Méthodes de décomposition de domaine. Application au calcul haute performance

par Pierre Jolivet

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Christophe Prud'homme et de Frédéric Nataf.

Le président du jury était Eric Blayo.

Le jury était composé de Frédéric Hecht, Victorita Dolean, Luc Giraud.

Les rapporteurs étaient Georges Biros, Olaf Schenk.


  • Résumé

    Cette thèse présente une vision unifiée de plusieurs méthodes de décomposition de domaine : celles avec recouvrement, dites de Schwarz, et celles basées sur des compléments de Schur, dites de sous-structuration. Il est ainsi possible de changer de méthodes de manière abstraite et de construire différents préconditionneurs pour accélérer la résolution de grands systèmes linéaires creux par des méthodes itératives. On rencontre régulièrement ce type de systèmes dans des problèmes industriels ou scientifiques après discrétisation de modèles continus. Bien que de tels préconditionneurs exposent naturellement de bonnes propriétés de parallélisme sur les architectures distribuées, ils peuvent s’avérer être peu performants numériquement pour des décompositions complexes ou des problèmes physiques multi-échelles. On peut pallier ces défauts de robustesse en calculant de façon concurrente des problèmes locaux creux ou denses aux valeurs propres généralisées. D’aucuns peuvent alors identifier des modes qui perturbent la convergence des méthodes itératives sous-jacentes a priori. En utilisant ces modes, il est alors possible de définir des opérateurs de projection qui utilisent un problème dit grossier. L’utilisation de ces outils auxiliaires règle généralement les problèmes sus-cités, mais tend à diminuer les performances algorithmiques des préconditionneurs. Dans ce manuscrit, on montre en trois points quela nouvelle construction développée est performante : 1) grâce à des essais numériques à très grande échelle sur Curie—un supercalculateur européen, puis en le comparant à des solveurs de pointe 2) multi-grilles et 3) directs.

  • Titre traduit

    Domain decomposition methods. Application to high-performance computing


  • Résumé

    This thesis introduces a unified framework for various domain decomposition methods:those with overlap, so-called Schwarz methods, and those based on Schur complements,so-called substructuring methods. It is then possible to switch with a high-level of abstractionbetween methods and to build different preconditioners to accelerate the iterativesolution of large sparse linear systems. Such systems are frequently encountered in industrialor scientific problems after discretization of continuous models. Even though thesepreconditioners naturally exhibit good parallelism properties on distributed architectures,they can prove inadequate numerical performance for complex decompositions or multiscalephysics. This lack of robustness may be alleviated by concurrently solving sparse ordense local generalized eigenvalue problems, thus identifying modes that hinder the convergenceof the underlying iterative methods a priori. Using these modes, it is then possibleto define projection operators based on what is usually referred to as a coarse solver. Theseauxiliary tools tend to solve the aforementioned issues, but typically decrease the parallelefficiency of the preconditioners. In this dissertation, it is shown in three points thatthe newly developed construction is efficient: 1) by performing large-scale numerical experimentson Curie—a European supercomputer, and by comparing it with state of the art2) multigrid and 3) direct solvers.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?