calcul du champ de mouvement 3D peut être considéré comme un cas particulier d'un problème d'estimation plus général d'un champ de mouvements rigides à 6 dimensions. L'estimation du flot de scène est donc formulée comme la recherche d'un champ optimal de mouvements rigides. Nous montrons finalement que notre méthode permet d'obtenir des résultats comparables à l'état de l'art.


  • Résumé

    This thesis addresses the problem of reliably recovering a 3D motion field, or scene flow, from a temporal pair of RGBD images. We propose a semi-rigid estimation framework for the robust computation of scene flow, taking advantage of color and depth information, and an alternating variational minimization framework for recovering rigid and non-rigid components of the 3D motion field. Previous attempts to estimate scene flow from RGBD images have extended optical flow approaches without fully exploiting depth data or have formulated the estimation in 3D space disregarding the semi-rigidity of real scenes. We demonstrate that scene flow can be robustly and accurately computed in the image domain by solving for 3D motions consistent with color and depth, encouraging an adjustable combination between local and piecewise rigidity. Additionally, we show that solving for the 3D motion field can be seen as a specific case of a more general estimation problem of a 6D field of rigid motions. Accordingly, we formulate scene flow estimation as the search of an optimal field of twist motions achieving state-of-the-art results.STAR


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.