Resilient and energy-efficient scheduling algorithms at scale

par Guillaume Aupy

Thèse de doctorat en Informatique

Sous la direction de Anne Benoit.

Le président du jury était Erol Gelenbe.

Le jury était composé de Erol Gelenbe, Alain Girault, Alix Munier, Georges Da Costa, Yves Robert.

Les rapporteurs étaient Alain Girault, Alix Munier.

  • Titre traduit

    Algorithmes d'ordonnancement fiables et efficaces énergétiquement à l'échelle


  • Résumé

    Dans cette thèse, j'ai considéré d'un point de vue théorique deux problèmes importants pour les futures plateformes dîtes Exascales : les restrictions liées à leur fiabilité ainsi que les contraintes énergétiques. En première partie de cette thèse, je me suis intéressé à l'étude de placements optimal de ces checkpoints dans un but de minimisation de temps total d'exécution. En particulier, j'ai considéré les checkpoints périodiques et coordonnés. J'ai considéré des prédicteurs de fautes capables de prévoir, de manière imparfaite, les fautes arrivant sur la plateforme. Dans ce contexte, j'ai conçu des algorithmes efficaces pour résoudre mes problèmes. Dans un deuxième temps, j'ai considéré des fautes silencieuses. Ces fautes ne peuvent être détectées qu'uniquement par un système de vérification.Dans le cas où une de ces fautes est détectée, l'utilisateur doit retourner au point de sauvegarde le plus récent qui n'a pas été affecté par cette faute, si un tel point existe ! Dans ce contexte, j'ai à nouveau proposé des algorithmes optimaux au premier ordre, mixant points de sauvegarde et points de vérification. Dans la seconde partie de cette thèse, j'ai considéré des problèmes énergétiques liés à ces mêmes plateformes. Ces problèmes critiques doivent être reliés aux problèmes de fiabilité de la partie précédente. Dans ce contexte, j'ai couplé des techniques de baisse de consommation énergétique à des techniques d'augmentation de fiabilité comme la reexécution, la réplication ainsi que le checkpoint. Pour ces différents problèmes, j'ai pu fournir des algorithmes dont l'efficacité a été montrée soit au travers de simulations, soit grâce à des preuves mathématiques.


  • Résumé

    This thesis deals with two issues for future Exascale platforms, namelyresilience and energy.In the first part of this thesis, we focus on the optimal placement ofperiodic coordinated checkpoints to minimize execution time.We consider fault predictors, a software used by system administratorsthat tries to predict (through the study of passed events) where andwhen faults will strike. In this context, we propose efficientalgorithms, and give a first-order optimal formula for the amount ofwork that should be done between two checkpoints.We then focus on silent data corruption errors. Contrarily to fail-stopfailures, such latent errors cannot be detected immediately, and amechanism to detect them must be provided. We compute the optimal periodin order to minimize the waste.In the second part of the thesis we address the energy consumptionchallenge.The speed scaling technique consists in diminishing the voltage of theprocessor, hence diminishing its execution speed. Unfortunately, it waspointed out that DVFS increases the probability of failures. In thiscontext, we consider the speed scaling technique coupled withreliability-increasing techniques such as re-execution, replication orcheckpointing. For these different problems, we propose variousalgorithms whose efficiency is shown either through thoroughsimulations, or approximation results relatively to the optimalsolution. Finally, we consider the different energetic costs involved inperiodic coordinated checkpointing and compute the optimal period tominimize energy consumption, as we did for execution time.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque Diderot . Bibliothèque électronique (Lyon).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.