Compréhension des mécanismes de dopage arsenic de CdHgTe par implantation ionique

par Clément Lobre

Thèse de doctorat en Matériaux, mécanique, génie civil, électrochimie

Sous la direction de Engin Molva.

Le président du jury était Henri Mariette.

Le jury était composé de Engin Molva, Philippe Ballet, Pierre-Henri Jouneau, Jean-Michel Chauveau, Ian Vickridge.

Les rapporteurs étaient Daniel Mathiot, Gilles Patriarche.


  • Résumé

    Ce travail de thèse aborde l’ensemble de la problématique du dopage de type p de CdHgTe par implantation ioniqued’arsenic, de l’incorporation jusqu’à l’activation en passant par la diffusion. Pour chaque point considéré, plusieurstechniques de caractérisation ont été mises en oeuvre avec comme objectif la compréhension des mécanismes dedopage.Les dommages induits par le processus d’implantation ionique ont été étudiés d’un point de vue structural etélectrique, afin de déterminer leur influence sur les processus de diffusion et d’activation du dopant. Un effet derecuit sous irradiation a été mis en évidence lors de l’implantation ionique, avec une dose critique de saturationdes défauts estimée à 2.1014 at.cm-2. Un modèle simple a permis d’estimer le coefficient de diffusion de la partiemobile de l’arsenic et de montrer que le mercure joue un rôle majeur dans ce processus de diffusion. La limite desolubilité de l’arsenic dans CdHgTe a été déterminée pour les trois compositions d’alliage les plus utilisées dansles domaines d’applications infrarouges. Lorsque la concentration en arsenic dépasse cette limite, la formation denanocristaux riches en arsenic a été mise en évidence expérimentalement pour la première fois en combinant lamicroscopie électronique en transmission et la cartographie chimique à l’échelle nanométrique. La formation de cesnanocristaux permet d’expliquer pourquoi une partie de l’arsenic ne participe ni à la diffusion ni au dopage. Lanature chimique et cristallographique précise de ces nanocristaux reste encore à déterminer. La mesure du profil dedensité de porteurs a montré que les nanocristaux riches en arsenic ne sont pas actifs électriquement et que près de100 % de l’arsenic mobile lors du recuit d’activation présente un comportement accepteur. La formation du complexeaccepteur AsHg8 a été proposée afin d’expliquer les processus de diffusion et d’activation de l’arsenic dans CdHgTe.L’implantation des éléments azote, phosphore et antimoine a également été étudiée, et leurs comportements comparésà celui de l’arsenic. Pour les éléments azote et phosphore, un phénomène de piégeage, bloquant la diffusiondes dopants, a été mis en évidence et rend ces éléments inappropriés pour réaliser un dopage de bonne qualité.L’antimoine présente une diffusion beaucoup plus rapide que l’arsenic. De plus, l’activation en site accepteur deplus de 21 % de l’antimoine ayant diffusé lors du recuit d’activation a été démontrée. Même si le comportement del’antimoine est prometteur, parmi les éléments étudiés, l’arsenic présente les meilleures caractéristiques dans le cadred’une utilisation en tant que dopant de type p. Nos conditions de recuit permettent l’activation d’une grande partiede l’arsenic en site accepteur, tout en permettant de retrouver une bonne qualité cristalline dans la zone implantée.

  • Titre traduit

    Arsenic doping of HgCdTe by ion implantation


  • Résumé

    This thesis addresses the incorporation of arsenic in HgCdTe but also its activation and the related diffusion duringhigh temperature annealing. For each item, a large panel of characterization tools was used in order to obtain abetter understanding of p-type doping of HgCdTe by arsenic implantation.Irradiation induced annealing during ion implantation has been demonstrated with a saturation fluence of about2.1014 at.cm-2. A simple model enabled us to evaluate the diffusion coefficient of arsenic and to evidence the majorrole of mercury in the diffusion process. The solubility limit of arsenic in the HgCdTe alloy was determined forthe three most common compositions used for infrared applications. For arsenic concentration over this limit, theformation of arsenic-rich nanocrystals was demonstrated by transmission electron microscopy coupled with nanoscalechemical mapping. This first experimental evidence of arsenic clustering explains why some of the arsenicdoes not participate in the diffusion process. However, the exact chemical and crystallographic nature of thesenanocrystals remains unknown. The measurement of the depth profile of carrier density allows us to demonstratethe electrical inactivity of arsenic-rich nanocrystals. On the other hand, almost 100 % of the mobile arsenic is foundto be activated as an acceptor. The formation of AsHg8 complexes was proposed to explain the activation and thediffusivity of arsenic in HgCdTe.Ion implantation of nitrogen, phosphorus and antimony was studied and its behavior compared to that of arsenic.For nitrogen and phosphorus, a trapping effect that blocks the dopant diffusion was observed. Therefore, a goodquality doping cannot be achieved under these conditions. Antimony exhibits a faster diffusion than arsenic and theactivation as an acceptor of more than 21 % of mobile antimony was demonstrated. Even if the antimony behaviorseems interesting, arsenic exhibits the most promising properties for HgCdTe doping among all studied elements.As well as restoring a good crystal quality, our annealing conditions allow the activation of most of arsenic as anacceptor.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.