Thèse soutenue

Limites diffusives pour des équations cinétiques stochastiques

FR  |  
EN
Auteur / Autrice : Sylvain De Moor
Direction : Arnaud DebusscheJulien Vovelle
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 11/06/2014
Etablissement(s) : Rennes, École normale supérieure
Ecole(s) doctorale(s) : École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes ; 2022-....)
Partenaire(s) de recherche : Laboratoire : Université européenne de Bretagne - European University of Brittany - École normale supérieure - Rennes - Institut de Recherche Mathématique de Rennes
Jury : Examinateurs / Examinatrices : Erwan Faou, Josselin Garnier
Rapporteurs / Rapporteuses : Thierry Goudon, Mauro Mariani

Résumé

FR  |  
EN

Cette thèse présente quelques résultats dans le domaine des équations aux dérivées partielles stochastiques. Une majeure partie d'entre eux concerne l'étude de limites diffusives de modèles cinétiques perturbés par un terme aléatoire. On présente également un résultat de régularité pour une classe d'équations aux dérivées partielles stochastiques ainsi qu'un résultat d'existence et d'unicité de mesures invariantes pour une équation de Fokker-Planck stochastique. Dans un premier temps, on présente trois travaux d'approximation-diffusion dans le contexte stochastique. Le premier s'intéresse au cas d'une équation cinétique avec opérateur de relaxation linéaire dont l'équilibre des vitesses a un comportement de type puissance à l'infini. L'équation est perturbée par un processus Markovien. Cela donne lieu à une limite fluide stochastique fractionnaire. Les deux autres résultats concernent l'étude de l'équation de transfert radiatif qui est un problème cinétique non linéaire. L'équation est bruitée dans un premier temps avec un processus de Wiener cylindrique et dans un second temps par un processus Markovien. Dans les deux cas, on obtient à la limite une équation de Rosseland stochastique. Dans la suite, on présente un résultat de régularité pour les équations aux dérivées partielles quasi-linéaires de type parabolique dont la partie aléatoire est gouvernée par un processus de Wiener cylindrique. Enfin, on étudie une équation de Fokker-Planck qui présente un terme de forçage aléatoire régi par un processus de Wiener cylindrique. On prouve d'une part l'existence et l'unicité des solutions de ce problème et d'autre part l'existence et l'unicité de mesures invariantes pour la dynamique de cette équation.