Etude de la métallisation de la face avant des cellules photovoltaïques en silicium

par Sébastien Thibert

Thèse de doctorat en Matériaux, mécanique, génie civil, électrochimie

Soutenue le 23-04-2014

à Grenoble , dans le cadre de École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble) , en partenariat avec Laboratoire de génie des procédés papetiers (Grenoble) (laboratoire) et de Laboratoire Génie des procédés papetiers / LGP2 (laboratoire) .

Le président du jury était Mustapha Lemiti.

Le jury était composé de Didier Chaussy, Nadège Reverdy-Bruas, Davide Beneventi.

Les rapporteurs étaient Jean-Jacques Simon, Didier Graebling.


  • Résumé

    À l'échelle industrielle, la métallisation de la face avant des cellules photovoltaïques est réalisée grâce au procédé de sérigraphie depuis plus de 40 ans. Une pâte à base d'argent est imprimée avant d'être recuite à haute température. La robustesse, la simplicité et la haute cadence de production de ce procédé ont largement contribué à son succès. L'étape de métallisation est critique dans la chaîne de fabrication des cellules. D'un côté, les propriétés des contacts déposés déterminent les performances finales des cellules. D'un autre côté, plus de 7% de la consommation mondiale d'argent sont déjà destinés à l'industrie photovoltaïque. Avec les prévisions de croissance exponentielle de ce secteur, la quantité d'argent déposée lors de cette étape devient de plus en plus cruciale car elle régit le coût final des cellules. Elle dépend également de la qualité des contacts imprimés. Il est donc important d'optimiser le procédé de sérigraphie pour limiter la masse d'argent imprimée et maximiser le rendement des cellules. Les travaux présentés dans la première partie de cette thèse sont focalisés sur ces deux aspects. Dans un premier temps, le comportement rhéologique des pâtes de sérigraphie est étudié. Par la suite, une étude multifactorielle combinée à des simulations des pertes de puissance permet d'évaluer l'influence des paramètres de la sérigraphie sur le rendement des cellules et la masse d'argent déposée. Ces travaux ont conduit à la fabrication de cellules caractérisées par un rendement moyen de 19,0% à l'échelle industrielle. Le procédé de sérigraphie reste couteux et de nombreuses solutions alternatives sont à l'étude. En effet, la microstructure hétérogène des contacts cause des pertes électriques non négligeables en comparaison des cellules à haut rendement. Par ailleurs, la résolution limitée de ce procédé ne permet plus de réduire les dimensions des impressions, ce qui a un impact direct sur les pertes optiques et la masse d'argent déposée. Enfin, l'optimisation simultanée des propriétés électriques et géométriques des contacts complexifie son contrôle à l'échelle industrielle. Le concept double couche est une alternative innovante qui permet de s'affranchir de ces limitations. Une première couche est d'abord imprimée pour limiter la largeur initiale des contacts et améliorer l'interface avec la cellule. Une seconde couche de métal pur, déposée par voie électrolytique, vient épaissir cette dernière pour optimiser la hauteur et la conductivité de la grille de métallique. Dans le même temps, cette étape permet de contrôler précisément la masse d'argent déposée. Plusieurs solutions sont disponibles pour réaliser l'impression de la première couche. Grâce à sa flexibilité et à sa très haute cadence de production, le procédé de flexographie semble répondre au cahier des charges d'un tel dépôt dans des conditions industrielles. La seconde partie des travaux exposés dans cette thèse traite du développement de cette technique d'impression. Tout d'abord, le comportement rhéologique de plusieurs encres dérivées d'une pâte de sérigraphie classique est étudié. Dans un second temps, le procédé de flexographie est adapté au dépôt de lignes pouvant être épaissies par voie électrolytique (procédé LIP). Le potentiel de ce procédé est ensuite évalué à l'aide de modélisations du rendement et de la masse d'argent déposée. Finalement, la faisabilité du concept est démontrée grâce à la fabrication d'une cellule caractérisée par un rendement prometteur de 17,9%.

  • Titre traduit

    Study of the front side metallization of silicon solar cells


  • Résumé

    At an industrial scale, the front side metallization of solar cells is performed by screen printing for 40 years. A silver-based paste is printed before a high temperature annealing. This simple and robust process enables a high throughput. However, the metallization is a critical step in production lines. On the one hand, the contact properties affect the final cell performances. On the other hand, the photovoltaic industry already accounts for 7% of the world's silver consumption. With the expected exponential growth of this sector, the mass of silver per cell becomes crucial as it governs their final cost. Consequently, it is mandatory to optimize the screen printing process to limit the amount of deposited silver and maximize the solar cell efficiency. The first part of this study focused on these two aspects. First, the rheological behavior of screen printing pastes is investigated. Then, a multifactorial study is combined with power loss simulations to assess the effect of screen printing parameters on the cell efficiency and the deposited silver mass. Besides, these studies have lead to an average cell efficiency of 19,0% at an industrial scale. To ensure the photovoltaic industry growth, the screen printing process should be replaced in coming years. Indeed, the heterogeneous contact microstructure causes significant electrical losses in comparison to high-efficiency cells. Moreover, the limited resolution of this process does no longer allow a contact width reduction, which has a direct impact on the optical losses and the silver mass per cell. Finally, the simultaneous optimization of the electrical and geometrical contact properties is difficult at an industrial scale. The seed and plate concept is an innovative solution that overcomes these limitations. First, a seed layer is printed to reduce the initial contact width and improve its interface with the cell. Then, a second layer is electrolytically grown to improve the conductivity and the height of the metal grid. Besides, this step enables an accurate control of the deposited silver amount. Several solutions are available to print the first layer. Because of a high throughput and flexibility, the flexographic printing process seems particularly well suited to meet the seed layer requirements at an industrial level. The second part of this study focuses on the development of this process. First, the rheological behavior of several inks is studied. Secondly, the flexographic printing process is adapted to print fine lines that can be thickened by light induced plating (LIP). The potential of this metallization scheme is then assessed using a simulation of cell performances and silver consumption. Finally, a promising 17,9% cell efficiency demonstrates the concept feasibility.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.