An averaging theory for nonlinear partial differential equations

par Guan Huang

Thèse de doctorat en Mathématiques

Sous la direction de Sergej Kuksin.

Soutenue en 2014

à Palaiseau, Ecole polytechnique .

  • Titre traduit

    Une théorie de la moyenne pour les équations aux dérivées partielles non linéaires


  • Résumé

    Cette thèse se consacre aux études des comportements de longtemps des solutions pour les EDPs nonlinéaires qui sont proches d'une EDP linéaire ou intégrable hamiltonienne. Une théorie de la moyenne pour les EDPs nonlinéaires est presenté. Les modèles d'équations sont les équations Korteweg-de Vries (KdV) perturbées et quelques équations aux dérivées partielles nonlinéaires faiblement.


  • Résumé

    This Ph. D thesis focuses on studying the long-time behavior of solutions for non-linear PDEs that are close to a linear or an integrable Hamiltonian PDE. An averaging theory for nonlinear PDEs is presented. The model equations are the perturbed Korteweg-de Vries (KdV) equations and some weakly nonlinear partial differential equations.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (105 p.)
  • Annexes : Bibliographie : 75 réf.

Où se trouve cette thèse ?

  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.