Dynamique de l'assemblage de wafers par adhésion moléculaire

par Etienne Navarro

Thèse de doctorat en Matériaux, mécanique, génie civil, électrochimie

Sous la direction de Yves Bréchet.

Le président du jury était Elisabeth Bouchaud.

Le jury était composé de Yves Bréchet, Thomas Pardoen, Jean-Pierre Raskin, Ionut Radu.

Les rapporteurs étaient Dominique Leguillon, Kevin Turner.


  • Résumé

    Lors de l'assemblage de wafers par adhésion moléculaire, un mince film d'air est piégé entre les deux wafers, créant ainsi un système fluide/structure couplé.La qualité finale de l'assemblage dépend fortement de la dynamique de ce système.L'initiation et la propagation du collage ont été étudiées, en régime transitoire, en utilisant un modèle de plaques minces couplée avec l'équation de Reynolds. La résolution numérique de l'équation, ainsi que la mesure optique du déplacement vertical de la plaquette durant le collage, nous a permis de valider le modèle et de mieux comprendre la dynamique du collage.Dans la continuité de cette étude, nous avons proposé une expression analytique de la courbure finale de l'assemblage en fonction des forces en jeu pendant le collage, ceci en utilisant à nouveau la théorie des plaques minces et en considérant l'exitence d'un saut de déformation transverse le long de l'interface collée.Ce modèle a été validé par une expérience, impliquant le collage de wafers d'épaisseur différentes et en prenant soin de contrôler l'ensemble des forces agissant sur ces wafers. Nous observons une influence importante du film d'air sur la forme finale des wafers.En complément, un modèle du travail d'adhésion a été développé prenant en compte, à la fois, la rugosité d'interface et la quantité d'eau adsorbée. La différence de répartition de l'eau à l'interface de collage, nous permet d'expliquer les résultats expérimentaux montrant des valeurs d'énergie de séparation supérieure à celle de l'adhésion.Enfin, nous proposons une nouvelle méthode de mesure du travail d'adhésion pour la géométrie entière des wafers, utilisant la mesure de la taille d'une bulle cylindrique intentionnellement créée, par un petit objet, à l'interface de collage.

  • Titre traduit

    Direct wafer bonding dynamics


  • Résumé

    The direct wafer bonding process involves a coupled physical system, formed by the elastic deformation of the wafers and a thin layer of fluid trapped in-between the two wafers.Dynamics of the system during the contacting step has many practical consequences on the quality of the assembled stack.A model for the bonding dynamics is formulated using the thin plate theory and the Reynolds equation. The transient equation is solved numerically, allowing to study both the initiation and the propagation of the bonding. The model is supported by the measurement of the vertical movement of the wafer during the bonding, using an original setup involving optical sensors.Subsequently, an analytical model for the final curvature of the bonded stack is derived, as a function of the different load components acting on the wafers during the bonding, using the thin plate theory and by considering a transverse strain discontinuity locked at the bonding interface.Experimental validation is performing using two different wafer thicknesses. The measured bonded wafer profiles are well described by the model.In addition, a model for the work of adhesion is developed, taking into account both the interface roughness and the amount of adsorbed water.The interface energy controlling the adhesion is found different than for the separation because of the different distribution of water along the interface, in agreement with the experimental observations. At last, a new method to accurately measure the work of adhesion for the entire wafers geometry is proposed, using an elongated bubble intentionally created at the bonding interface and by measuring the induced wafer deflection.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?